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Abstract—Missing values are a fundamental issue in many
applications by constraining the application of different learning
methods or by impairing the attained results. Many solutions
have been proposed by relying on statistical or machine learning
techniques. However, in most cases, the results are not yet
satisfactory. Hence, motivated by the advent of deep learning,
different solutions have also been proposed, such as by adopting
autoencoders and adversarial training. However, in most of these
solutions, the results are impaired by the network structure and
training strategy, constraining the accuracy of missing value
imputation. In this paper, we revisit autoencoder networks and
show that through a careful selection of network structure
and optimization strategy we outperform other deep learning
solutions. We further study the impact of a previously proposed
technique, stochastic corruption of inputs, to show that when
the network is well designed and trained, it actually impairs the
results.

Index Terms—Missing values, deep learning, autoencoder ar-
chitecture

I. INTRODUCTION

Many real-world datasets contain missing values (e.g., med-
ical data [1]–[3], social network [4], microarray and gene
expression data [5]), which are a result of manual data entries,
incorrect measurements, equipment errors, among others. The
missing values problem is a major concern in many fields.
In particular, most machine learning techniques are not well
prepared to deal with missing data and require some sort
of imputation to allow its application, or the deletion of
the missing records. Furthermore, observations with missing
values may have a significant impact on predictive analysis,
as well as on descriptive and inferential statistics.

Hence, it is imperative to handle missing data either by
listwise deletion or by replacing the missing values with
estimations from the observed data via imputation procedures.
However, ignoring observations with missing values (listwise
deletion) may produce biased estimates of means, biased
predictive results and standard errors that are correct for a
reduced subset of the data, but are often larger with respect to

This work was partially supported by Portuguese national funds through
Fundação para a Ciência e a Tecnologia (FCT) under project HAn-
DLE, ref. PTDC/EEI-HAC/30485/2017, the INESC-ID Research Unit, ref.
UIDB/50021/2020, and the LASIGE Research Unit, ref. UIDB/00408/2020
and ref. UIDP/00408/2020.

all available data [6]. Therefore, the replacement of missing
values through an imputation technique is a better solution.

Along the years, many solutions have been proposed, such
as by replacing missing values with simple statistics (e.g.,
mean or mode); by adopting regression methods [7]; by relying
on machine learning techniques (e.g., k-nearest neighbor [8],
decision trees [9], dynamic programming [10], fuzzy c-means
and genetic algorithm [11]); and more recently through deep
learning (e.g., [12]–[14]). Missing values imputation based
on deep learning have been proposed following different
strategies, namely based on generative adversarial networks
[14]–[16], autoencoders [13], [17]–[20], and variational au-
toencoders [21], [22]. For instance, Collaborative Generative
Adversarial Network [14] has been proposed to tackle the
problem of missing image data imputation. Datawig [12]
was proposed to deal with non-numerical data, including
unstructured text and categorical data, by using a long short-
term memory, but requires the specification of the imputed
attributes and the attributes that will be used to impute the
missing values. GAIN [16] is based on generative adversarial
networks, where the generator imputes the missing values
conditioned to the observed values, while the discriminator
determines which values were actually observed and which
were imputed. Finally, MIDA [13] and ODAE [20] are both
based on denoising autoencoders, where the inputs of the
network are corrupted by setting random inputs to zero or
adding random noise. However, despite the recent success in
deep learning approaches, the proposed schemes often focus
solely on problem formulation disregarding the impact of
careful optimization of network parameters as well as on the
optimization strategies.

In this paper we revisit autoencoder networks and show
that through careful selection of network parameters, we
attain state-of-the-art results. Hence, our solution is based
on an autoencoder architecture that learns to minimize the
error between the observed input and the reconstructed output
(excluding missing values). Since neural networks layers do
not naturally handle missing values, we introduce an input
layer that takes into consideration the missing data point
local neighborhood. It contrasts with other approaches which
initially assume an imputed value of zero or of the feature
mean. Hence, during training, the encoding part learns a latent



space that is able to correctly encode the data samples, despite
the existence of incomplete data. The decoding network learns
to reproduce the samples based on the latent space. Together,
they also extract information from the missing pattern, in order
to guide the data imputation process.

