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Abstract—Application developers usually decide on the size of
each variable data type by either considering its maximum range
or simply by comfortably using larger data types. Since these
represent maximum values (and not typical), the applications
most often do not make full use of the bit-width offered by the
processor arithmetic units. This wasted bit-width is especially
relevant when using Single Instruction Multiple Data (SIMD)
instructions, since the inefficient use of each arithmetic unit
is multiplied by the number of vector elements. This (rather
frequent) circumstance is exploited by proposing new run-time
mechanisms to (i) efficiently handle narrow vector elements, by
removing excess sign bits and packing these elements in a smaller
vector, and (ii) agglomerate (fuse) multiple vector instructions
pending in the execution queue of the processor, to simultaneously
execute them on a single SIMD unit. When combined with clock
and power gating techniques, the proposed approach provides a
very significant reduction of energy consumption in the SIMD
units, by dynamically optimizing the execution of narrow-width
integer vector computations, with low hardware overhead and no
need for any changes in the application executable. Experimental
results based on a prototyping implementation supported on an
ARM Cortex A76 model show a reduction of the dynamic and
leakage energy consumption in the vector units of up to 54.4%,
with either a negligible performance reduction or even some slight
improvements of the execution time.

Keywords—Narrow-width, SIMD Units, Clock and Power Gat-
ing, Energy Efficiency, General-purpose Processors

I. INTRODUCTION AND RELATED WORK

Single Instruction Multiple Data (SIMD) extensions have
become a common architectural feature in General Purpose
Processors (GPPs) as they allow for a significant performance
increase in regular data-parallel workloads [1], [2]. As vector
extensions evolved over the last decades, the vector width has
increased to enable higher performance benefits [2], [3]. The
increase in vector size is noticeable, for example, in successive
Intel x86 architectures, which started at 64-bit (MMX) and
scaled to 128-bit (SSE), 256-bit (AVX), and more recently to
512-bit (AVX-512) [2], [4]. ARM SVE extension is already
designed to scale up to 2048 bits [3]. Hence, not only has the
vector units’ width tended to increase but also the number of
these units included per core, as is presented in Table I. These
additional resources are highly costly in chip area and power
consumption [5]. However, energy efficiency has become a
central concern in microprocessors architecture design and is
one of the most limiting factors in increasing performance.

In this scenario, this paper proposes a new approach to
reduce the number of integer SIMD functional units required
by a given processor design while maintaining an identical

TABLE I
NUMBER AND WIDTH OF INTEGER SIMD UNITS PRESENT IN RECENT

GENERAL PURPOSE PROCESSORS

Microarchitecture Domain Integer SIMD Units

ARM Cortex-A76/A77/A78 Mobile 2 × 128-bit
Apple A12 (Vortex) / A13 (Lightning) Mobile 3 × 128-bit
ARM Cortex-X1 Mobile 4 × 128-bit
ARM Neoverse N1 Server 2 × 128-bit
AMD Zen/Zen+ Desktop, Server 4 × 128-bit
AMD Zen2 Desktop, Server 4 × 256-bit
Intel Sunny Cove Desktop, Server 2 × 256-bit, and

1 × 512-bit (Server)

execution throughput. It takes advantage of the fact that most
values in a vector operand do not make use of the whole
element width that is fixed at compile-time. Hence, vector
elements can be narrowed by discarding redundant sign bits,
and packed together in smaller width vectors. Furthermore,
by packing the operands of narrow vector instructions, a new
opportunity is opened up for simultaneously issuing multiple
instructions to the same functional unit (fusing), by using the
remaining (available) width in the unit. Hence, the unneeded
units (or portions) can be either removed from the design, or
they can be dynamically turned on and off as required, using
clock and power gating techniques [6]–[9].

This is particularly advantageous in highly vectorized code
regions and kernels, where the processor’s front-end is capable
of putting enough pressure into the SIMD units to fully
utilize the vector processing capabilities of modern processors
(see Table I). In these cases, the proposed technique allows
reducing the number of active units with no significant per-
formance losses, thus contributing to a reduction of the power
consumption. Moreover, it is also advantageous in other code
regions, since it amortizes the performance penalty caused by
the delay in powering up gated SIMD units, thus facilitating
the exploitation of power-gating mechanisms.

