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? INESC-ID, Instituto Superior Técnico, University of Lisboa, Portugal
† Instituto de Telecomunicações, University of Coimbra, Portugal

ABSTRACT
With the advent of Big Data application domains, several Ma-
chine Learning (ML) signal-processing algorithms, such as
Convolutional Neural Networks (CNNs), are required to pro-
cess progressively larger datasets at a great cost in terms of
both compute power and memory bandwidth. Although ded-
icated accelerators have been developed targeting this issue,
they usually require moving massive amounts of data across
the memory hierarchy to the processing cores and low-level
knowledge of how data is stored in the memory devices to en-
able in-/near-memory processing solutions. In this paper, we
propose and assess a novel mechanism that operates at cache
level, leveraging both data-proximity and parallel processing
capabilities, enabled by dedicated fully-digital vector Func-
tional Units (FUs). We also demonstrate the integration of this
mechanism in a conventional Central Processing Unit (CPU).
The obtained results show that our engine provides perfor-
mance improvements on CNNs ranging from 3.92× to 16.6×.

Index Terms— CNNs, SIMD, Near-cache processing

1. INTRODUCTION

Convolutional Neural Networks (CNNs) are an important class
of non-supervised Machine Learning (ML) applications fre-
quently used for data categorization [1–3] and detection [4–6].
Some of these applications, such as object detection, are per-
formed close to where the data is acquired. Therefore, such
applications are targeted in embedded systems featuring low-
end Central Processing Units (CPUs) such as ARM cores.
CNNs are known to be data-driven, requiring the processing
of large amounts of data. Transferring such datasets across the
memory hierarchy imposes significant performance and power
overheads [7], which limits system’s performance.

Furthermore, most signal-processing operations performed
by CNNs are computationally simple. For example, convo-
lutional and fully-connected layers (shown in Figure 1) only
apply vector multiplication and addition, while most of the
time is spent fetching the operands from the memory and
storing back the results. Hence, the CPU spends most of the
time waiting for the operands to be retrieved and a small per-
centage of the execution time is actually spent on processing.
This raises the question of whether more efficient approaches,
closer to where the data is stored, can be employed to deal
with these workloads.
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Fig. 1: Most common CNN layers: Fully Connected, Convo-
lutional and Pooling. The gray boxes show the commands of
the devised engine that are used to implement these layers.

In this work, we propose the CCS, a system based on [8]
that couples a Single Instruction Multiple Data (SIMD) unit
to the Last-Level Cache (LLC) of an ARM CPU, as shown in
Figure 2. The CCS operates near the memory device where
the operands are actually stored, reducing the data movements.
Furthermore, it processes an entire cache line per cycle, en-
abling massive parallelism. We assess the performance bene-
fits of the devised mechanism by offloading the execution of
convolutional and pooling layers, which are responsible for
over 90% of most CNN’s workload [9] (e.g., ResNet, AlexNet
and VGGNet), to the CCS and comparing the results to those
obtained with an optimized ARM Cortex-A53 implementation.
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Fig. 2: Integration of the devised Compute Cache System
(CCS) with the memory hierarchy of a conventional ARM
Cortex-A53 core.



All in all, the contributions of this work are:
• Simulation model of the CCS, a system based on the

work presented in [8], for the gem5 simulator;
• Library written in C to program and control the CCS;
• Convolutional kernels adapted to use the CCS;
• Analysis of performance improvements provided by the

CCS over an ARM Cortex-A53 CPU for CNNs.

2. RELATION TO PRIOR WORK

Some previous proposals aiming at accelerating the execu-
tion of CNNs, by moving the processing near to where the
operands are stored, include in-memory [10–17] and in-/near-
cache [18–20] computing approaches, where specific modi-
fications to the memory structures are performed to enable
near-data processing. Such solutions leverage the data proxim-
ity and memory organization to perform multiple operations
in parallel, allowing significant performance boosts. However,
these solutions often impose selective data placements, which
requires the programmer to know how data is stored in the
physical memory device. Furthermore, these solutions are
limited in terms of the number of operations they implement,
and the simple arithmetic routines required by CNNs may take
hundreds of cycles to complete.

