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ABSTRACT

This work explores the utilization of low-power heteroge-
neous devices for parallelizing the compute-intensive hyper-
spectral and multispectral image compression CCSDS-123
entropy encoders. Multithread processing allows for the
near-optimal system’s bandwidth to be exploited increasing
the system overall performance. The experimental platform
consists of a low-power Jetson TX2 GPU equipped with an
ARM Cortex-A57 and Denver 2 host processors, reporting
more than 1552 Mb/s and, more importantly, 315 Mb/s/W, all
running under a global 5 W power budget, which makes it a
good candidate for onboard image compression.

Index Terms— Low Power Graphics Processing Units,
Parallel Programming, Multispectral Image Compression,
Hyperspectral Image Compression, Lossless Compression

1. INTRODUCTION

The consultative committee for space data systems (CCSDS)-
123 [1] is a hyperspectral and multispectral lossless image
compression standard composed of a 3D predictor and an en-
tropy encoder. Usually, the systems that generate this type
of images (satellites, drones, etc...) impose severe energy re-
strictions. Hence, field-programmable gate arrays (FPGAs)
are suitable candidates to implement the CCSDS-123 due to
low-power requirements and energy consumption. The smart-
phone market has turned CPUs and graphics processing units
(GPUs) into energy efficient devices, making them potential
competitors against FPGAs.

In this work we exploit a low-power GPU board (Jetson
TX2) to parallelize the CCSDS-123 sample-adaptive entropy
encoder and block-adaptive entropy encoder. In the encod-
ing procedure, which contains data dependencies, hybrid par-
allelizations (CPU + GPU) are proposed, thus producing a
solution based on heterogeneous computing. The entropy en-
coder represents approximately 90% of the processing time
using only intra-band prediction (P = 0).
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The implementations are subject to tests that compare the
parallel execution times with the serial counterparts in order
to identify the best solutions. The energetic analysis is also
performed, measuring the power used by the board over the
algorithm’s execution time. In the end, the throughput rate
and energy efficiency are compared with the current state-of-
the-art [2, 3, 4, 5, 6, 7].

2. MULTISPECTRAL AND HYPERSPECTRAL
IMAGE COMPRESSION

Multispectral images typically incorporate dozens of bands
while hyperspectral images usually consist of several hun-
dred [8]. Multispectral and hyperspectral images (MHIs)
have 3 dimensions [9, 10] with a size of NV, x N, x N, being
N, the number of rows, IV, the number of columns and N,
designating the number of bands.

The CCSDS proposed a solution for the lossless compres-
sion of MHIs [1, 11]. The CCSDS 123 is composed of two
main parts: a predictor and an entropy encoder. The first
part uses an adaptive 3D prediction model which calculates
the difference between the observed value and the predicted
value, outputting mapped prediction residuals (MPRs) (9, (t))
with low entropy. The predicted values are calculated by its
neighboring samples and by P neighboring bands. Those
MPRs, can be encoded by 2 types of entropy coders. The
sample-adaptive entropy coder uses Golomb-Power-of 2 cod-
ing to encode the MPRs [11]. This entropy encoder encodes
MPRs independently for each spectral band in the ¢ domain
(t = y-Nz+x). Each MPR is encoded using a variable-length
binary codeword, which is adaptively selected based on statis-
tics that are updated after each sample is encoded [11].

The block-adaptive entropy encoder follows the CCSDS
121, a 1D universal lossless encoder that uses Rice codes [12].
The residuals are divided in blocks containing 8, 16, 32 or
64 residuals. Four algorithms are executed concurrently for
each block resulting in 4 different codewords: i) The sample
splitting option splits off the k least significant bits from each
sample and the most significant bits (MSBs) are encoded as
alternative unary coding. This method iterates & from O to



13 in order to find the value which yields the best compres-
sion. ii) The second extension option encodes pairs of resid-
uals, encoding v (v = (6; + 0;+1)(0; + di01 + 1)/2 + 6;41)
using alternative unary coding. iii) The zero-block option en-
codes the number of consecutive all-zero blocks. iv) The no-
compression option is selected when none of the above option
provides any compression to the block. From these four meth-
ods, the one which yields a better compression, is selected and
the compressed block is inserted in the bitstream.