Some previous works have explored the opportunity for
exploiting low-precision integer arithmetic but focused only on
the scalar pipeline. Brooks and Martonosi [10] proposed either
clock gating the unused portions of scalar functional units, or
fusing two identic narrow scalar instructions for simultaneous
execution in the same unit. Loh [11] proposed extending
this fusing mechanism to support joining instructions with
different (but similar) operation types. Rochecouste et al. [12]
further proposed dividing the scalar integer pipeline into two,
efficiently handling narrow instruction in separate as soon as
they are detected. However, vector extensions have increased
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Fig. 1. Profiling and characterization of integer SIMD units’ usage in
data-parallel benchmarks: percentage of instruction issued by type (left) and
number of active SIMD units (right).

their relevance over the recent years, and while the processors’
integer scalar unit width has been kept at 64-bit over the last
decades, the current design trend is to increase the vector
length with each new ISA generation.

Consequently, exploiting narrow-width values in the vector
pipeline brings new challenges, as the overhead of detecting
the required bit-width for each vector element is multiplied by
the number of elements. Moreover, the proposed scheme must
be designed to handle the multiple element modes that vector
extensions usually support (e.g. 64, 32, or 16-bit elements). In
accordance, the main contributions of this paper are:

• A low-overhead mechanism for dynamic detection of the
required operands’ width for each SIMD lane;

• A new scheme to efficiently pack integer vector operands,
by discarding unnecessary sign bits between elements -
these packed vectors can execute directly in an available
portion of existing units (with minor changes);

• A mechanism to fuse multiple packed instructions for
simultaneous execution in a single functional unit;

• A set of architectural modifications to the out-of-order
vector execution pipeline of a modern processor to sup-
port the proposed packing and fusing mechanisms, as
well as to provide the means for a more aggressive
application of power and clock gating.

II. MOTIVATION

In data-intensive integer applications, most vector compu-
tations make use of only a small fraction of the total element
width available on the assigned unit.

To support this statement, we profiled several integer in-
tensive and data-parallel applications from different domains,
namely big-data (streamvbyte), media (cartoon), and
machine learning (integerNN). This set of applications were
also complemented by a broad collection of linear algebra,
signal, and image processing kernels (detailed in Section V),
which were optimized to take advantage of the SIMD capabili-
ties on modern architectures. The percentage of integer vector
instructions issued in these applications and kernels is very
high (see Fig. 1), and up to three SIMD units are used at the
same time, for a large portion of the execution cycles.

Moreover, as it can be observed in Fig. 2, most of the vector
operations in these benchmarks use only a fraction of the total
available width (128 bits, in the considered ARMv8 NEON
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Fig. 2. Profiling of the portion of the vector width that is actually used by
the considered benchmarks: width of issued instructions (left) and the total
fraction of wasted width (right).

vector extension). Therefore, while several integer SIMD units
are kept switched-on at each clock cycle, a large portion of
their width is not used by most computations and represents
wasted energy. The unused width of each functional unit,
which for the profiled benchmarks is on average 55% of the
full width, could be either switched off or reused for other
computations. By exploiting this narrow-width opportunity,
we aim to more efficiently manage the SIMD execution
unit’s power-hungry resources, increasing the core’s energy
efficiency while maintaining the original performance, even
on kernels with high SIMD operational intensity.

III. EXPLOITING NARROW WIDTH IN SIMD OPERATIONS

Henceforth, the width of an integer value shall be defined
as the minimum number of bits required to uniquely encode it,
while excluding the redundant most significant sign bits (see
Fig. 3). Naturally, this compact representation does not result
in any precision loss, as the original value can be recovered
through sign bit extension.

The main goal of restricting the bit-width of integer values
is to reduce the amount of logic that is necessary to perform
computations. For example, if the two operands of an integer
addition only require half the default width, only half of the
functional unit is actually required for the computation. In
particular, a typical vector operation consists in computing
several sub-operations in parallel, over all the elements of
the operand vectors, by following the SIMD execution model.
Hence, the useful width of a vector operation may be defined
as the sum of the widths of its sub-operations. If each sub-
operation is computed over more than one element (e.g. in an
addition), its width corresponds to the widest operand value.

A. Detecting narrow-width in SIMD operations

The execution of narrow-width operations is optimized by
first detecting the width required by each sub-operation, at
run time, i.e. when the actual values are available. Such a

Decimal Binary Width

...000001100125 6 bits
123456

...1111111000-8 4 bits
1234

...00000000000 1 bit

-1 ...1111111111 1 bit

Fig. 3. Narrow-width integer representation.
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procedure is implemented by introducing an additional step
in the execution of vector instructions, after their operands
are fetched, which is henceforth called width encoding (see
also Section IV). To implement this step, the encoded width
values are restricted to multiples of a fixed width-block (e.g.
4 or 8-bits), rounding values up. This minimum width-block
parameter (henceforth denoted by w), which is set at design
time, allows for a portion of wasted width to be traded for a
much simpler implementation.