More recently, in-memory processing using emerging Non-
Volatile Memory (NVM) technologies also appeared, in the
context of CNNs that take advantage of the analog computing
capabilities of Resistive Random-Access Memory (RRAM)
to perform the convolutions between input data and fixed ker-
nels encoded in the memristors [21–24]. However, since these
operations take place in the analog domain, costly Analog-
to-Digital Converters (ADCs) and Digital-to-Analog Convert-
ers (DACs) need to be added to the memory chips. Further-
more, the error introduced by these memristors technologies to
perform analog convolutions is substantial, mostly due to pro-
cess variations [25] and temperature fluctuations [26], severely
compromising the reliability of the results.

In contrast, the engine devised in [8] makes use of a con-
ventional arithmetic and logic vector unit supporting a much
wider range of operations than conventional in-memory com-
puting structures, while leveraging the parallelism enabled by
accessing an entire cache row per cycle. Among the supported
vector operations, some particular ones such as the dot-product
are commonly used in the context of CNNs. Furthermore, the
engine is fully digital, which is an advantage over error-prone
analog RRAM-based solutions. In [8], a proof-of-concept
of the designed architecture was implemented in a Register
Transfer Level (RTL) description and evaluated using a simple
soft-CPU and a single-level cache structure. Although such an
approach is convenient for a preliminary proof-of-concept, it
hardly tells anything about how such engine would impact the
performance of a realistic hard-CPU, equipped with its own
SIMD unit and connected to a multi-level cache hierarchy.

In this work, we re-engineer the original architecture of the
mechanism presented in [8] to optimally execute CNN’s con-
volutional and pooling layers, by adding specific commands
to its Instruction Set Architecture (ISA). Furthermore, we
evaluate its performance when connected to a conventional
ARM Cortex-A53 CPU core equipped with the NEON SIMD
engine and a multi-level cache hierarchy. We compared the
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Fig. 3: Processing structure of the CCS.

obtained results with those that were obtained by executing
the same workload in an equivalent system without the CCS,
with remarkable performance gains.

The next section details the architecture of the re-engineered
CCS, together with the developed mechanisms to support the
execution of convolutional and pooling layers of CNNs.

3. CACHE COMPUTE ARCHITECTURE

3.1. Processing structure

The proposed CCS is composed of several levels of quasi-
generic functional units arranged in a binary tree, as shown in
the Figure 3. Each level of the binary tree contains processing
nodes capable of executing a specific number (and type) of
arithmetic, logic and shift operations. The different opera-
tions that are supported at each level are combined through
commands that perform a whole complex signal-processing
function. Each command specifies the operands, the operation
to be performed, and the destination addresses of the results.

In addition to the commands supported by the engine de-
vised in [8], the re-engineered CCS extends the former set of
commands in order to further facilitate the implementation of
signal-processing functions, such as those used in the pool-
ing layers of CNNs. To accommodate the new functions, the
functional units at each level were modified accordingly. For
example, to implement the Rectified Linear Unit (ReLU), the
functional units of the first level were modified such that there
is a control combination that allows the output to be equal to
the input, when it is positive, or zero, otherwise. The com-
mands used to implement each layer are listed in gray boxes



#define L_SIZE // size of cache line
#define DATA_WIDTH // width of data matrix
#define DATA_HEIGHT // height of data matrix
#define KERNEL_LENGTH // size of the kernel

external int **data; // data addr
external int *kernel; // kernel addr
external int **result; // result addr
int a[L_SIZE]; // data buffer

// 2-D convolution
for (int i = 0; i < DATA_WIDTH; i++) {
for (int j = 0; j < DATA_HEIGHT; j++) {

gather_data(a, i, j);
ccs_setup(IPVV, KERNEL_LENGTH, 0, a, kernel,

result + i * DATA_WIDTH + j, 1);
ccs_start();

}
}
ccs_wait();

Listing 1: 2-D convolution using the CCS.

in Figure 1. Accordingly, the CCS implements a total of 47
distinct commands. Nevertheless, the CCS can be easily mod-
ified to implement other signal-processing functions used in
the context of CNNs or other application domains.

