
gem5-ndp: Near-Data Processing Architecture
Simulation From Low Level Caches to DRAM

João Vieira∗, Nuno Roma∗, Gabriel Falcao†, Pedro Tomás∗

∗INESC-ID, Instituto Superior Técnico, University of Lisbon, Portugal
†Instituto de Telecomunicações, University of Coimbra, Portugal

Abstract—Unlike standard accelerators, the performance of
Near-Data Processing (NDP) devices highly depends on the
operation of the surrounding system, namely, the Central
Processing Unit (CPU) and the memory hierarchy. Therefore,
to accurately evaluate the gain provided by such devices, the
entire processing system must be considered. Recent proposals
redesigned existing architectural simulators to estimate the
performance of NDP devices. However, the conclusions that
can be drawn from using these frameworks are limited, and
they fail to provide full support to simulate these devices (e.g.,
most simulators do not allow simultaneous operation of the
CPU and the NDP device). In this paper, a novel framework
(called gem5-ndp) based on the gem5 architectural simulator is
proposed, providing full support to the development, validation,
and evaluation of novel NDP architectures. To illustrate the process
of developing and integrating an NDP device with a processing
system using the proposed framework, as well as to demonstrate
its viability and benefits, two case studies are also proposed
and thoroughly discussed. gem5-ndp significantly improves the
performance evaluation confidence of NDP devices with results
showing that classical approaches lead to a deviation of up to
54.9% when compared with results obtained with gem5-ndp.

Index Terms—Near-Data Processing, Multi-Level Memory
Hierarchies, Simulation Framework, Data-Parallel Processing.

I. INTRODUCTION

The emergence of data-intensive algorithms in several
application domains (e.g., for image and video processing, bio-
informatics, machine learning, and particularly deep learning),
has highlighted the inability of memory subsystems to feed
data at the rate required by standard parallel computing units,
including Central Processing Units (CPUs) [1]. Moreover, on
big data applications where the data re-utilization in cache
is low, data transfers pose significant energy consumption
overheads. To overcome these limitations, accelerators and co-
processors operating near-memory have been proposed. Such
solutions aim to benefit from a much higher memory bandwidth
(compared to the CPU), allowing to accelerate workloads that
would otherwise be memory-bound.

Firstly introduced during the ’80s, the Processing in Memory
(PIM) paradigm [2], [3] aims at re-purposing existing Dynamic
Random Access Memory (DRAM) resources to enable bit-
line computation. Later, this paradigm was extended to Static
Random Access Memory (SRAM), allowing to perform active
computation on caches [4]. While devices using this technique
usually offer massive parallelism, being able to process whole
memory lines in a single clock cycle, they are only capable

of performing very simple bit-wise operations [5], and may
require thousands of computation cycles (and complex control
circuitry) to implement more elaborate arithmetic operations
using bit-line computation [6]. Moreover, due to its analog
nature, bit-line computation is error-prone, and is only viable
if a small number of memory lines are combined during an
operation [7]. As a result, PIM-based solutions usually do not
significantly benefit data-parallel algorithms, being only suitable
for a small set of programs whose majority of operations
are efficiently implemented by PIM accelerators. Furthermore,
enabling PIM requires to change the internal architecture of
memory devices. Hence, as PIM accelerators often target a
single algorithm [8], it seems counter-intuitive to re-design
memory chips to benefit a specific workload, while risking
decreasing the overall performance of the system.

Another similar processing paradigm is Resistive Random
Access Memory (RRAM)-PIM [9]. Solutions using this com-
putation technique rely on the resistive properties of RRAM
to implement analog or digital computation. By controlling
the impedance of RRAM cells and the input voltage, it is
possible to implement analog logic operations as well as analog
Multiply–accumulate (MAC)–the main operation required by
Neural Networks (NNs) [10]. On the other hand, by combining
several memristors, it is possible to implement digital bit-wise
operations [11], [12]. However, RRAM fabrication is known
to have significant process variations, which makes memristors
uneven within the same device and across devices [13].
Therefore, a significant error is introduced in RRAM-based
analog computations, ultimately invalidating the results. On the
other hand, digital computations using RRAM are limited to the
same simple logic instructions achieved with PIM, worsened
by the fact that several memristors are required to implement
a single bit-wise operation between two bits (reducing the
parallelism that can be achieved).

To circumvent these limitations, a different approach has
been adopted by Near-Data Processing (NDP) solutions, fea-
turing fully digital architectures directly connected to the
memory devices [14]–[16]. Although these solutions usually
benefit from a lower bandwidth than those implemented within
the memory chips, their architectures are not restricted by
the memory resources, resulting in more versatile devices,
capable of efficiently processing complex workloads, while still
benefiting from a higher bandwidth to the memory compared to
the CPU. Moreover, these devices already reduce significantly

energy consumption across wires, as they are physically closer
to the memory than conventional CPUs. Naturally, these devices
have a broader scope than PIM-based solutions, and general-
purpose co-processors can be implemented using this paradigm.

However, the performance evaluation of NDP devices is
critically different from that of standard accelerators, since the
behavior of the memory devices and the cooperation with the
host CPU highly affects their performance. Classical evaluation
approaches can hardly take into account important factors such
as the entropy generated at the memory hierarchy level for
being shared among multiple devices, or the synchronization
overheads between the CPU and the NDP device. Therefore,
simulating the architecture of an NDP device alone tends to
poorly reproduce its real performance when integrated with
a standard processing system. In fact, the most viable and
accurate approach to validate and predict the performance
benefits of NDP devices is often the simulation of the entire
processing system. However, such task is not simple, and
there is no standard tool to simulate systems that include NDP
devices. Some works re-purpose existing tools to estimate
the performance of custom systems. For example, in [17],
the authors use a Graphics Processing Unit (GPU) simulator
to estimate the performance of a PIM device. Other works
extend existing simulators to partially support specific NDP
architectures [18]–[20]. In contrast, this paper proposes a novel
simulation framework, called gem5-ndp, that provides full
support to develop, validate and evaluate the performance of
new NDP architectures. Furthermore, gem5-ndp is based on
the widely established gem5 architectural simulator [21], and
provides full support for simultaneous operation of the CPU
and NDP devices, simple integration of NDP devices with
processing systems, and memory configuration mechanisms.