As an example, consider the two 4×32-bit vector operands
in Fig. 4, written both in decimal and hexadecimal formats
(see parts (A) and (B)). By considering an 8-bit width-block,
each 32-bit lane is represented as four groups of 8 bits (C).

At this step, the width required by each vector element is de-
tected and encoded in a width mask. This mask is composed
of a group of bits per vector lane, where each bit-set encodes
the number of bits actually used by the corresponding lane, i.e.
after removing excess sign bits. To compute this mask, each
width-block (composed of w bits, and each bit denoted as bi)
is first reduced to a 2-bit pre-mask (x1, x0), where one bit
(x1) corresponds to the block leading bit (x1 ← bw−1). The
other bit (x0) states whether the remaining bits in the block are
equal to that sign bit (x0 ← x1 if ∀ i < w−1, bi = bw−1), or
are different (x0 ← x1 if ∃ i < w−1 : bi 6= bw−1), as in (D).
Then, a priority encoder determines the width-block containing
the leading sign bit, outputting the number (in binary) of such
width-block, for each group of blocks that corresponds to a
lane. Finally, the codes from all lanes are concatenated in a
(8-bit) width mask (E).

Hence, this width mask can be computed using an array of
leading sign-bit detectors, one for each vector element. Since
the widths only have to be determined with the granularity
defined by the width-block, only the index of the block with
the leading sign bit has to be detected, and not the index of
the bit itself. Therefore, the detection can happen after the

blocks have been reduced, since 2-bits per block are enough to
determine if it contains the leading sign bit, greatly decreasing
the number of entries and the complexity of the detectors.

It is worth noting that this reduction step is agnostic to
the opted vector mode (e.g. 8, 16, 32, or 64-bit) and can be
implemented using few logic gates. However, the encoding
step depends on the chosen mode, since the size and the
number of encoders will depend on it (i.e. on the number and
size of the lanes). However, the encoders for different modes
can share the same logic, as a larger priority encoder can be
implemented using smaller ones.

Finally, an operation width mask can then be obtained by
combining the masks of its operands, so that the mask’s code
in each lane is the maximum code of all sub-operands (F).

Notice that the number of bits per lane of the width mask
depends on the considered vector mode, being determined
as log2(

m
w ), where m is the mode and w is the width-

block. For a n-bit vector, the total size of the width mask
(all lanes) corresponds to n

m log2(
m
w ). The upper-bound for

the mask size is n/(2w) when considering an architecture
supporting multiple vector modes, but sharing the width bits
across all of them, and when n, m, and w are powers of
2. Hence, the overhead of computing and handling this width
mask is significantly constrained by the width-block parameter.
For example, when a width-block of 8 bits is applied to an
architecture with 128-bit vector registers, the width mask of an
operation requires 8 bits, corresponding to ∼3% of the width
of the two operands.

B. Packing narrow vector elements

With the information of the width required by each element
in a vector operation already available, a possible optimization
is to clock gate the unneeded portions of the functional unit,
whenever a vector instruction is issued, to reduce the dynamic
power dissipation. To simplify handling vector operations
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with narrow elements, we propose the operand packing
mechanism, which consists in compacting the vector elements
and discarding unneeded bit-blocks. The elements in a vector
are allowed to have different sizes, as encoded by the accom-
panying width mask, using only the width required by each
data element (see Fig. 5). This way, only a contiguous portion
of the vector unit width is required, and the remaining can be
clock gated using simple control logic.

For instructions with more than one operand, the lanes of the
packed operands must be properly aligned, reserving enough
space for the widest sub-operand, so that the existing vector
units can be directly used to execute the packed instructions.
Hence, supporting the execution of packed instructions is a
matter of allowing the boundaries of partial operations (e.g.
the carry-chains in additions) to be changed with a finer degree
of control. Particularly, since conventional SIMD units already
support several modes, most of that logic is already present.