3.2. Integration with the data cache

Unlike a CPU, the CCS does not access the cache word-by-
word. Instead, it accesses an entire cache line. Furthermore,
the CCS is connected to a dedicated port of the cache, not
compromising the bandwidth between the cache and the CPU.

When the operands are not in the cache, they are fetched
from the main memory, similarly to what would happen if they
were requested by the CPU. In that case, the CCS issues a read
request to the memory subsystem and waits until it is finished.

The operands (fetched from the data cache) are delivered
to the first level of the CCS and the computation starts as soon
as all the operands are available (see Figure 3).

3.3. Pipeline Dataflow

There are four levels of the CCS pipeline that produce output,
depending on the command being executed. For example,
a dot-product of two vectors has to go all the way through
the CCS and the result is collected in the last level, whilst a
ReLU of a vector is entirely executed in the first level. Hence,
the execution time of the CCS only depends on the type of
command being issued and on the locality of the operands.

Independently of the considered operation, the designed
pipeline binary tree ensures the maximum processing through-
put and allows more than one command to be simultaneously
under execution (in different pipeline stages).

3.4. Programming the CCS

To execute commands in the CCS, an interface between
the CPU and the CCS is required. This interface is composed
of memory-mapped registers through which the CPU specifies
the operation code, an optional constant, the operands and
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Fig. 4: Execution of two different instructions in the CCS.
Figure 4a: ReLU; Figure 4b: dot-product.

result vector dimension, stride and start address. As soon as
the operands are available, the computation starts. When it
finishes, a write request is issued to the memory subsystem
and the processor is notified that the results are available.

To facilitate the process of writing the parameters into
the programming registers and controlling the CCS, a library
was written, using ARM assembly. This allows spending the
least number of cycles on configuring the CCS, minimizing
the overhead of doing so. The library contains the follow-
ing four routines: ccs_setup(<args>), ccs_start(),
ccs_check(), and ccs_wait().

Furthermore, a software framework was developed to eas-
ily offload convolutional and pooling layers of CNNs to the
CCS. This framework provides routines to gather the operands
and to align them within memory so that optimal results can be
achieved when using the CCS. Besides gathering the operands,
these routines also program the CCS to operate over the data
that was previously gathered. The example in Listing 1 shows
the implementation of a 2-D convolution using the CCS.

3.5. Summary example

Figure 4 provides two examples to show how the mechanism
implements operations with different requirements. Figure 4a)
illustrates the execution of an operation flow typical of a ReLU.
After fetching the operands from the cache, the processing
structure simultaneously executes a given instruction over all
the elements of the vector. The result has the same size as a
cache line and the results are collected from the first or the
second level of the processing structure. Figure 4b) depicts the
execution of a dot-product operation. This example illustrates
how different levels of the CCS are programmed to operate
differently, by performing complex operations together. The
first level of the processing structure does not perform any
operation, the second multiplies the elements of both vectors,
and the remaining levels sum all the outputs of level two.



4. SIMULATING THE CCS

For assessing the performance improvements attained by the
CCS over a conventional CPU equipped with a SIMD unit,
a simulation model of the re-engineered CCS for gem5 was
developed. The developed CCS model was coupled to a CPU
through a memory-mapped interface. Since the CCS’s archi-
tecture is highly pipelined and stages can be added without
affecting its throughput, it was considered that the CCS is
capable of operating at the CPU’s frequency. An additional
module was used to forward memory requests between the
CPU and the memory subsystem or between the CPU and the
CCS memory-mapped programming registers, depending on
the target address. If the target address of a CPU’s memory
request is reserved to the CCS programming registers, the re-
quest is forwarded to the CCS, otherwise it is forwarded to the
memory subsystem. The CCS was coupled to the L2 cache
(in the reference system, the LLC). For translating the virtual
addresses of the operands, the CCS was also equipped with
dedicated translation lookaside buffer (TLB) and page-walker.
The model used for the CPU was an in-order ARM core re-
fined with the gem5-X [27] framework for obtaining reliable
performance results corresponding to an ARM Cortex-A53.