To validate and evaluate the proposed simulation framework,
the conducted experimental procedure considered two NDP
devices: (1) a simple square root calculation circuit, which
was used to illustrate the development and integration of a
custom NDP architecture; and (2) a data-parallel NDP device
to execute several benchmarks from data-intensive application
domains, showing the viability of the devised framework and
its benefits when comparing with classical evaluation scenarios.

All in all, the contributions of this paper are the following:
• A Gem5-based NDP simulation framework providing full

support to develop, validate and evaluate NDP devices;
• Two case studies for demonstrating and validating the

proposed framework, including the creation of simulation
models for the two considered systems, their integration
with the surrounding processing system, and the develop-
ment of host code to communicate with the NDP devices;

The rest of this paper is organized as follows. Section II
details the proposed NDP simulation framework. Section III
presents two case studies: (III-A) a simple near-data square root
calculation mechanism, to illustrate the process of developing
and integrating an NDP device using gem5-ndp; and (III-B)
a more complex bidimensional NDP array, to demonstrate
the benefits of using the proposed framework for developing
and evaluating new NDP architectures. In Section IV, the

main experimental results are presented. Section V summarizes
relevant related work. Finally, Section VI concludes this paper.

II. NDP SIMULATION FRAMEWORK

The proposed gem5-ndp is based on the gem5 architectural
simulator, allowing an accurate event-driven simulation on a
clock cycle basis. Accordingly, the latency associated with
data movements or hardware operations is simulated through
triggering events after the number of cycles corresponding to
the latency of the simulated components. However, while gem5
allows simulating standard processing systems out of the box
(using already-implemented simulation models), simulating
novel devices requires the definition of their architectural
models and connecting them with the remaining system. This
task can be particularly complex for NDP devices, since they
have to be integrated with the CPU (for control purposes), and
the memory hierarchy (to directly fetch and store data from/to
one or more memory devices), and to enable the translation
between the virtual and physical address spaces.

To facilitate the process of integrating these devices with stan-
dard processing systems using gem5, gem5-ndp devises three
main mechanisms. First, an architectural model implementing
a programming interface and a data gather/scatter mechanism
is provided to easily connect the custom NDP devices with
the existing CPU and memory hierarchy. A custom NDP
device based on this provided model has access to functions
that allow to communicate with these structures, making the
complex protocols required for implementing control and data
transfers transparent to the developer, while still allowing
fine-grained control over data movements. Second, convenient
gem5 simulation scripts are also provided to automatically
connect NDP devices to the CPU, map their programming
interfaces into the CPU address space, and connect them to
one or more levels of the memory hierarchy. Finally, gem5-
ndp includes a simple and organized programming paradigm
for developing applications using NDP devices based on the
provided architectural model.

A. gem5-ndp Architectural Model

The proposed architectural model consists of a layer on top
of gem5 that deals with the complex architecture of the whole
processing system, allowing users to easily integrate their NDP
architectures. It does not only generate the required control
circuitry to automatically deal with memory requests, but
also provides a programming interface to allow the necessary
management by the CPU. It is important to mention that the
gem5-ndp architectural model does not restrict in any way
the internal architecture of the NDP devices. In particular,
it is unaware of their Instruction Set Architecture (ISA) (and
corresponding implementation) and the internal control required
for their proper function (e.g., scheduling hardware). Moreover,
although it provides the hardware infrastructure required to
implement the communication between the CPU and the NDP,
it is up to the developer to establish the communication protocol
between them. Furthermore, gem5-ndp allows to connect an
NDP device to any level of the memory hierarchy or even to

Prog. IO
 Data
 Gather/
 Scatter

L1I L1D

L2

BW3

DDR

BW1 BW1

CPU

TLB1

TL
B

2

B
W

2

B
W

2

NDP Framework

NDP Device Custom
Architecture

Fig. 1: Physical representation of the proposed NDP simulation
framework. BW1, BW2, and BW3 represent configurable gem5-
ndp parameters that define the bandwidths between the different
levels of the memory hierarchy.

multiple levels, and it includes mechanisms to configure the
bandwidths of each connection (see Fig. 1). The simulation of
systems featuring multiple NDP devices is also supported.

The architectural model of gem5-ndp uses two existing
structures of gem5: the Programmable IO (PIO) and the Queued
Memory Port, as shown in Fig. 2. The PIO allows the creation
of a programmable interface through which the NDP device
can be managed by the CPU (Prog. IO block). This interface
consists of a register bank that can be addressed by the CPU
as a memory-mapped device. The register bank can be as large
as required by the communication protocol established by the
architect of the NDP device. At simulation level, reading or
writing from/to addresses within the programmable interface
will trigger a read or write procedure in the simulation
framework, emulating the circuitry to deal with the request
and pass any relevant data to the functions within the custom
NDP device model (handleRead and handleWrite).

The Queued Memory Ports allow the connection between
the NDP device and one or more memory devices from the
hierarchy, for direct access. Additionally, gem5-ndp implements
mechanisms to easily fetch the operands and store the results
required/produced by the NDP device (Data Gather/Scatter
block). For example, for fetching an entire vector from memory,
the custom NDP device model only has to pass a descriptor to
the framework using the accessMemory method, indicating
the base address, the number of bytes to retrieve, and, optionally,
a stride. The framework will then schedule the necessary
memory requests to retrieve the data as fast as possible
(sendData method), filtering out any extra bytes not fitting
the descriptor (e.g., when a stride is specified). Optionally,
the developer can also configure the latency and overall
behaviour of the memory devices, by completely bypassing
the memory controller. This option allows the developer to
load or store data using a custom latency, which can be
useful for NDP (and PIM) design exploration. As soon as the
memory device finishes dealing with all the requests generated

Prog.
IO

TLB

Queued
Mem Side

Port(s)

 sendData(Resquest, Data, Mode)

 recvTimingResp(Pkt)

 sendTimingReq(Pkt)

 accessMemory(Addr, Size, Mode, Data)

 finishTranslation(State)

 translateTiming(Request, Context, Translation, Mode)

NDP Device Custom
Architecture

 read(Pkt)

 write(Pkt)

 handleRead(Addr)

 handleWrite(Addr, Data)

 handleResponse(...)