Considering, as an example, an addition operation, the same
adder can be shared for different vector modes (e.g. 32-bit
or 16-bit) by inhibiting the carry-chain propagation between
carry-lookahead adder blocks at the corresponding element
boundaries, as in the 128-bit multi-mode adder from [13].
The carry kill signals in this design are generated from the
vector mode, but this can be extended to take into account the
width mask, setting the boundaries according to each elements’
width. For the multiply (and accumulate) operation, [13] and
[14] proposed designs that share the same multiplier circuit
for different vector modes, by selecting the appropriate partial
products to be added in each case, and discarding products
that cross the selected boundaries. Such designs can be easily
extended to support irregular element sizes, by adding a
finer degree of control over the selection of partial products,
according to the vector mode and the width mask.

For correctness, the execution of packed instructions must
support the overflow detection in sub-operations with a
lower width than the original element size, as this is not
an actual overflow. For arithmetic operations, whenever the
carry/overflow bit is generated, the corresponding encoding
in the width mask must be increased, and the resulting
vector expanded to fit the wider resulting elements. For the
multiplication, the bits corresponding to the higher half of
each element are already generated in the reduction of partial
products, and, whenever an overflow is detected, they must be
multiplexed to the result vector. Something similar is already
provided in current vector extensions for instructions that
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Fig. 6. Fusing two similar vector operations (an addition and a subtraction)
that fit in the 128-bit unit.

allow the higher portion of the multiplication to be kept (by
increasing the element size of the result).

C. Fusing vector operations

The main goal of packing vector instructions is to reduce
the consumption of the execution unit, by switching off
unneeded portions of the vector unit. However, if several
(independent) packed instructions are ready for execution in
the processor’s issue queues at the same time, whenever two
or more of these instructions fit in the full vector width,
they can be simultaneously issued to the same arithmetic
unit. This mechanism will henceforth be denoted as operation
fusing. While these instructions share the execution stage, they
continue to be regarded as independent instructions, writing
to different registers and committing (or even being squashed)
independently.

Hence, if a significant number of instructions can be fused
for execution in the same unit, the execution throughput can
be sustained using fewer SIMD units. The remaining units can
be completely clock gated, or, whenever they are not needed
for long execution intervals, they can even be power gated
or removed from the microprocessor’s design. Power gating
also reduces leakage dissipation but has the disadvantage of
introducing a high state transition overhead and only provides
relevant energy savings when it is not interrupted frequently.

One possible implementation of this fusing mechanism is to
only allow instructions with the same arithmetic operation to
be executed together, which does not add any extra complexity
to the existing design and can be seen as an extended type of
auto-vectorization. However, it can still be advantageous to
allow different (but similar) operation types to be fused (see
Fig. 6), in order to increase the number of opportunities for
multiple issuing, even if at the cost of a slight increase in the
functional unit complexity.

IV. ARCHITECTURAL CHANGES TO EXPLOIT
NARROW-WIDTH VECTOR OPERATIONS

Implementing the optimization mechanisms proposed in
the previous section only requires some minor architectural
changes in the processor execution engine. In the particular
case of an out-of-order core, it only requires some adaptations
to the vector pipelines and, in particular, in their issue queues,
issue schedulers, and SIMD functional units (see Fig. 7).

Fig. 8 depicts the proposed vector execution engine. First,
each vector operand is width-encoded, while it is fetched to
the issue queue (A), and the result is used to update the width
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mask for that instruction. The width mask for each vector
instruction can be stored using a single additional field in the
issue queue (B). As an example, with an 8-bit width-block and
128-bit vectors, this field only has 8 bits, which is minimal
when compared to the size of the vector operands that are
stored in the queue. Hence, adding support for width encoding
is simply a matter of extending the operand fetch mechanism
(part (A) in Fig. 8), whether the values are fetched from the
physical register file or directly from the common data bus.
This should not cause a significant increase in the critical path,
as the encoding process is very simple (recall Fig. 4), and can
be performed transparently when writing back the previous
(dependent) instructions on the common data bus.

The vector operands can only be packed when the width

mask for that instruction has been fully updated, i.e. when all
the operands have been fetched (and the considered instruction
is ready to issue). To avoid any penalization in terms of
critical path, with a consequent degradation in the processor
performance, a new pipeline stage is added to the vector unit,
between the issuing and execution stages (C). In this new
stage, the operands for ready instructions are packed, and the
instructions are reorganized in buffers, according to their width
(and operation type), so that they can be easily fused. This
consequent increase of the vector pipeline latency (by one
cycle) is mostly hidden by the out-of-order execution, and the
resulting performance penalty is not significant (sometimes it
is even mitigated by the fusing mechanism) and is largely
outweighed by the consequent energy savings.