In summary the contributions of our work are the following:
• We present an autoencoder architecture that, although

simpler than other alternatives, provides more accurate
imputations;

• We introduce an input layer that takes into consideration
the local neighborhood to initialize the neural network
function;

• We show that a state-of-the-art technique, stochastic cor-
ruption of the inputs [13], [20], do not provide significant
benefits once the neural network is properly defined and
optimized.

To validate the proposed approach we rely on five synthetic
datasets of varying complexities. Each of these datasets de-
scribes different combinations of linear or non-linear func-
tions, such as: affine, polynomial, rational, exponential, log-
arithmic and trigonometric functions. We also use five real
datasets often used by state-of-the-art competitive approaches.
To model the missing patterns, we rely on three common
approaches [23]: missing completely at random (MCAR),
missing not at random (MNAR) and missing at random
(MAR). Results show that the proposed technique is simple,
yet effective, providing better results than novel state-of-the-
art deep learning approaches.

II. NEIGHBORHOOD-AWARE IMPUTATION

A. Problem Formulation
Consider a dataset y = {y1, · · · ,yn} ∈ Yn, with Y

representing the space to which each data sample belongs
(e.g., RL, with L representing the dimensionality of the data
sample). Each data sample yi, is assumed to be extracted from
an unknown process f , which transforms an unknown (hidden)
state si ∈ S to the observed sample yi, i.e., f : S → Y .
For example, in a medical database, si represents the patient
state, whereas yi = [y1i , · · · , yLi ] are the observed variables
by performing a series of medical exams. Unfortunately, the
application of the transformation process f results in infor-
mation losses, with an associated pattern of missing values
mi ∈ {0, 1}L (e.g., exams not performed, exams only made
to specific group(s) of patients, patients unable to complete
exams). We assume that the missing pattern mi is a result
from a process g : G → {0, 1}L that randomly introduces
information losses (MCAR), generates missing values given
some pattern of the unknown state si (MAR), and/or drops
information depending on the observed state yi (MNAR).

To recover the information lost by sample yi (through a
missing pattern mi), we need (i) to recover the hidden state
si, by learning an inverse transformation f−1 as well as the
influence of the missing pattern generator g; and (ii) learn the
transformation f to obtain the unknown values.

However, since the transformation f is unkown and gener-
ally impossible to estimate, we rely on an encoding network
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Fig. 1. Overview of the devised autoencoder architecture.

Eθ to obtain an alternative approximate representation of si,
which we represent by zi. The objective of the encoding
network is thus not only to estimate a latent space that
correctly encodes the partially observed variable yi, but also
the influence of the missing pattern generator g. Naturally,
since the objective is to obtain the missing information, we
use a decoding network Dθ to transform the latent space zi
into an observed estimated variable ỹi. Then (not in Fig. 1)
we 11use the known information to obtain a better estimate of
data sample yi, obtaining ŷi = ỹi ◦mi +yi ◦ (1−mi), with
◦ representing the Hadamard product and mk

i = 1 indicating
that variable k of data sample yi (i.e., yki ) is missing.

B. Network architecture

To obtain a latent space that is able to capture both the sam-
ple generation process f and the missing imputation pattern g
we use fully-connected networks in an autoencoder structure
(see Fig. 1), modified to take into account the data sample yi