M
em

or
y

C
PU

Data
Gather/
Scatter

NDP Framework

Fig. 2: Function diagram of gem5-ndp showing the relation
between the framework software routines and the corresponding
physical components illustrated in Fig. 1.

by the framework, the handleResponse method is called,
returning the requested data to the NDP device (on loads) or
acknowledging a successful write (on stores).

gem5-ndp also implements convenient structures to guarantee
the translation of the virtual memory addresses accessed by
the NDP device into their corresponding physical addresses.
Whenever the custom NDP device issues a memory request, the
framework asynchronously translates the base address of the
descriptor using a dedicated secondary Translation Lookaside
Buffer (TLB) (translateTiming) and sends the request to
memory with the corresponding physical address (sendData).
Furthermore, gem5-ndp reduces the number of accesses to
the TLB by translating subsequent addresses within the same
page through adding an offset to a physical address translated
previously. Only when a page boundary is crossed an address
is translated by explicitly accessing the TLB again. In the event
of a page fault, gem5-ndp implements a page walker to fetch
the new page from memory.

Memory models in gem5 follow typical hardware limita-
tions and have a maximum request size determined by the
architecture of its corresponding physical device. Therefore,
when requesting/sending bursts of data from/to a memory
device larger than the allowed request size, they must be
split into smaller requests. To simulate this behavior, the Data
Gather/Scatter module implemented by gem5-ndp automatically
divides large memory requests into smaller ones, suitable to
be sent to the memory device, and sends them sequentially,
as shown in Fig. 3. First, the framework translates the base
address of the descriptor passed by the custom NDP device,
and sends a request with a size equal or smaller than the
maximum allowed size by the targeted memory device. If the
size of the data requested by the NDP device is larger than
the maximum allowed by the memory device for a single
request, the framework prepares a new request, translating its
virtual address by adding an offset to the base address of the
previous request if both addresses are within the same page, or

accessMemory

(Addr, Size, ...)

translateTiming

(Addr, ...)

Size > Blk

SendData

(Req[Addr, Size])

Addr = Addr + Blk

Size = Size - Blk

Cross

Page

finishTranslation

(...)

SendData

(Req[Addr, Blk])

recvTimingResp

(Pkt[Addr, Size, Data])

saveToBuffer

(Addr, Size, Data)

All Reqs

Fullfilled

handleResponse

(Buffer)
As

yn
ch

ro
no

us
 M

em
or

y
O

pe
ra

tio
n

yes

no

yes no

yes

As
yn

c
TL

B
O

pe
ra

tio
n

no

Fig. 3: Diagram showing how the gem5-ndp Data Gather/Scat-
ter module unfolds large requests into smaller ones suitable to
be sent to the memory devices.

accessing the TLB when the addresses are in different pages.
This process is repeated until the original request made by the
custom NDP device is entirely fulfilled.

Since gem5 is an event-driven simulator, the memory
requests are resolved asynchronously by the memory device
(similarly to a real system). Therefore, to ensure that all
memory requests are resolved correctly, gem5-ndp implements
a callback mechanism, which only makes the data available
(in case of a read request) or acknowledges a successful write
when all the requests issued to the memory device are fulfilled.

B. Gem5 System Emulation Scripts

gem5-ndp includes a comprehensive set of Python scripts
that support the integration of the simulated NDP devices
in a standard processing system, as illustrated in Listing 1.
This example is logically divided into four parts, where Part 1
describes the targeted processing system, in this case featuring
an Out-of-Order (OoO) CPU with two levels of cache and a
DDR memory. Part 2 instantiates the included NDP device
using the gem5-ndp architectural model, and connects it to
the CPU and memory devices using crossbars (Part 3), whose
bandwidth can also be adjusted to reflect the proximity of this
device to memory through parameters such as the bus width of
the interconnects (BW1, BW2, and BW3 in Fig. 1). It is worth
noting that although the devised framework was developed
targeting NDP devices, this feature also enables the simulation
of PIM accelerators, by configuring the allowed bandwidth
according to the one commonly found inside memory chips.
Furthermore, gem5-ndp also provides detailed information
regarding the memory transactions between the NDP devices
and the memory hierarchy, which allows to determine the
effective bandwidth between the two.

The provided scripts also exemplify how to map the NDP
devices programming interface (provided by the framework

Listing 1: Partial gem5 simulation script integrating a standard
processing system and memory hierarchy with an NDP device.
In this example, the NDP device is connected to the L2 cache.
Nevertheless, gem5-ndp allows to connect NDP devices to any
memory device or even multiple devices.
Standard processing system
system.cpu = DerivO3CPU()
system.cpu.icache = L1Cache() (Part 1)
system.cpu.dcache = L1Cache()
system.l2cache = L2Cache()
system.mem_ctrl = DDR3_1600_8x8()

NDP device
system.ndp_device = NDPDevice((Part 2)

ndp_device_addr = 0x0
)

class CustomL1XBar(L2XBar):
def __init__(self):

super(CustomL1XBar, self).__init__()
width = 32 # 256-bit bus width (BW1)

class CustomL2XBar(L2XBar):
def __init__(self):

super(CustomL2XBar, self).__init__()
width = 32 # 256-bit bus width (BW2)

(Part 3)
Connect NDP device to CPU
system.l1bus = CustomL1XBar()
system.cpu.dcache_port = system.l1b.slave
system.ndp_device.cpu_port = system.l1b.master

Connect NDP device to L2
system.l2xb = CustomL2XBar()
system.ndp_device.mem_port = system.l2b.slave
system.l2cache.cpu_side = system.l2bus.master

Map NDP device into host address space
system.cpu.workload[0].map(

0x200000000, # Host address space
0x0, # NDP device address space
4096 # Address range

)
(Part 4)

Emulated driver
system.ndp_driver = NDPAccelDriver(

hardware = system.ndp_device,
filename = "ndp_device" # file descriptor

)

Start simulation
exit_event = m5.simulate()

architectural model) into the CPU address space, and con-
figures an emulated driver (also provided by the framework
architectural model) to implement the system calls required by
virtual memory translation mechanisms (Part 4).