Operation fusing is accomplished by extending the issue
queue scheduler, by monitoring the width masks of ready
instructions, and by trying to issue multiple instructions at
the same time, whenever possible (D). The vector operands of
these additional instructions are then shifted (or multiplexed),
so that there are no overlaps in the functional unit, and the
instructions are issued using the remaining bandwidth in the
issue port. The width masks of the fused instructions are
used to encode the boundaries between elements (in the same
instruction or between fused ones) for packed execution in the
same unit (E), which is extended to support irregular element
sizes. After the instruction is executed, in the write-back stage
(F), the resulting vector is unpacked using the information
given by the width mask.

Since each individual execution port usually has its in-
dependent issue queue, some fusing opportunities might be
lost because those instructions are in different pipelines. To
circumvent this problem, the additional packing and pre-issue
stage is also used to exchange instructions between pipelines,
when organizing them in buffers according to their width
(C), and thus allowing more pairs of compatible instructions
to be found. An essential remark in this modified issuing
stage is that some degree of priority should be given to the
execution of instructions that were fetched earlier, even if this
means missing some opportunities to efficiently compact later
instructions. Otherwise, an instruction that does not have a
fusing candidate might not find an opportunity for execution,
stalling the pipeline.

The clock or power gating mechanisms of the processor
are triggered by the gating control units, which are added to
each vector functional unit (E). Each control unit monitors the
activity of its vector unit and clock gates the entire unit (or
portions of it) when it is idle. These control units also decide
when to trigger power gating, whenever the unit is expected
to remain idle for a long period of time (for example, by using
one of the decision mechanisms designed in [7]–[9]). While
a vector unit is in the deep-sleep mode (i.e. power gated), the
instructions in its issue queue are handled by the remaining
units, thanks to the new shared stage in the issuing step, so
that its reactivation is postponed until a significant increase in
throughput is required.



V. EVALUATION METHODOLOGY

The impact of the proposed architectural changes was
evaluated using a modified version of the gem5 architectural
simulator [15] (available at: https://github.com/miguelpinho/
gem5-simd-narrow-width). Two different out-of-order CPU
models were used, and their baseline parameters are presented
in Table II: a model based on the ARM Cortex-A76 4-wide
OoO core; and a High-performance 8-wide OoO core model,
whose front-end and backend parameters were scaled up from
the Cortex-A76 base model, and its functional unit pool is
based on the Apple Vortex 8-wide core.

The simulations were performed in gem5’s full-system emu-
lation mode, using a Linux Ubuntu 14.04 LTS distribution. The
micro-architecture prototyping was performed by considering
the ARM NEON SIMD architecture extension from ARMv8
64-bits Instruction Set Architecture (ISA). This particular
extension was chosen due to the availability of accurate CPU
models (e.g. in gem5) supporting it and its relative maturity, as
there are several toolchains and libraries available for it. ARM
NEON has 128-bit vector registers and supports 64, 32, 16, and
8-bit element modes. Although this particular platform was
chosen for prototyping, the proposed mechanisms are directly
adaptable to other architectures and ISAs.

To evaluate the impact of the proposed mechanisms in
the processors’ energy consumption and execution time, the
A76 and the high-performance cores were simulated without
any mechanism (Original), only with operand packing
enabled (Packing), and with packing and operation fus-
ing enabled (Fusing). The proposed packing and fusing
modes were also evaluated with one additional clock cycle
latency in the SIMD pipeline (PackingExtraStage and
FusingExtraStage, respectively), to model the impact
of the extra pipeline stage that was suggested for the im-
plementation of these mechanisms. Each core model and
proposed mechanism was evaluated using a different number
of integer SIMD units, to measure the impact of power gating
or removing units. The different configurations are labeled
as x-y-z, where x ∈ {A76,HP} denotes the core, y is
the mechanism mode, and z ∈ {1FU,2FU,3FU} is the
number of considered units. The A76-Original-2FU and
the HP-Original-3FU labels denote the baseline configu-
rations for each core. Unless stated otherwise, the width-block
parameter for all configurations is 8 bits.

The set of benchmarks that was considered for the experi-
mental evaluation was divided into two groups:

• a set of computationally intensive kernels from the
linear algebra, signal, and image processing domains
(Table III), obtained from the Eigen, Arm Compute,
and Ne10 libraries, and tested using random data. The
implementations in these libraries are already vectorized
for ARM NEON (e.g. using SIMD intrinsics);

• a collection of mini-applications, which exhibit data-
level parallelism and are also prepared to take advantage
of the ARM NEON vector extension.