feature values, its missing pattern mi, as well as the values
of the known neighbours. Hence, for each missing feature j,
an input value ẏji is taken by considering the local average
of its k-nearest neighbours (see Fig. 1) across the complete
training set (Euclidean distance over the observed variables).
The encoding part of the proposed deep neural network then
takes the computed estimates ÿi = ẏi◦mi+yi◦(1−mi) and
constructs the latent space representation. For this, we adopt
a autoencoder architecture where the number of neurons in
successive encoding layers increases by α at each new layer.
On the decoder side, we mirror the structure of the encoder,
successively decreasing the number of neurons by α at each
new layer. In this work we set α = L. To correctly encode
non-linear transformations, we use sigmoid activations at the
first and last hidden layers of the encoder and decoder, respec-
tively, and ReLU activations elsewhere. Although alternative
solutions can be adopted, we found no significant difference
between ReLU and SeLU (the observed root mean squared er-
ror differences were found to lie within the standard deviation
range of the network). We also concluded that replacing the
sigmoid by other activation functions (tanh, softsign) yielded
worst results. Finally replacing any of the ReLU functions with
a sigmoid (or an alternative function) results in a degradation
of the quality of the imputation process.

C. Model training

To train our model, we use an Adam optimizer to minimize
the mean squared error between the known variables in each



batch of samples {yj ,yj+1, · · · } and the estimated samples
{ỹj , ỹj+1, · · · }, i.e.,

Loss =
∑
j

(1−mj)
T ((yj − ỹj) ◦ (yj − ỹj)) .

III. EXPERIMENTAL SETUP

A. Datasets

The experiments were conducted in two ways: synthetic
datasets with different characteristics and increasing difficulty,
and real-world datasets from the UCI Machine Learning
Repository1.

Each synthetic dataset is composed of 5000 samples with
12 attributes. Four of the 12 attributes correspond to random
values extracted from a uniform distribution (range [0, 1]) and
the remaining result from linear or non-linear transformations
of the other attributes (including the random values). The
datasets describe increasingly complex functions, such as:

• Affine: linear combinations of attributes;
• Exponential and Logarithm: application of exponential

and logarithmic functions (respectively) over linear com-
binations of attributes;

• Rational: application of multiplications, divisions and
polynomial functions of attributes to introduce high order
effects in the transformation functions;

• Trigonometric: application of trigonometric functions, to
evaluate the use of non-injective mappings that do not
provide an exact inverse.

The used real world datasets correspond to breast can-
cer (683 observations / 9 attributes), glass (214/9), vehicle
(846/16), satellite (6435/36) and letter recognition (20000/16).

To provide a common evaluation ground for all methods
and guarantee that errors in different features have similar
importance, we normalize all features to the range [0, 1].

B. Imputation procedure

To describe how datasets are influenced by missing val-
ues, three different mechanisms are usually found in the
literature [23], namely: (i) Missing Completely At Random
(MCAR), where the probability of being missing do not
depend on any variables in the data; (ii) Missing At Random
(MAR), where the missing probability is independent on the
actual observed data and is the same within groups of the
observed data, but different across groups; and, (iii) Missing
Not At Random (MNAR), where the missing mechanism is
neither MCAR nor MAR. Hence, the existence of missing
values is dependent on the hypothetical value of the data.

A multivariate missing data procedure [24] was applied to
each dataset to generate missing values in multiple variables,
with different missing proportions and underlying missingness
mechanism. This procedure is implemented in R in the pack-
age called ampute. In this paper, missing proportions from
5% to 40%, with 5% increment, and all three missingness
mechanisms (MCAR, MAR, and MNAR) were considered.

1https://archive.ics.uci.edu/ml/index.php

C. Alternative state-of-the-art approaches

The proposed imputation method will be compared with
several state-of-the-art imputation methods, namely: mean, k-
nearest neighbor (k-NN, with k = 5), least square (LS),
MIDA [13], and GAIN2 [16]. Median imputation and stochas-
tic regression were also applied to the datasets, however the
results were similar to the mean and LS imputations, respec-
tively, and were therefore left out from the presented results.
The proposed imputation method was implemented in Python
3.6 using TensorFlow 2.0. The state-of-the-art methods rely
on standard Python packages, including autoimpute3, or
on specific Tensorflow implementations. Each experiment was
conducted 10 times and within each a 5-fold cross-validation
strategy was employed, where the data was split in train (80%
of the data) and test (20%). The average root mean squared
error (RMSE) was used to validate the imputation values and
was computed over the missing values, by comparing the true
observed values with the values imputed by each of the above
mentioned approaches.

