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Abstract—Recent limitations in technology scaling have em-
phasized the need for energy-efficient computing architectures
that can dynamically adjust operand precision based on the
real-time requirements of the application, without compromising
result accuracy. This adaptability also creates opportunities to
enhance throughput and optimize hardware utilization. Fur-
thermore, the use of lower-precision formats (e.g., 16-bit) often
releases portions of the arithmetic datapath, allowing these
resources to be reallocated for increased vector parallelism. In
this context, we present a novel transprecision Floating-Point
Unit (FPU) that supports all IEEE 754 data types (double, single,
half-precision), as well as the bfloat16 and DLFloat formats. The
unit features dynamic precision tuning of operands, enabling
increased throughput through vectorization and improved energy
efficiency. The proposed design was implemented using a 28nm
UMC technology process, achieving a peak energy efficiency of
152 GOPS/W as a result of new precision adaptation capabilities.

Index Terms—Floating-point arithmetic; Dynamic Transpreci-
sion; Vectorization/SIMD; Energy Efficiency.

I. INTRODUCTION

To guarantee general-purpose deployment and numerical ac-
curacy, conventional computing architectures statically define
the precision of data types (e.g. 32, 64 bits), justifying the
ubiquitous adoption of the IEEE-754 floating-point standard.
Under this premise, the transprecision computing paradigm
recognizes the opportunity to use approximate (narrower)
data types for the required computations without significantly
degrading the attained results. For instance, 8-bit and 16-bit
data types, which are already supported in some floating-point
formats such as Posit [1], DLFloat [2], Microsoft Floating-
Point [3], among others have been adopted in the domain of
ML/AI applications [3]–[6]. In fact, this trend has even pushed
the creation of an IEEE working group to define a set of
new standard low-precision formats [7]. By taking advantage
of such lower precision formats, transprecision computing
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frameworks attempt to dynamically control and adjust the
approximation through software and/or hardware, with the
goal of optimizing the energy efficiency [8]–[11].

Many recent works have attempted to tackle the hardware
side of this problem. Mach et al. [10] introduced an architec-
ture with support for multiple input formats and arbitrary bit
widths, as well as mixed format operations. Crespo et al. [11]
presented a vector multiply-accumulate (MAC) unit with ef-
ficient unified support for both IEEE-754 and Posit operands.
Zhang et al. [12] implemented a vector IEEE-754 fused
multiply-add (FMA) unit with support for up to quadruple-
precision, mixed-format FMA and dot-product operations.
However, all these units are not capable of autonomously
determining the most appropriate operand precision at runtime.

While several solutions already support multi-precision ar-
chitectures, they are often configured statically. In contrast, the
dynamic FPU re-configuration, in runtime, has been explored
to a lesser extent, and usually only with arithmetic units that
do not support multiple formats. As an example, Linhares
et al. [9] presented an IEEE-754 transprecise FPU expanded
with a tag field that determines, manually or dynamically, the
precision that its operands should be in for the operation to be
performed. However, this unit does not support the alternative
formats previously mentioned, which may arguably limit its
performance in relevant transprecision workloads.

Kaul et al. [8] implemented an FMA unit with support
for 1-way 24-bit, 2-way 12-bit and 4-way 6-bit mantissas.
It also includes a runtime certainty tracking circuit, where
inaccurate results trigger the operation to be repeated in a
higher precision mode. Despite being highly performant, its
transprecision applications are once again limited due to only
supporting single-precision operands.

Accordingly, there is an opportunity to further advance the
design of new FPU architectures with wider support for low-
precision formats and the ability to dynamically determine
the most appropriate operand precision at runtime, aiming
to increase throughput and energy efficiency through in-place
vectorization. Thus, this paper proposes a new dynamically
vectorized fused multiply-accumulate (FMAC) FPU architec-
ture with variable precision and multi-format floating-point
arithmetic. Besides providing RISC-V vector [13] compliant
and accumulation operations. The main contributions are:

• An efficient vector 64-bit FMAC FPU architecture with
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Fig. 1. FPU block diagram. Red and blue arrows represent the control
and status signals, respectively. The mode switch format selection signal is
encoded in the opcode input signal.

simultaneous support for operands in the IEEE 754 (dou-
ble, single, and half-precision), bfloat16, and DLFloat
formats, with support for accumulation operations;

• A fully vectorized arithmetic datapath, capable of dy-
namically configuring to use operands of different vector
precisions (1x64-bit/2x32-bit/4x16-bit operand vectors);

• A new precision controller unit capable of automatically
and dynamically modifying the FPU precision format of
the input operands and the adopted level of vectorization;

• New precision adjustment policies that allow the con-
troller unit to configure the FPU according to user-
selected modes of operation and specific characteristics
of the input data, with the goal of maximizing arithmetic
throughput and efficiency.