The considered mini-applications are the following:

TABLE II
BASELINE PARAMETERS OF THE CONSIDERED CPU MODELS

Cortex-A76 High-performance
Frequency 2.0GHz

Fetch Width 4 insts/cycle 8 insts/cycle
Dispatch/Issue Width 8 insts/cycle 12 insts/cycle

Issue Queue 120 entries 180 entries
Load Queue 68 entries 68 entries
Store Queue 72 entries 72 entries

ROB 128 entries 192 entries
Integer Reg. File 256 registers 384 registers

FP/SIMD Reg. File 256 registers 384 registers
Functional Units 3 Int ALUs (1 cycle) 6 Int ALUs (1 cycle)

1 Int Mul/Div (2/12 cycles) 2 Int Mul/Div (4/8 cycles)
2 FP/SIMD units: 3 FP/SIMD units:

- SIMD ALU (2 cycles) - SIMD ALU (2 cycles)
- SIMD Mul (4 cycles) - SIMD Mul (3 cycles)
- FP ALU (2 cycles) - FP ALU (3 cycles)
- FP Mult (3 cycles) - FP Mult (4 cycles)

Private L1 ICache 64KB / 4-way (8 MSHRs)
1-cycle latency

Private L1 DCache 64KB / 4-way (20 MSHRs)
2-cycle latency

Shared L2 Cache 256KB / 8-way (46 MSHRs)
9-cycle latency

TABLE III
BENCHMARKED ALGEBRA, SIGNAL, AND IMAGE PROCESSING KERNELS

Kernel Description Kernel Description

sqnrm2 Squared vector l2 norm median 2-D Median filter
amax Vector absolute max img_int Integral image
gemm General matrix multiplication canny Canny edge detector
fft Fast fourier transform erode Image erosion
conv 2-D Convolution

• IntegerNeuralNetwork: An implementation of a
feed-forward neural network with one hidden layer
using integer weights and inputs (https://github.com/
miguelpinho/integerNeuralNetwork);

• StreamVByte: A fast byte-oriented compression li-
brary, optimized using integer SIMD instructions, used
in database applications (UpscaleDB) and in information
retrieval systems (RediSearch and Trinity) [16].

• Cartoon: An application to cartoonify images, by com-
bining a gaussian convolution and canny edge detector
kernels, obtained from the Arm Compute library.

These benchmarks were compiled using gcc 7.4.0. The re-
sults presented in Section VI correspond to the relevant Region
of Interest (ROI) of each application, not considering the code
regions where parameters and inputs are read, and outputs
are written. The leakage and dynamic power consumption for
the vector execution unit were estimated using the McPAT
modeling framework [17], by considering a 28 nm technology
process and an operating temperature of 340K.

VI. EXPERIMENTAL RESULTS

Fig. 9 presents the obtained energy savings when evaluating
the proposed packing and fusing mechanisms with the consid-
ered set of benchmarks. The estimated energy consumption is
broken down in terms of its dynamic and leakage parcels. They
also depict the execution time for each benchmark and con-
figuration, normalized against the baseline configuration for
each core model, namely A76-Original-2FU for Cortex-
A76 and HP-Original-3FU for the HP core. The results
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Fig. 9. Energy reduction (broken down in the dynamic and leakage parcels) in the SIMD unit and normalized execution time for each benchmark and
configuration. The baseline configurations for each core (i.e. A76-Original-2FU and HP-Original-3FU) are used as reference and are not included.

obtained in these two different sized cores are consistent, and
we expect similar results if other platforms were used instead.

As it can be observed, when maintaining the original
number of functional units, the packing mechanism reduces
the total energy consumption in the SIMD unit by 22.4% and
21.8% (on average), for the A76 and HP cores, respectively,
and by 24.5% and 23.8% when the fusing mechanism is
added. As the number of switched-on units is maintained,
these savings are mostly provided by a reduction in dynamic
power, as idle and unused portions of the functional units are
clock gated. When both mechanisms are enabled, the average
dynamic energy reduction is 33.6% and 34.8%.

An interesting aspect is also observed for the three bench-
marks which use the SIMD unit more intensively (gemm,
median, and erode). Since they are bounded by its through-
put, the fusing mechanism allows for an average speed-up of
26.9% and 29.0%, for the A76 and HP cores, respectively, by
executing additional narrow instructions in the same units. This
increase in throughput (using the same number of units), with
a consequent reduction of the execution time, also contributes
to a leakage energy decrease, resulting in a total reduction of
37.4% and 38.1% for the A76 and HP cores.