IV. RESULTS

Figure 2 presents the results of the synthetic datasets for all
the considered imputation methods, using an MCAR missig-
ness mechanism (due to space constraints, the results for the
MAR and MNAR mechanisms are only shown in Table I for
a 20% missing values proportion). By analyzing this figure it
can be observed that in the affine dataset, the LS is the second
or third best imputation method (depends of the missingness
proportion), since it correctly assumes a linear model between
attributes. Nonetheless, the proposed approach significantly
outperforms its results, attaining a lower RMSE.

Exponential, rational and trigonometric datasets introduce
non-linear combinations of attributes, thus significantly requir-
ing the use of non-linear methods. Hence, the best methods
are the proposed one, GAIN and 5-NN, with the proposed one
significantly outperforming the other two. The worst methods
are LS and mean, since they model missing values through an
often incorrect linear model and a constant value, respectively.
In particular, in the exponential and trigonometric datasets,
LS presents a higher RMSE value compared to the remaining
methods, for all missingness proportions.

Finally, in the logarithm dataset, the proposed method
presents the lowest score, followed by 5-NN and LS. Al-
though the results of LS might seem surprising, they are a
result of a transformation that reduces the dynamic range of
variables (regarding the previous cases), thus allowing a linear
approximation to make good predictions. Also, GAIN presents
the worst in this dataset, especially for lower missingness
proportions, where it attains relatively higher RMSE values.

To evaluate the impact of the other missigness mechanisms
(MAR and MNAR), Table I presents the results for 20% of
missing values (similar conclusions can be drawn for other

2The code used for this algorithm was downloaded from the authors github
account: https://github.com/jsyoon0823/GAIN

3https://pypi.org/project/autoimpute/
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Fig. 2. Evaluation of the proposed imputation method for the synthetic
datasets in a MCAR strategy.

missingness proportions). As can be seen, the RMSE for each
method is similar for all imputation mechanism, except for
MIDA which globally performs better in an MNAR scenario.

TABLE I
AVERAGE ROOT MEAN SQUARED ERROR (± STANDARD DEVIATION) OF

THE PROPOSED IMPUTATION STRATEGY AND THE STATE-OF-THE-ART
APPROACHES FOR DIFFERENT MISSING MECHANISMS (ROWS) AND 20%

OF MISSSINGNESS PROPORTION, IN ALL FIVE SYNTHETIC DATASETS.

Mean 5-NN LS MIDA GAIN Proposed
AFFINE DATASET

MCAR 0.234 0.148 0.155 0.225 0.179 0.102
(± 0.003) (± 0.004) (± 0.006) (± 0.006) (± 0.015) (± 0.004)

MAR 0.235 0.152 0.150 0.214 0.186 0.105
(± 0.003) (± 0.003) (± 0.005) (± 0.007) (± 0.018) (± 0.004)

MNAR 0.236 0.148 0.145 0.204 0.181 0.101
(± 0.003) (± 0.004) (± 0.005) (± 0.005) (± 0.015) (± 0.004)

EXPONENTIAL DATASET
MCAR 0.238 0.185 0.757 0.227 0.179 0.135

(± 0.003) (± 0.004) (± 0.029) (± 0.007) (± 0.014) (± 0.005)

MAR 0.255 0.187 0.797 0.218 0.183 0.134
(± 0.004) (± 0.004) (± 0.038) (± 0.008) (± 0.014) (± 0.007)

MNAR 0.262 0.186 0.796 0.213 0.191 0.136
(± 0.003) (± 0.004) (± 0.036) (± 0.008) (± 0.014) (± 0.006)

LOGARITHM DATASET
MCAR 0.196 0.162 0.182 0.195 0.199 0.132

(± 0.003) (± 0.003) (± 0.008) (± 0.004) (± 0.014) (± 0.004)