C. Programming and Operation of an NDP Device

To control the NDP devices from the program being
executed in the CPU, gem5-ndp also includes a straightforward
programming paradigm, which allows to communicate with the
NDP devices by reading and writing from/to their programming
interfaces (provided by gem5-ndp architectural model).

CPU

Mem. HierarchyNDP Device
2

4

3

1
NDP kernel

Fig. 4: Operation of an NDP device and interaction with the
surrounding system: (1) the CPU stores the NDP kernel in
memory; (2) the CPU triggers the NDP device to start operating;
(3) the NDP device exchanges operands and results with the
memory hierarchy; (4) the CPU polls the NDP device.

Fig. 4 exemplifies a possible execution flow of a prototyped
NDP device using gem5-ndp. Since in this example the NDP
device and the CPU share the same addressing space, the
CPU starts by storing the NDP kernel (i.e., the sequence of
instructions that will be decoded and executed by the NDP
device circuitry) into memory (step 1). Then, it writes the
memory address where the NDP kernel was stored into the NDP
device programming registers (step 2), and triggers the NDP
device to fetch the kernel from memory and start executing it
(step 3). While the kernel is being executed, the NDP input
data is fetched from the memory hierarchy, and the results
are stored back. During this time, the CPU is free to execute
a different workload, since both devices can simultaneously
operate on different data. Finally, the CPU polls the NDP
device programming register, waiting for the kernel completion
(step 4). On the application side, the programmer manages the
NDP device by simply reading and writing the programming
registers, as shown in Listing 2. Whenever writing to an address
corresponding to the programming interface of the NDP device,
a handleWrite call is triggered in the gem5 model, while
a read command triggers a handleRead call.

It is important to mention that while the NDP device is
processing data, it is up to the developer to enforce that no
invalid data is accessed, i.e., the CPU does not try to access
memory positions being read or written by the NDP device. To
ensure this, programs must be aware of what data is being used
by the NDP devices, and implement proper synchronization
using either high-level synchronization mechanisms (such as
mutexes and barriers), or use the value of status registers
in the NDP devices programming interfaces. Furthermore,
thanks to the existence of virtual memory and process isolation
mechanisms, it is also enforced that processes other than the
ones that have hold of the NDP devices cannot access the
data being processed by them. All in all, gem5-ndp offers
guarantees that it is always possible to prevent the CPU to
access memory regions involved in NDP computations.

Due to operating at several levels of the memory hierarchy,
the use of NDP devices also requires awareness of data
coherence across the several memory devices. The gem5-ndp
programming paradigm also describes how to deal with this

Listing 2: Example of gem5-ndp-compatible C code including
routines to initialize and control the NDP device.
int main() {

// NDP driver initialization
int fd = open("/dev/ndp_device", 0);
volatile uint64_t *driver = NDP_ADDR;

// Data is prepared; pointers are added to kernel
DATA_TYPE dataset = ...
void *kernel = ...

// CPU launches kernel on NDP device
*driver = (uint64_t) kernel;

// CPU processes tasks in background
...

// CPU waits for NDP to finish
while (!(*driver));

// CPU post-processes the results
...

return 0;
}

important requirement of computing systems. When operating
at cache level, coherence is enforced by cache coherence
mechanisms, thus, it is transparent to the programmer. However,
when working at the main memory level, the programmer has
to manually flush the operands from the caches before the NDP
device can read them, and invalidate the memory region of the
results in cache before accessing them again from the CPU
(can be done using the cache management instructions provided
by the CPU). One can argue that manually evicting data from
cache deteriorates performance, which goes against the purpose
of NDP. However, if the majority of the operands are stored in
the main memory, evicting the few that are in cache to process
them near the main memory is preferred. Ideally, computation
should be performed wherever the majority of the operands
are present. But that is a problem that falls under NDP design
exploration, which is out of the scope of this paper.

III. CASE STUDIES

To demonstrate the viability of gem5-ndp, the following
subsections present and discuss two case studies: a simple near-
data square root circuit, to exemplify the process of developing
and integrating an NDP architecture using gem5-ndp; and a
bidimensional NDP array, used in the experimental procedure.

A. Simple square root circuit

To ilustrate the development process of an NDP device and
its integration with a standard processing system using gem5-
ndp, a simple near-memory square root module based on the
circuit proposed in [22] is considered. This circuit receives as
input a 32-bit floating-point number and calculates its square
root in two steps: First, the exponent of the output is calculated
by shifting the exponent of the input to the right by one bit;
Second, the mantissa of the output is calculated by interpolating

 driver[0] = addr_op

 driver[1] = size

 driver[2] = addr_res

idx = Pkt.addr_op

handleWrite(Pkt)

accessMemory

(idx, ReqSize, Read, ...)

A
sy

nc
hr

on
ou

s
M

em
or

y
O

pe
ra

tio
n

idx <

addr_op +

size

idx += ReqSize

handleResponse(Pkt)

i = 0

i += 1

i < ReqSize

accessMemory

(idx, ReqSize, Write, res)

 off = addr_op - Pkt.addr

 idx = addr_op

A
sy

nc
hr

on
ou

s
M

em
or

y
O

pe
ra

tio
n

ack

H
o
s
t
c
o
d
e

Gem5

yes no

yes

no

Fig. 5: Behavioral model of the simple near-data square root
module described in terms of calls to the methods defined by
the devised framework architectural model.

the coefficients stored in one of two local memories, depending
whether the exponent of the input is even or odd.