Table 1 shows the compression ratios for both encoders
in various images with different numbers of bands used in
the prediction (P). As shown in [5], increasing P, decreases
throughput performance due to significant increment of the
predictor’s execution time. In order to reduce that time incre-
ment and as a result of, in most images, increasing P does
not bring any significant compression benefits, the solutions
developed will be made with P = 0.

Table 1. Compression rates for the sample adaptive entropy en-
coder and the block adaptive entropy encoder. For P > 3, the varia-
tion on the compression ratios are less than 0.2. Therefore, they are
not represented in the following table. The compression parameters
are described in annex C from [11]

Bands
usedin | AVIRIS | AVIRIS CRISM CRISM | .
prediciton | Hawaii | Yellowstone | frt00010f86 | frt00009326
P)
0 327 137 145 1.55 1.64
. I 526 161 152 1.66 188
Samp 2 527 .61 152 1.66 1.90
adaptive 3 556 161 152 1.66 .90
entropy
encoder : : : : : :
15 577 1.60 153 1.66 1.90
0 324 137 145 1.54 N/A
1 518 1.60 151 1.66 N/A
Block 2 538 1.61 152 1.66 N/A
adaptive 3 546 61 152 1.66 N/A
entropy
encoder : : : : : :
15 5.66 159 152 1.66 N/A

3. ENCODERS PARALLELIZATION

Jetson TX2 has 2 different central processing units (CPUs):
the Denver 2 CPU developed by Nvidia with 2 cores and an
ARM Cortex-AS57 CPU with 4 cores, enabling to run dedi-
cated threads simultaneously in six different cores.

The encoders output variable-length codewords, making
the task of parallelizing the encoder difficult. However, it is
possible to extract some parallelization from the bitstream
generation. The rule of thumb is to distribute the bitstream
generation between the available compute units and, ulti-
mately, concatenate the various bitstreams into one. The
main goal is that every core should take approximately the
same time to process a variable amount of data and achieve
the best throughput performance.
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Fig. 1. Sample adaptive encoder parallelized in the CPU. Each
core encodes a determined number of bands. Phase 1 is comprised
of the codeword generation in each core. Phase 2 is the codewords
concatenation and starts after Phase 1 finishes.

The sample adaptive encoder encodes each band sepa-
rately, achieving band-level parallelism. To parallelize this
encoder, each core encodes a specified number of bands as
shown in Fig. 1 and lastly, one core merges the resulting bit-
streams into one.

In the block adaptive encoder, different algorithms are ap-
plied to the blocks of MPRs. The sample splitting is executed
in the GPU since it takes longer to execute. The remaining
methods are executed in the Denver 2 CPU to ensure the low-
est processing time. Once each method outputs the option
selected for each block, the workload is distributed over the
available 6 cores in order to generate the bitstream. As in the
sample adaptive encoder, when all the cores finish generating
the correspondent bitstream, the bitstreams are merged by one
of the cores. Fig. 2 shows the scheme for the parallel block
adaptive encoder.
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Fig. 2. Diagram of the parallelized CCSDS 123 block adaptive en-
coder. Phase 1 is composed by the zero block and second extension
methods, which runs on the denver 2 CPU, and by the sample split-
ting, executing in the GPU. After Phase 1 finishes, Phase 2 generates
bitstreams in each core of the 2 available CPUs. When Phase 2 ter-
minates, in Phase 3, the bitstreams are concatenated into one.
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Fig. 3. Detailed execution times for the CCSDS 123 sample adap-
tive encoder running on the CPU for hyperspectral images. Phase 1
is composed by the ARM and Denver 2 bars. Phase 2 is the bitstream
concatenation. The bands executed in each core are: AVIRIS Hawaii
- D=48, ARM=32; AVIRIS Yellowstone - D=48, ARM=32; CASI -
D=4, ARM=16; CRISM frt00010f86 - D=120, ARM=76; CRISM
frt00009326 - D=120, ARM=76;