II. DYNAMIC FLOATING-POINT UNIT ARCHITECTURE

The proposed architecture comprises four parts (see Fig. 1):
a vector FPU, deploying a variable-precision, multi-format
floating-point arithmetic datapath; a Downcast Unit (DCU);
and a Upcast Unit (UCU), which perform format conversions
on the operands; and a Precision Controller, which decides
on format conversions, balancing precision with the considered
vectorization, depending on user-defined execution policies.

A. Vector FPU Architecture

The vector FPU (see Fig. 2) supports 16 operations, such as
addition, multiplication, MAC, and comparison (see Table I). It
operates on either IEEE-754 double, single and half-precision
formats, or on DLFloat and bfloat16 16-bit formats. By using
a dynamically vectorizable datapath, the input operands may
be vectorized two-way (single-precision) or four-way (half-
precision), always being encoded in 64-bit words.

Accordingly, it features two operating modes: fixed preci-
sion and dynamic precision. In the former, a set of three 64-
bit vector operands (A, B, C) of any supported format may
be input to the FPU, where each vector is composed of a
1x64, 2x32 or 4x16 bits, and in the latter up to twelve vectors
in IEEE double precision may be input. However, while on
the fixed precision mode the operation is performed using the
operands native precision, using dynamic precision the DCU
will try to downcast each set of operands to a lower precision

TABLE I
VECTOR FPU OPERATIONS. MANT SETS THE EXPONENT VECTOR TO

ZERO; NEGEXP NEGATES IT; ACC DENOTES THE ACCUMULATED VALUE.

MUL
A×B

ADD
A+B

SUB
A−B

MADD3
(A×B) + C

MSUB3
(A×B)− C

NMADD3
−(A×B) + C

NMSUB3
−(A×B)− C

MADD2
(A×B) +Acc

NMADD2
−(A×B) +Acc

MAX3
(A > B)?A : C

MIN3
(A < B)?A : C

EQ3
(A == B)?A : C

NEQ3
(A! = B)?A : C

MANT NEGEXP NOPSHF
Shuffle if < 64b

(see section II-B2). Hence, when converted to 16-bit format,
a peak throughput of 4 operations per cycle is achieved.

1) Input Processing: The vectorized FPU has three in-
dependent decode units, one for each input, responsible for
extracting the sign, exponent and fraction fields from each
operand, packing them in a dedicated internal unified represen-
tation, and detecting special operands (subnormals, infinities
and NaNs). This unified vector representation (see Fig. 3) was
especially designed to allow packing vectors of floating-point
operands using distinct precisions and formats. It is composed
of three packed vectors (one for each of the floating-point
format fields). The sign vector is 4 bits wide, to account for
the supported 4-way vectorization. The input exponent vector
is 40 bits wide, allowing four bfloat16 exponent operands to
be represented, with two additional padding bits to account
for overflows during exponent addition. Lastly, the mantissa
vector is 56 bits wide, to accommodate all the combinations of
supported precisions of mantissa operands, plus one implicit
bit and an overflow bit. The rightmost zero bits fill the empty
spaces in the representation.

2) Vector Multiplication: The FPU’s multiplier unit is 56
bits wide, being composed of 16 individual 14-bit multipliers
as illustrated in Fig. 4. When multiplying 16-bit operands, only
multipliers 0, 5, 10 and 15 are active. For single-precision,
multipliers 1, 4, 11 and 14 are also enabled and for double-
precision all partial multipliers are activated. The final product
is obtained by adding the corresponding partial products (pp)
according to the alignment layout shown in Fig. 4. After
multiplication, the 112-bit product is conveniently shifted to
follow the internal unified format and expanded to full 128-bit
precision, along with the mantissa of operand C. Lastly, the
exponent vectors of the operands are added and the product
is corrected in case of any eventual overflow.