To simulate this module in gem5 using gem5-ndp, the first
step consists of creating a new C++ class (an architectural
model) that inherits from the class representing the gem5-ndp
architectural model. As previously shown in Fig. 2, gem5-
ndp requires the implementation of three main functions:
handleRead and handleWrite, which deal with read and
write operations from/to the NDP programming interface, and
handleResponse, which deals with incoming packets from
memory. To send requests to the memory device, the gem5-ndp
architectural model implements the routine accessMemory,
which receives a descriptor, an operation type (read or write),
and the data to be written in case of a write operation.

Accordingly, the behavioral model of the simple near-
data square root module is illustrated in Fig. 5. First, the
handleWrite method is called (multiple times), to transmit
the following data to the NDP device: base address of the
operands, number of operands, base address to store the results.
Then, the circuit will fetch batches of operands from memory,
according to the availability of internal registers to store them,
using the accessMemory method of the framework. The
handleResponse method will be called as soon as the
memory device returns a batch of operands to the NDP device,
which schedules them to be processed sequentially and stores
the results in an output buffer. After all operands of a batch
have been processed, the results are sent back to memory.
Finally, an acknowledgement is received by the NDP device
through the handleResponse method indicating that the
batch of results was successfully stored in memory.

Integrating the square root module with an existing pro-
cessing system (at the L2 cache) is achieved with the steps
illustrated in Listing 1, while the host code that makes use of
the NDP device follows the structure described in Section II-C.

Pr
og

. I
O Data

 Gather/
 Scatter

L1I L1D

LLC XBAR

L2

MEM XBAR

DDR

L1 XBAR

Load and Store Unit

IN

OUT

CPU

TLB1

TL
B

2

N
D

P
Fr

am
ew

or
k

C
on

tr
ol

N
D

P
D

ev
ic

e
C

us
to

m
 A

rc
hi

te
ct

ur
e

Fig. 6: NDP architecture considered in the validation and
evaluation of gem5-ndp. The considered data path consists of
a bidimensional array of similar Processing Elements (PEs).

B. Bidimensional NDP Array on LLC

In this second case study, a bidimensional processing array
was implemented and connected to the memory hierarchy of a
processing system, as shown in Fig. 6. The considered NDP
device was integrated with the CPU through the memory-
mapped interface and connected to the memory hierarchy
through the mechanisms provided by the architectural model of
gem5-ndp. Although the devised architecture was designed to
be integrated with any level of the memory hierarchy, for this
particular scenario, it was decided to couple it with the Last
Level Cache (LLC) to automatically maintain data coherence
through the existing cache protocols.

The considered NDP device features a dedicated Load and
Store Unit (LSU), responsible for fetching the input data
and sending the results from/to the LLC through the data
gather/scatter mechanisms provided by gem5-ndp. The control
module implements all the logic that allows the CPU to manage
the NDP device. It is also responsible for scheduling the NDP
instructions to the PEs and keeping track of their status. The
considered data path consists of a grid of similar PEs, capable
of atomically processing a pair of vectors. PEs communicate
with their neighbors through uni-directional buses: PE (i, j)
communicates with PEs (i+1, j) and (i, j+1), i < N∧j < M .
Thus, the vector operands are loaded into the first row/column
of PEs and propagated through the grid until reaching their
destination. When available, the results are sent through the
grid to the last row/column, and then collected by the LSU.

As shown in Fig. 7, it is assumed that each PE is equipped
with a 64-bit integer arithmetic unit, a 64-bit floating-point
arithmetic unit (both implementing addition, subtraction, and
multiplication), and a 64-bit logic unit. Additionally, the
arithmetic units can be configured to process a pair of 64-
bit operands, two pairs of 32-bit operands, four pairs of
16-bit operands, or eight pairs of 8-bit operands. Each PE
also features four 64-bit internal registers, with three of them

INPUT

OUTPUT

R1 R2 R3 R4

Int64
Arith U

FP64
Arith U

L64
Unit

Fig. 7: Considered internal architecture of each PE of the
proposed NDP device. Each PE includes Integer and Floating-
Point Arithmetic Units and a Logic Unit.

serving exclusively to store operands, and an output register
that can also store temporary results to be reused in subsequent
operations. Since all PEs have the same internal configuration,
a workload can theoretically be assigned to any cluster of PEs.

IV. RESULTS AND DISCUSSION

To validate and evaluate the proposed framework, it was
considered a processing system composed by a general-purpose
CPU operating at 3.6GHz, whose model in gem5 accurately
describes a high-performance ARM core. The caches were
modeled after the ARM Cortex-A72 specification, featuring a
32 kB L1 data cache and a 1MB L2 shared cache, connected
through 256-bit-wide crossbars. The main memory consists of
a DDR3 module operating at 1600MHz, with a 64-bit wide
interface. For the majority of the experiments, the NDP device
considered in the second case study (see Fig. 6) was coupled
to the shared L2 cache. However, for the last experiment
(Section IV-C) it was also connected to the DDR memory.

To evaluate the advantages of the proposed simulation
framework, three sets of experiments were performed. First,
two arithmetic benchmarks (Matrix Addition and Matrix
Multiplication) were executed by the NDP device for multiple
data sizes, allowing to observe its performance for different sets
of data. Second, seven benchmarks from different application
domains were executed by the processing system with and
without the proposed NDP device connected to the L2 cache,
in order to evaluate the attained performance benefits. Finally,
the obtained results using gem5-ndp were compared with
extrapolated performance values calculated using classical
evaluation models (see Section IV-C).