MAR 0.195 0.165 0.183 0.194 0.204 0.136
(± 0.003) (± 0.005) (± 0.008) (± 0.004) (± 0.020) (± 0.004)

MNAR 0.195 0.158 0.175 0.189 0.199 0.127
(± 0.003) (± 0.004) (± 0.009) (± 0.004) (± 0.025) (± 0.004)

RATIONAL DATASET
MCAR 0.246 0.173 0.222 0.226 0.176 0.125

(± 0.003) (± 0.005) (± 0.007) (± 0.005) (± 0.014) (± 0.006)

MAR 0.254 0.171 0.235 0.218 0.190 0.123
(± 0.004) (± 0.004) (± 0.008) (± 0.007) (± 0.018) (± 0.007)

MNAR 0.258 0.172 0.234 0.208 0.186 0.123
(± 0.004) (± 0.004) (± 0.008) (± 0.007) (± 0.017) (± 0.005)

TRIGONOMETRIC DATASET
MCAR 0.272 0.211 1.456 0.230 0.201 0.154

(± 0.004) (± 0.004) (± 0.435) (± 0.006) (± 0.020) (± 0.009)

MAR 0.271 0.214 1.522 0.233 0.202 0.157
(± 0.004) (± 0.005) (± 0.299) (± 0.007) (± 0.017) (± 0.010)

MNAR 0.269 0.212 1.553 0.219 0.196 0.155
(± 0.004) (± 0.004) (± 0.495) (± 0.007) (± 0.013) (± 0.009)

Also, all methods have a lower variability (lower standard
deviation values), except LS in highly non-linear datasets
(exponential and trigonometric) and GAIN which presents
standard deviations 10x higher than the remaining methods
(a consequence of the use of adversarial training). In general
the best solutions amongst the state-of-the-art approaches
are the linear models for affine dataset and GAIN for the
remaining cases. However, the proposed imputation method
attains significantly better RMSE values for all datasets and
all three imputation mechanisms.

Finally, the proposed imputation method is compared with
the remaining deep learning approaches (MIDA and GAIN)
on real datasets. Figure 3 presents the results when amputing
each dataset with a MCAR mechanism and 20% of miss-
ingness proportion. As can be seen, the proposed imputation
method outperforms the remaining deep learning strategies,
with MIDA attaining the worst results. Although not presented
due to space limitations, similar conclusions were obtained for
the MAR and MNAR missingness mechanisms.

V. DISCUSSION

Although MIDA [13] closely resembles the proposed ap-
proach, it attains significantly worst results (approximately
half of the RMSE in almost all datasets). Our results suggest
that this is due to multiple deficiencies in MIDA, namely:
(1) MIDA uses the Nesterov’s accelerated gradient, instead
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of ADAM, which allows a significantly better tuning of
the network parameters; (2) we use a better choice on the
activation functions (a combination of sigmoids and ReLUs),
whereas they solely use the tanh function, which provides
worst results and is inconsistent with the data normalization
applied by the authors (range [0, 1]); (3) the use of the feature
mean value as input for the neural network, which in our case
would result in an approximate 60% increase in RMSE value
(a similar problem found in the method by [19]); and (4) the
use of stochastic corruption of the inputs (also used by [19]
and [20]), which sets a percentage of the inputs to zero.

In what concerns this last case, figure 4 presents the results
of adding stochastic corruption to the inputs of proposed
method. As can be observed adding even a small percentage
of corruption leads to a significant degradation of the results
(up to 24%).

VI. CONCLUSIONS

A deep learning approach to the missing value imputation
problem is herein proposed. Although based on a simpler
approach than competitive deep learning solutions, it relies
on careful tuning of network parameters and training method-
ology, and on the introduction of an input layer that takes
into consideration the k-nearest neighbours of each incomplete
sample. As a consequence it attains competitive results against
state-of-the-art methods, such as those based on deep learning.
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