4. EXPERIMENTAL RESULTS

This work is based on a serial implementation of CCSDS
123 developed by European space agency (ESA) [13]. All
the speedups and the parallelizations are calculated from this
code. The serial version is compiled by gcc for the native
architecture (-march=native) and with level 2 optimizations
(-02). The tests are executed using the command taskser —
cpu-list and the command nice -n. The execution times were
measured using clock_getime from time.h C library. All the
images tested were downloaded from [14]. The serial times
were attained by executing the functions in one Denver 2 CPU
core. The tests were executed with the recommended com-
pression parameters from annex C from [11] with P = 0 and
B = 1. Fig. 3 depicts the results for the parallel sample adap-
tive encoder. This figure is divided in 2 phases: the ARM and
Denver 2 in phase one, running concurrently, and the second
phase composed of the bitstream concatenation. All speedups
are higher than 5, except for the CASI image. The loads in
this image are harder to balance between the CPU cores due
to the low number of bands, reducing parallelism. Process-
ing multispectral images with less than 6 bands, results in an
inefficient implementation that suffers from vacated cores. If
the multispectral image has more than 6 bands, the loads are
extremely difficult to balance.

The parallel version of the block adaptive encode fol-
lows the diagram of Fig. 2. In the first phase, the blocks are
pre-processed to determine the shortest codeword using the 3
methods. From the 3 algorithms executed concurrently, the
most expensive is sample splitting. This method represents
more than 50% of the total processing of the serial encoder.
In order to exploit the GPU architecture to obtain the best
performance, this method is executed in the GPU with one
thread per block, achieving faster execution times compared
to executing in the CPU and achieving speedups superior
to the sample adaptive entropy encoder. Fortunately, this
algorithm is easily parallelizable and runs on the GPU.
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Fig. 4. Detailed execution times for the CCSDS 123 block adaptive
encoder for hyperspectral images. Phase 1 comprises the sample
splitting, second extension and zero block. Phase 2, represented by
the ARM and Denver 2 bar. Phase 3 concatenates the bitstream into
one.

Faster times are achieved when compared to executing in
the CPU. For these methods, the Denver 2 CPU achieves bet-
ter performances compared to the ARM CPU and, for that
reason, the remaining methods are executed, each one, on a
Denver 2 core.

Then, in the second phase, the bitstream generation is di-
vided between the cores using threads. Each core encodes the
block that has the shortest codeword calculated in the previ-
ous phase. Empirical results show that, in order to balance the
loads, the MPR blocks are divided roughly by 30% for each
Denver 2 CPU core and 10% for each ARM CPU core. After
the bitstream generation, one Denver 2 core concatenates the
bitstreams from the previous phase into a single one.

Fig. 4 shows the results for the block adaptive entropy
encoder. A good balance was obtained in the CPU cores with
the difference being approximately 100 ms (10%). Overall
speedups obtained range from 8.5 to 10.9. In multispectral
images a good balance is harder to achieve between the CPU
cores.

Table 2. Results for implementations of the CCSDS 123 encoders
in various platforms, adapted from [3]. * Higher is better. Our solu-
tion uses the block-adaptive entropy encoder, encoding the AVIRIS
Hawaii image, for P = 0.