A. Simple Arithmetic Benchmarks

The results of the first experiment are presented in Fig. 8,
showing the performance of the NDP device while executing
two regular arithmetic benchmarks: Matrix Addition and Matrix
Multiplication. For this experiment each row of the matrices
was 256 floating-point values long, and the second matrix
of the Matrix Multiplication benchmark was transposed in
memory. As it can be observed, the resulting performance

0 800 1100 1572

Input size [kiB]

0

1

2

3

4

E
x
e

c
u

ti
o

n
 t

im
e

 [
C

lo
c
k
 C

y
c
le

s
]

10 5

Matrix Add

Matrix Mul

(A)

(B)

(C)

Fig. 8: Performance of the NDP device executing the Matrix
Addition and Matrix Multiplication benchmarks for different
matrix sizes (matrices that fit entirely in cache correspond to
zone (A), and zones (B) and (C) involve matrices that do not
fit entirely in cache).

is not proportional to the size of the data being processed.
In particular, for matrices larger than 1MiB (which do not
entirely fit in the L2 cache), the performance of the NDP device
depends on the DDR operation and cache eviction protocols
(zones (A) and (B) of Fig 8). Furthermore, when executing
the Matrix Addition benchmark simultaneously in the CPU
and the NDP device using 4KiB matrices, a performance
decrease of 2× was observed, with the average bandwidth
between the NDP and the LLC decreasing from 173 bit/cycle
to 84 bit/cycle. This effect is explained by the data contention
caused by the CPU and the NDP, since both require large
amounts of data from the memory subsystem. This shows
that the performance benefits of the NDP device can only
be accurately predicted if the whole system is considered,
including not only the NDP device but also the memory
hierarchy (which may not have a constant throughput), and the
CPU (which manages the NDP device and shares the same
memory hierarchy, partially occupying its bandwidth). It is
also noticeable that the Matrix Addition benchmark shows a
significant performance degradation for smaller input matrices
when compared with Matrix Multiplication. This is explained by
the involved matrix sizes (not square), which impact the output
matrices. In Matrix Addition, the output matrix size matches
the input size filling up the cache sooner, as the L2 cache
uses a write-back policy. In contrast, in Matrix Multiplication,
the output matrix is smaller which allows using larger input
matrices before triggering cache evictions that would otherwise
penalize the performance. In zones (B) and (C) there is also the
presence of local peaks of poor performance. These correspond
to specific data sizes that, due to the cache eviction policy,
generate more block evictions. Naturally, that leads to more
requests being sent to the DDR, degrading performance.

B. Mixed Benchmark Evaluation

The set of benchmarks used in the second experiment consist
of seven applications from three different domains, as described
in Table I. For simplicity, single-precision floating-point format
is used across all the benchmarks, and all the vector operands

Matrix
 Add

Matrix
 M

ul
KNN

K-M
eans

Stre
amcluster

YoloV3

Backprop

0

4

16

64

256
S

p
e
e
d
u
p
 (

×
)

-O2

-O3

(a) In-order CPU

Matrix
 Add

Matrix
 M

ul
KNN

K-M
eans

Stre
amcluster

YoloV3

Backprop

0

2

4

6

8

10

S
p
e
e
d
u
p
 (

×
)

-O3

(b) OoO CPU

Fig. 9: Performance benefits provided by the NDP device for
several benchmarks from different application domains.

involved in each accelerated kernel invocation are 4KiB each,
with two operands being required for each kernel. In the
particular case of Matrix Addition and Matrix Multiplication,
each row of the matrices is the same size as a cache line
(64B or 16 floating-point values), and the second matrix of
the Matrix Multiplication benchmark is transposed in memory.
Furthermore, three baselines are considered for calculating the
performance benefits introduced by the NDP device: two using
a high-performance in-order ARM CPU, with the benchmarks
compiled with -O2 and -O3 optimization flags (Fig. 9a); and
one considering an OoO ARM core, with the benchmarks
compiled with -O3 (Fig. 9b). Despite their differences, all the
seven benchmarks are highly parallelizable, with over 80% of
the workload being suitable to be executed in parallel. Due
to its data-parallel compute capabilities and higher memory
bandwidth (compared to the CPU), the NDP device is able to
significantly accelerate these regions, with overall performance
speedups ranging from 3.7× up to 189.9×, as shown in Fig. 9.

The performance improvements allowed by the NDP device
mainly depend on two factors: the fraction of the workload
that can be accelerated by the NDP device (the greater the ac-
celerated workload, the higher the performance improvements–
Amdahl’s law); and the complexity of the kernel being executed
by the NDP device (kernels that reuse the outputs of the PEs
in subsequent operations tend to allow higher speedups). For
example, the parallelizable region of Streamcluster accounts
for over 97% of its total workload, and its corresponding NDP
kernel involves five distinct arithmetic operations over the same
input data. On the other hand, Matrix Multiplication, despite
being 100% parallelizable, only requires a single arithmetic
operation per pair of operands (and a final reduction). Thus,
when considering the OoO CPU baseline and compilation with
-O3 (which includes vectorization), the performance benefits
attained by the NDP device for the Streamcluster benchmark
are higher than those for Matrix Multiplication, since it can
be efficiently executed by the CPU. As expected, the main
advantage of NDP over traditional CPU-only processing is its
higher bandwidth to the memory. Adding multiple cores may
increase the CPU compute capabilities, but its limited memory
bandwidth does not allow to fully exploit such capabilities.

6.5

9.5

11.8

6.2

3.9
4.7

6.0
6.7

3.4 3.1

6.0

8.3

9.8

4.0 3.7

KNN K-Means Streamcluster YoloV3 Backprop
0

2

4

6

8

10

12

S
p
e
e
d
u
p
 (

×
)

Extrapolated (Data in L2)

Extrapolated (Data in DRAM + L2)

gem5-ndp (Data in DRAM + L2)

Fig. 10: Performance benefits provided by the bidimensional
NDP array considering: (blue and orange bars) the CPU and
the NDP device operating separately (extrapolated results); and
(yellow bars) using gem5-ndp. In this experiment, the NDP
device was connected to the L2 cache, the CPU and the NDP
device operate simultaneously, and the data is present in both
the DRAM and the L2 cache.