The leakage power in the SIMD unit can be further re-
duced by switching off functional units. In fact, by enabling
the operation fusing mechanism, more units can be power

gated (or removed), while maintaining a sufficient execution
throughput. This is particularly interesting both to limit the
number of units in the design (thus saving area), and to
power off some units on a non-SIMD application phase (where
most SIMD units can be turned off). In the latter case, there
is a costly delay when units need to be powered-on again,
which is compensated by the proposed mechanisms. Moreover,
the need for reactivating units can be even postponed. As
an example, for the most intensive benchmarks (i.e. gemm,
median, and erode), when one of the three SIMD units
in the HP core is removed, the total energy consumption is
reduced by 39.7% with an average speed-up of 1%. Without
the fusing mechanism, removing one unit leads to a slow-
down of 41%. For the remaining benchmarks, two units can
be removed with an average slow-down of only 16% (energy
reduction of 43.7%), when it would be 29% without fusing.

As it can be observed in Fig. 10, in most benchmarks the
fusing mechanism allows for a very significant fraction of the
vector instructions to be issued and executed together with an-
other instruction. In particular, the fusing effectiveness is very
high for the integerNN, gemm, and median benchmarks,
where (on average) 76% of the vector instructions are fused.

The average percentage of fused instructions is significantly
higher in the HP core (42.8% compared to 29.9% in A76,
using the baseline number of SIMD units). This increased
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Fig. 11. Impact of the additional pipeline stage in the vector unit in terms of
the energy reduction and execution time, for the packing and fusing modes

effectiveness of the fusing mechanism in the wider core can
be explained by the larger instruction window available, which
allows more instructions to be waiting for execution in the
same cycle, making fusing opportunities more likely. In fact,
there is also a slight increase in the fusing percentage when
the number of units is reduced: from 29.9% to 31.1% in A76,
and 42.8% to 44.2% in HP. A likely explanation is that the
reduction in the execution throughput causes the issue queues
to become fuller, so there is a higher chance that compatible
instructions are waiting for execution in the same cycle.

Fig. 11 shows the impact of adding an additional pipeline
stage in the vector unit, to account for the additional steps in
the packing and fusing mechanisms. As it can be observed, the
energy savings are mostly unchanged, while the slow-down is
not significant for most benchmarks, except for conv, and for
fft (in HP), where there is (at most) a 21% slow-down. In
fact, the fusing mechanism tends to minimize the impact of
the additional latency, by allowing an increase in throughput.

Table IV reports the best total energy reduction results
obtained when varying the number of available units, for each
operation mode and benchmark in the HP core. To limit the
degradation in the execution time, we only considered config-
urations with a slow-down lower than 10%, unless none of the
configurations satisfies this requisite (in which case the lowest
execution time is reported). As it can be seen, the operation

1 2 4 8 16 32
Width Block [bits]

-20

0

20

40

60

D
y
n

a
m

ic
 E

n
e
rg

y
 R

e
d

u
c
ti

o
n

 [
%

]

1 2 4 8 16 32
Width Block [bits]

-20

0

20

40

60

To
ta

l 
E
n

e
rg

y
 R

e
d

u
c
ti

o
n

 [
%

]

gemm fft cartoon average
Benchmark

Fig. 12. Comparison of the dynamic and total energy savings with different
width-block sizes, for the HP-Fusing-3FU configuration

packing mechanism allows for significant energy savings in
all benchmarks, with an average reduction of 37.8%. The
operation fusing mechanism enables a higher energy reduction
of 41.6%. In the particular examples of the integerNN and
gemm benchmarks, this is achieved by allowing an additional
unit to be power gated (or removed) without any performance
penalty, and even a slight speed-up in gemm. The execution
time was also significantly reduced in median and erode
(with speed-ups of 46.8% and 25.9%).

The presented results also demonstrate that the impact of
the extra latency cycle in the vector pipeline is generally
not significant. The average energy savings only slightly
decrease from 37.8% to 34.6% and from 41.6% to 38.9%,
in the packing and fusing modes, respectively, and there is
only a relevant execution time increase in two benchmarks,
fft and conv (the average slow-down is only 4%, in the
FusingExtraStage configuration).

The proposed architecture also introduced the width-block
design parameter, which significantly influences the energy
reductions that can be obtained, as shown in Fig. 12. A larger
width-block minimizes the overhead of implementing the new
mechanisms, but implies that more bits will be wasted in each
operation, limiting the resulting energy savings. According to
the presented chart, a good compromise for the considered
processor architecture is an 8-bit block. It not only allows for
significant energy savings, but also corresponds to the smallest
element size already supported in this vector extension, which
means fewer changes are required in the functional units.