D | Throughput Power Efficiency*
Platform Language (bit) (Mb/s) W) (Mb/s/W)
V-5 SX50T[2] VHDL 13 571.72 0.70 825.31
V-7 XCTVX690T[3] VHDL 16 3701.44 5.30 698.38
V-4 XC2VFX60 [3] VHDL 16 2062.24 0.95% 2170.78
GT 610[3] OpenCL 16 1091.2 <29.007 37.63
2x GTX 560M[4] CUDA 12 4707.48 <150.00T 31.38
GTX 750ti[5] CUDA 12 5299.80 <60.007 88.33
Jetson TX1[6] CUDA 8 1548.89 <10.00" 154.89
i7-2760QM[4] OpenMP 12 1688.16 <45.00" 37.51
2x Xeon X5690[7] OpenMP 12 240.60 <260.00T 0.93
Our solution CUDA 16 1552.32 4.93 314.87

I'This denotes the TDP given by the manufacturer
2This value was obtained by the Designer SmartPower tool from
Microsemi in [15]



5. RELATION TO PRIOR WORK

Prior works [15, 3, 16, 4, 5, 6, 7] do not present individual
results for the predictor and encoder alone. From our experi-
mental results, the predictor takes approximately 10% of the
processing time for P = 0 on GPU. In order to compare our
results with the state-of-the-art, we apply the same logic, as-
suming that 90% of the processing time is for the encoding
process, showing the CCSDS 123 results in Table 2.

Space grade FPGAs provide flexible and high perfor-
mance solutions at low-power with tolerance to space radia-
tion (Virtex 5QV [3, 15, 17]). In [15], it is proposed a low
complexity architecture with low hardware occupancy, which
was achieved by identifying parameters that affect the perfor-
mance. Although low energy consumptions were obtained,
compression time increased compared to [18, 19].

Real-time compression was achieved in [3, 2, 17, 16, 20]
but in [3] older FPGA models suffer from lack of memory. In
[17], the authors accomplished high throughput performance
without using external memory but incurring in higher energy
consumption.

In [21], the authors propose a heterogeneous architecture
using an FPGA and a GPU in the same system. The GPU
takes advantage of the high throughput performance to com-
pute the calculations, while the FPGA uses the flexible logic
for formatting and interfacing the data between the system
storage and the GPU.

Using Nvidia’s GPU in [5], the authors concluded that of
all parameters, 3 had the most impact on execution time and
compression ability, the number of prediction bands, the pre-
diction neighborhood (column-oriented or neighbor-oriented)
and prediction mode (full mode or reduced mode). It was
found that as the number of bands used in the prediction in-
creases, throughput performance decreases, but compression
ratio increases. Consequently, there is a trade-off between
compression ratio and throughput performance.

In [4], by using a general purpose graphics processing
unit (GPGPU) approach to explore spectral and spatial paral-
lelism of the algorithm, the execution times were superior to
the ones developed using open multi-processing (OpenMP).
The authors exploited the high data reuse and the high speed
of GPU memory to obtain better performance compared to
the OpenMP version.

Writing open computing language (OpenCL) code on
GPUs is 6 times faster than developing very high speed in-
tegrated circuits hardware description language (VHDL) on
FPGAs [3].

6. CONCLUSIONS

The use of low-power heterogeneous processors equipped
with energy-efficient GPUs brings a new paradigm to the
field of onboard multispectral and hyperspectral compression,
even though, not as the efficiency as FPGAs. By exploring

all available compute units, it is possible to attain speedups
of 10, taking less than 1 second to encode hundreds of MBs
of data. Overall, for the best of our knowledge, the pro-
posed system surpasses the state-of-the-art literature, in terms
of energy-efficiency and power requirements. It should be
kept in mind that the adopted heterogeneous architecture is
supported by embedded ARM-based cores and a low-power
GPU with only 256 CUDA cores (where a desktop GPU such
as the ones used in [4, 5] has more cores) and is capable of
achieving 314.87 Mb/s/W under a 5 Watt power budget.

However, FPGAs still dominate the state-of-the-art. In
fact, FPGAs require hardware design knowledge, while the
current approach is more suitable for the signal processing
community.
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