C. Comparison with a Classical Evaluation Approach

The performance speedups obtained with gem5-ndp were
compared with the corresponding results when considering
the absence of an integrated simulator. In such case, to
estimate the performance, one would consider the execution
times of the CPU and the NDP device operating separately
disregarding the access contention in the memory hierarchy.
Hence, the Amdahl’s law can be used by considering that
the global speedup (S) can be obtained from the speedup
of the workload accelerated by the NDP device (s), and the
proportion of execution time that the accelerated workload
originally occupied (A) on the CPU.

S =
1

(1−A) +A/s

Fig. 10 illustrates the performance benefits provided by the
NDP device obtained through: (1) extrapolation, considering
that the operands of the NDP kernel are present in the L2
cache; (2) extrapolation, considering that the operands of the
NDP kernel are distributed across the DRAM and the L2 cache
with a realistic L2 hit rate obtained through simulation; (3)
gem5-ndp, with the operands being distributed across the DDR
and the L2 cache, the NDP device coupled to the L2 cache, and
both the CPU and the NDP operating simultaneously, which
corresponds to an accurate simulation of the actual system. In

TABLE I: Set of seven benchmarks from three different appli-
cation domains used for evaluation. The used implementations
of K-Nearest Neighbors (KNN), K-Means, Streamcluster, and
Backprop are from the Rodinia benchmark suite [23].

Benchmark Domain Approx. accel.
kernel time [%]

Matrix Add. Algebra 100%
Matrix Mul. 100%
K-Nearest Neighbors

Clustering
90%

K-Means 95%
Streamcluster 97%
YoloV3 [24], [25] Machine

Learning
90%

Backprop 80%

3.3
3.9

4.2

2.1
2.4

3.9

4.6
5.0

2.2
2.7

KNN K-Means Streamcluster YoloV3 Backprop
0

1

2

3

4

5

6

S
p
e

e
d
u
p

 (
×

)
Extrapolated (Data in DRAM) gem5-ndp (Data in DRAM)

Fig. 11: Performance benefits provided by the bidimensional
NDP array considering: (orange bars) the CPU and the NDP
device operating separately (extrapolated results); and (yellow
bars) using gem5-ndp. In this experiment, the NDP device was
connected to the DRAM, the CPU and the NDP device operate
simultaneously, and the data present in the DRAM.

addition, Fig. 11 shows a similar evaluation where the NDP
device is coupled to the DDR memory.

As it can be observed, extrapolating the performance from the
execution times of the CPU and the NDP alone is only useful
to obtain the order of magnitude of the actual performance
benefits, with errors ranging from 6.4% to 54.9%. Even the
results considering a realistic L2 hit rate incur in errors as
high as 31.2%, which may be prohibitive when evaluating
the viability of new NDP architectures. It is also noticeable
that the errors are significantly lower when assuming the NDP
device connected directly to the DDR memory comparing to
when the NDP device is connected to the L2 memory. This
effect can be explained by the fact that the latency of DDR
accesses is much easier to predict than the average latency of
the L2 cache, which is affected by the hit rate for a given data
access pattern and the traffic generated by the CPU.

V. RELATED WORK

Previous NDP proposals mostly resource to PIM [4] and
RRAM-PIM [10] to move computation near to where the data
is stored. However, these techniques present serious drawbacks:
either they only implement very simple bit-wise operations, or
they may introduce significant errors in the computation due to
their analog nature. Therefore, most of such NDP proposals are
only suitable for particular problems and applications. Naturally,
due to their heterogeneity, each solution tends to use its very
own evaluation method, which does not only make it difficult
to establish fair comparisons between them, but also raises
important questions regarding the adequacy of such procedures.

More recently, Lockerman et al. [26] proposed a general-
purpose NDP system capable of performing computation at
multiple levels of the memory hierarchy, reducing moderately
both the execution time and the dynamic energy consumption
when executing challenging irregular workloads, while keeping
the area overhead below 3%. However, their system is based
on existing NDP solutions and their specific ISAs, and it is not
capable of accommodating different NDP devices. Moreover,
their evaluation method involves an implementation on an Field-
Programmable Gate Array (FPGA), which can hardly fit such
a complex system featuring high-performance OoO CPUs and

NDP-enabled memory devices, leading to the conclusion that
only a part of the system was actually implemented. Therefore,
their evaluation neglects (to some extent) the impact of the
interaction between the different components of the system
in the performance of the NDP devices, which may affect
the accuracy of their results. In contrast, our simulation-based
solution offers a more reliable approach, by using precise
simulation models of each component to accurately predict the
performance of the overall system. Moreover, our solution only
requires the implementation of the simulation model of the
NDP architecture being developed, which arguably requires
a fraction of the time to describe the entire system in any
Register-Transfer Level (RTL) language.

Following an approach closer to our proposal, Qureshi et
al. [20] presented a set of extensions to enable in-cache
processing in gem5-X. To achieve this, they proposed a
modified L1 cache model that accommodates the computing
architecture presented in [27]. Additionally, they validated their
simulation model by implementing it using hardware synthesis
tools. Although the attained results show that their artifact
accurately predicts the operation of its hardware equivalent, the
offered NDP capabilities are limited to a single architecture that
performs computation in cache. Moreover, they only support
one cache level with computation capabilities: the L1 data
cache, which is the smallest cache and closest to the CPU.
Furthermore, gem5-X is based on an obsolete version of gem5,
being incompatible with most recent versions. In contrast,
gem5-ndp supports NDP at all levels of the memory hierarchy,
and can be ported to any version of gem5.

Another work targeting the simulation of NDP-enabled
systems was proposed by Singh et al. [18], [19]. Their
artifact is based on the ZSim architectural simulator [28]
and Ramulator [18]. First, a given workload is executed by
generating both performance statistics (with ZSim) and memory
traces (with Ramulator). Then, a post-simulation step uses these
intermediate results to determine a second set of performance
statistics corresponding to a NDP-enabled system. Since the
performance benefits provided by the existence of the NDP
component of the system are only predicted in a post-simulation
step, this solution does not support the parallel operation of
the CPU and the NDP device. In contrast, gem5-ndp allows
the CPU and NDP device to operate simultaneously, and does
not require any post-simulation steps.