The conceived CCS model was designed to target 32-bit
fixed-point vector operations. The size of a cache line in the
reference CPU is 64 bytes wide. Hence, the developed model
of the CCS can process 16 words of 32 bits per clock cycle
(i.e., the input of the CCS is 16 32-bit words wide).

5. EXPERIMENTAL RESULTS AND DISCUSSION

To assess the performance benefits offered by the CCS in the
context of CNNs, five kernels that are in the basis of CNNs
were built and executed using only the ARM Cortex-A53 CPU
core and both the CPU core and the CCS. Three of the five
kernels that were tested are convolutions (1-D, 2-D and 3-D),
whereas the remaining two kernels are max-pooling and ReLU.
Table 1 lists the parameters of each kernel, which were picked
accordingly to data formats frequently used in the context of
widely used CNNs (e.g., ResNet, AlexNet and VGGNet).

Figure 5 shows the obtained execution times and attained
speedups. As expected, the time spent accessing the mem-
ory was drastically reduced for all kernels when executing in
the CCS, which is due to processing data closer to where it

Table 1: Parameters of the kernels used to assess the benefits
offered by the CCS to execute CNN-related workload.

Parameter Value

Conv 1-D Data size 1000000
Kernel size 15

Conv 2-D Data size {1000, 1000}
Kernel size {3, 3}

Conv 3-D Data size {100, 100, 100}
Kernel size {3, 3, 3}

Max Pool
Data size {999, 999}
Patch size {3, 3}
Stride size {3, 3}

ReLU Data size {1000,1000}
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Fig. 5: Execution time and speedup of the five selected kernels.
The blue bars represent processing time, whilst red bars show
the time that processing system stalls waiting for the operands.

is stored. Furthermore, the CCS fetches an entire cache line
at once, which significantly reduces the number of memory
accesses. The time spent on processing the data is also lower
when using the CCS, which is mainly due to the parallelism
enabled by its processing structure. Overall, both the reduc-
tion of memory accesses and the faster processing due to the
parallelism enabled by the CCS contribute to the performance
improvements offered by the CCS. The attained speedups
range from 3.92× to 16.6×.

The speedup attained for the ReLU kernel is significantly
higher than for the remaining kernels. A possible explana-
tion for this involves the complexity of executing the ReLU
in the CPU. While all other kernels only involve vector arith-
metic operations, that can be often parallelized using the ARM
NEON engine, the ReLU involves assessing whether a value
is positive or negative. Not only this may not be parallelized
using NEON, but also each assessment may take more time
than a single arithmetic operation. On the other hand, the CCS
takes even less time performing the ReLU operation (as the
results are extracted from the first level) than executing the
dot-product, which is how convolution is implemented.

6. CONCLUSIONS

This paper proposes a novel method for exploiting near-data
processing for CNNs. The mechanism devised in this work,
the CCS, operates near the LLC of the CPU, leveraging both
the proximity to the data (fetching and storing data becomes
less time consuming) and the access to an entire cache line
per cycle. The CCS was integrated with an ARM Cortex-A53
CPU and simulated using the gem5 architectural simulator.
Five relevant signal-processing kernels in the context of CNNs
were executed and the performance benefits derived from using
the CCS were evaluated. The speedups obtained by using the
CCS over using only the CPU range from 3.92× to 16.6×.
Furthermore, the attained results show that using the CCS
does not only reduce the time spent accessing memory, but
also the time spent doing actual processing, which is due to
the parallelism offered by the CCS processing structure.
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