3) Vector Accumulator: Before addition, the addend is
selected (either operand C or an accumulated value) and a
vector barrel shifter aligns both operands by right shifting
the mantissa of the operand with the smallest exponent, in
an extent given by their exponent difference. They are then
added in a vectorized 128-bit adder. Afterwards, the result
sign is calculated along with any exception cases.

4) Normalization and Encoding: A leading zero anticipator
(LZA - adapted from [14]) and vector barrel shifters are used
to normalize the exponent and the fraction. The fraction is
left shifted for normalized exponent values and right shifted
for subnormal ones. The exponent is corrected according to
the LZA output or set to zero for subnormal values. The full
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Fig. 2. Block diagram representing the datapath of the vectorized FPU.

precision mantissa is rounded (in round to nearest, ties to even
mode). Finally, exception logic asserts the necessary flags and
the final 64-bit vector result is sent to the output ports.

B. Automatic Precision Controller

The reconfigurable datapath consists of three units, as
depicted in Fig. 1. The first is the DCU, which is responsible
for downcasting IEEE double-precision operands to any other
of the supported formats, sending these to the vector FPU.
The second is the UCU, which performs the reverse operation,
upcasting the FPU results back to double-precision before
being sent to the output ports. The final unit, the Precision
Controller, coordinates the last two through a FSM.

1) Precision Control Unit: These units are managed by
a precision control unit, driven by a finite state machine.
This control unit defines the most appropriate precision level,
checks for overflows during the conversion, and organizes the
operand output. Its behavior can be set to one of three modes:

• The first mode forces the operands into the format pro-
vided in the format selection signal (mode switch).

• The second mode attempts to convert the input operands
to the specified format. If this conversion would lead to
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Fig. 3. Unified representation of decoded signs, exponents and mantissas.
The padding for 16-bit operands varies depending on format (HP/BF/DL).

overflow in any of the operands, the next upper precision
format that does not overflow is used instead. If one or
more operands may not be represented in a single half-
precision set (IEEE half-precision, bfloat16, DLFloat), it
is split into two single-precision ones, sent to the vector
FPU one after the other.

• The third mode is fully autonomous. The mantissas of
each input are analyzed to determine an appropriate
common format. For each one, the number of zeroes after
each leading one is counted. If this number is equal to
or greater than a predefined threshold (specified during
synthesis as a design parameter) for any of them, then
the number of bits up to that leading one is counted.
This number is then used to choose a new format. The
selected format is the one with the smallest mantissa bit-
width that is still equal to or greater than this value.

2) Downcast Unit: The DCU, depicted at the left of Fig. 5,
comprises the following sections: an input decode section,
to split the double-precision operands stored in the input
registers; a mantissa analysis section; and an exponent process-
ing section to subtract the required bias from the exponents
(biasDP −biasFmt). This section also includes a vector adder
and detects eventual overflows, sending this information to
the control unit. Once defined, the proper precision is used
to set the output exponent vectors and to round the necessary
leftmost mantissa bits. The final section packs the operands
appropriately and handles special values, preserving them after
the downcast, flushing underflows to zero.

3) Upcast Unit: The UCU, depicted at the right of Fig. 5,
receives the operands from the vector FPU (together with their
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Fig. 4. Layout of the 16 14-bit partial multipliers in the multiplication unit.



TABLE II
IMPLEMENTATION METRICS AND FUNCTIONALITY COMPARISON BETWEEN OUR AND OTHER RELEVANT STATE-OF-THE-ART FPUS.