VII. DISCUSSION

In the proposed architecture, the operands are packed be-
fore each instruction is executed and the result is unpacked
afterward (recall Fig. 8). However, an interesting extension
to this architecture could directly store the packed results in
the register file, together with the corresponding width mask,
thus simplifying the write-back stage. This approach would
reduce the critical path not only in the operand fetch stage, as
the width mask is recovered from the register file, but also in
the new issuing stage, as the operands are already packed. In
the limit, only immediate operands and memory values would
need to be explicitly encoded and packed, but that would not
interfere with the critical path of the execution engine, as it
could be done during the instruction decoding or even earlier
in the memory controller, respectively. This approach would



TABLE IV
SUMMARY OF THE BEST ENERGY SAVINGS OBTAINED IN THE HP CORE, WHILE NOT ALLOWING A SIGNIFICANT PERFORMANCE DEGRADATION

Original Packing Fusing PackingExtraStage FusingExtraStage

Units Saved Norm. Units Saved Norm. Units Saved Norm. Units Saved Norm. Units Saved Norm.
Energy [%] Time Energy [%] Time Energy [%] Time Energy [%] Time Energy [%] Time

integerNN 2 14.9 1.00 2 39.6 1.00 1 54.4 1.00 2 37.6 1.04 1 53.0 1.05
streamvbyte 1 33.0 1.02 1 51.8 1.02 1 52.4 1.00 1 51.5 1.03 1 52.0 1.01
cartoon 2 12.4 1.02 2 26.7 1.02 2 27.0 1.01 2 23.8 1.09 2 24.1 1.08
sqnrm2 1 38.9 1.00 1 51.8 1.00 1 51.9 1.00 1 52.0 1.00 1 52.0 1.00
amax 1 32.8 1.00 1 49.3 1.00 1 49.3 1.00 1 48.8 1.02 1 48.9 1.02
gemm 3 0.0 1.00 3 38.4 1.00 2 49.3 0.91 3 38.2 1.00 2 48.8 0.93
fft 3 0.0 1.00 3 30.4 1.00 3 31.3 0.96 3 25.2 1.21 3 25.3 1.21
conv 2 9.3 1.05 2 29.0 1.05 2 30.5 1.01 3 10.9 1.19 3 11.3 1.19
median 3 0.0 1.00 3 30.9 1.00 3 39.7 0.68 3 30.8 1.01 2 39.1 0.94
img int 1 34.7 1.00 1 43.7 1.00 1 43.7 1.00 1 43.7 1.00 1 43.7 1.00
canny 2 12.6 1.02 2 27.6 1.02 2 27.9 1.01 3 10.6 1.08 2 24.6 1.09
erode 3 0.0 1.00 3 24.9 1.00 3 30.7 0.79 3 24.5 1.01 3 26.0 0.96

average — 17.0 1.01 — 37.8 1.01 — 41.6 0.94 — 34.6 1.05 — 38.9 1.04

require more modifications in the execution engine, to extend
the packing vector format throughout the whole datapath, but it
would also allow to exploit narrow-width in other components
of the microprocessor. For example, unneeded portions of
vector registers could be gated for an even higher efficiency.

VIII. CONCLUSIONS

This paper showed that there is a highly relevant opportunity
to exploit narrow-width vector computations in a wide variety
of data-parallel and integer intensive applications. To support
this claim, it was observed that although wide data types
are assigned at compile-time (e.g. 64 or 32-bit) to many
application variables, for a large portion of vector operations,
the actual values fit in a narrower width (e.g. 16 or 8-bit).

Following this assessment, two complementary mechanisms
to exploit narrow-width in vector operations for energy ef-
ficiency were proposed: operand packing, and operation
fusing. These mechanisms allow the usage of the SIMD units
to be dynamically optimized to the size of the input data,
reducing the dynamic and leakage energy consumption while
maintaining the same performance levels.

The conducted experimental evaluation considered a proto-
typing architecture based on an ARM Cortex-A76 out-of-order
core, and demonstrated that energy savings in the SIMD unit
as high as 54.4% can be achieved with the proposed imple-
mentation. Moreover, the proposed fusing mechanism allowed
up to two integer SIMD units to be gated (or removed), with
none or negligible performance reductions. As the proposed
mechanisms are not dependent on this specific platform,
similar results should be obtained in other architectures.
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