FPU Tech.
(nm) Input Formats Format

Conversions
Delay
(ns)

Num.
Bits

Area
(µm2)

Power
(mW )

Energy Efficiency
(GOPS/W)

Area Efficiency
(10−6GOPS/µm2)

EDP
(10−22J.s)

Ours 28 IEEE, bfloat16, DLFloat Yes (Automatic) 2.5 16/32/64 53580 19.9 80.4/40.2/20.1 29.9 3.2/6.2/12.4
[12] 90 IEEE No 1.5 16/32/64 180610 43.8 61.6/30.8/15.9 14.9 2.5/4.9/9.9
[11] 28 IEEE, Posit Yes (Static) 1.5 8/16/32 51563 99 13.1/6.5/3.3 25.2 5.6/11.1/22.3
[8] 32 IEEE No 0.69 32 45000 72 162 32.2 3.4

[10] 22 IEEE, Custom FP16/FP8 Yes (Static) 1.08 8/16/32/64 49153 57.4 129.3/64.6/32.3/16.2 151 0.8/1.7/3.4/6.7
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Fig. 5. Block diagrams of the DCU and UCU. The red arrows represent the
format selection signal from the control unit. All depicted input and output
operands are 64-bits wide, potentially vectorized into two or four lanes.

precision information), decoding them to handle infinite, zero,
NaN and subnormal values (similarly to the DCU). Conversion
back to double-precision is done by zero padding the mantissas
to the left and by adding the bias back to the exponents,
depending on the format of the inputs.

III. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

The proposed FPU design was described in System Verilog
and synthesized to 28nm UMC technology process. The result-
ing implementation operates at a highest attainable frequency
of 400 MHz under normal conditions (1.05V, 25 ºC), with
the critical path being the multiplication stage. Power and
area metrics were obtained by logical synthesis using Cadence
Genus 21.15. The functional validation was done with AMD
Xilinx Vivado 2022.1, by using a comprehensive set of test
vectors generated with TestFloat [15].

A. Hardware Resources Analysis

The obtained synthesis results evidence a total area of
53580µm2 and a power consumption of 19.9mW . When
broken down into the FPU’s stages, the vectorized FPU ac-
counts for 45151µm2 (84%), divided into 4931µm2 (11%) for
decode, 15944µm2 (35%) for multiplication, 6484µm2 (14%)
for accumulation and 9340µm2 (21%) for normalization and
encoding stages, the remaining 8452µm2 (19%) are occupied
by collapsed multiplexers and other logic. The DCU and UCU
account for 6507µm2 and 1170µm2, respectively, with other
logic accounting for 752µm2, adding up to 8429µm2 (16%).

B. Comparison with Related Work

Table II highlights the hardware resources, power consump-
tion and other characteristics of our proposed FPU with respect
to other similar state-of-the-art units.

Despite using different technology processes, it can be
observed that the overall silicon area is comparable to that
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of the other state-of-the-art units analyzed, particularly [8],
[10], [11]. When compared with the dynamically configurable
unit from [8] it shows a slight area increase of 20% due to the
new features introduced by the proposed FPU, these include
offering added support for 64 and 16-bit floating-point formats,
which are not supported in [8]. Nonetheless, we still achieve
a 2.7x reduction in power consumption when compared to [8]
while offering further functionality.

Despite the added functionality of the proposed FPU, its
power consumption is the lowest when compared to the other
FPUs [10], [12]. Peak energy efficiency metrics were obtained
at different frequencies and precisions. At 400MHz, our unit
has a peak energy efficiency of 80.4 GOPS/W which is
comparable to the other state-of-the-art works. It reaches a
maximum of 152 GOPS/W at 150MHz (see Fig. 6), which
is very close to the values obtained with the other dynamic
unit [8]. The maximum area efficiency values were obtained
at 350MHz, at 29.5×10−6 GOPS/µm2. The obtained energy-
delay product values are comparable to those of the other units.

IV. CONCLUSION

This paper presented the development of a novel transpre-
cision Floating-Point Unit (FPU) that supports all IEEE 754
data types (double, single, and half-precision), in addition to
bfloat16 and DLFloat formats. It features dynamic precision
adjustment of operands and an efficient reallocation of the
freed portions of the arithmetic datapath to enhance throughput
through vector parallelism. Implemented using a 28nm UMC
technology process, the unit demonstrated competitive charac-
teristics in terms of area (53.580µm2) and energy efficiency,
while achieving a lower power consumption of 19.9 mW .
This power consumption can be further reduced by adjusting
the operating frequency, highlighting the FPU’s potential for
use in energy-efficient hardware accelerators.
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