This considerable limitation in the work of Singh et al.
was later solved by Yu et al. [29]. Similarly to the previous
work, their proposal also uses traces generated by Ramulator
to predict the performance benefits of NDP devices. The main
difference relies on the support for the existence of multiple
threads, which enables to simulate both the CPU and the
NDP devices operating simultaneously. However, this artifact
is still limited to DRAM-based PIM, which is the only memory
technology supported by Ramulator. Moreover, the same ISA
is used for the CPU and the NDP devices, which can arguably
result in non-optimal NDP solutions. In contrast, gem5-ndp not
only supports a wide range of memory devices, but it is also
ISA independent, which confers a much ampler opportunity to

optimize the architecture of NDP devices, not only in terms
of performance, but also in terms of resources and energy.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel simulation framework targeting NDP
devices is proposed. gem5-ndp aims at satisfying the need
for a standard simulation tool to easily model and assess the
performance benefits of new NDP architectures, without which
developing such devices can be complex and time-consuming.
Two case studies were presented to illustrate the process of
developing and evaluating new NDP devices using gem5-ndp,
as well as to show the benefits of using the framework compared
to extrapolating performance gains from the execution time of
the CPU and NDP devices.

The analysis of the obtained results allows to conclude
that neglecting the influence of the surrounding processing
system (i.e., considering only the CPU and NDP devices
alone for evaluation purposes) may incur in significant errors
when estimating the attained performance benefits. In our
experiments, those errors were as high as 54.9%. On the
other hand, by simulating the entire processing system, gem5-
ndp eliminates those limitations, accurately predicting the real
gains provided by NDP devices.

Presently, gem5-ndp targets gem5 System Emulation (SE)
mode, with no guarantees regarding its compatibility with
Full System (FS) simulation. Notwithstanding, FS support is
already under development. Also, although gem5-ndp supports
all CPU models provided by gem5 (In-order and OoO),
implementation constraints dictate that it can only be used
with the ARM ISA. Nevertheless, support for other ISAs is
being developed. Furthermore, there is also some work in
progress to extend the proposed framework to allow more
complex descriptors to be passed to the data gather/scatter
engine of the architectural model of gem5-ndp, which adds
support to NDP devices targeting more complex workloads
(e.g., operations with triangular matrices). In addition, we plan
on making the framework openly available under permissive
license in the near future.

ACKNOWLEDGEMENTS

Work supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT), under
projects 2022.06780.PTDC, UIDB/50021/2020, and
PTDC/EEI-HAC/30485/2017–HAnDLE (INESC-ID),
UIDB/EEA/50008/2020 and EXPL/EEI-HAC/1511/2021
(Instituto de Telecomunicações), research grant
SFRH/BD/144047/2019, and funds from the European
Union Horizon 2020 Research and Innovation programme
under grant agreement No. 101036168.

REFERENCES

[1] W. A. Wulf, S. A. McKee. Hitting the memory wall: implications of the
obvious. SIGARCH Computer Architecture News, 23(1):20–24, 1995.

[2] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun,, O. Mutlu. En-
abling the Adoption of Processing-in-Memory: Challenges, Mechanisms,
Future Research Directions. CoRR, abs/1802.00320, 2018.

[3] J. Dinis Ferreira, G. Falcao, J. Gómez-Luna, M. Alser, L. Orosa, M.
Sadrosadati, J. S. Kim, G. F. Oliveira, T. Shahroodi, A. Nori, et al. pluto:
Enabling massively parallel computation in dram via lookup tables. arXiv
e-prints, arXiv–2104, 2021.

[4] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. T. Blaauw,,
R. Das. Compute Caches. In HPCA, 481–492. IEEE Computer Society,
2017.

[5] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch, O. Mutlu,
P. B. Gibbons,, T. C. Mowry. Fast bulk bitwise AND and OR in DRAM.
Computer Architecture Letters, 14(2):127–131, 2015.

[6] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, D. Sylvester, D. T.
Blaauw, R. Das,, R. R. Iyer. Neural cache: Bit-serial in-cache acceleration
of deep neural networks. IEEE Micro, 39(3):11–19, 2019.

[7] S. Angizi, D. Fan. Redram: A reconfigurable processing-in-dram platform
for accelerating bulk bit-wise operations. In ICCAD, 1–8. ACM, 2019.

[8] A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. T. Blaauw, D.
Sylvester,, R. Das. Cache automaton. In MICRO, 259–272. ACM, 2017.

[9] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen,, H. Yang. Rram-based analog
approximate computing. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., 34(12):1905–1917, 2015.

[10] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams,, V. Srikumar. ISAAC: A Convolutional
Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars.
In ISCA, 14–26. IEEE Computer Society, 2016.

[11] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny,, U. C. Weiser. MAGIC - memristor-aided logic. IEEE Trans.
Circuits Syst. II Express Briefs, 61-II(11):895–899, 2014.

[12] J. Vieira, E. Giacomin, Y. M. Qureshi, M. Zapater, X. Tang, S. Kvatinsky,
D. Atienza,, P. Gaillardon. Accelerating inference on binary neural
networks with digital RRAM processing. In VLSI-SoC (Selected Papers),
volume 586 of IFIP Advances in Information and Communication
Technology, 257–278. Springer, 2019.

[13] P. Pouyan, E. Amat, S. Hamdioui,, A. Rubio. RRAM variability and its
mitigation schemes. In PATMOS, 141–146. IEEE, 2016.

[14] J. Vieira, N. Roma, P. Tomás, P. Ienne,, G. F. P. Fernandes. Exploiting
compute caches for memory bound vector operations. In SBAC-PAD,
197–200. IEEE, 2018.

[15] J. Vieira, N. Roma, G. Falcão,, P. Tomás. Processing convolutional neural
networks on cache. In ICASSP, 1658–1662. IEEE, 2020.

[16] J. Vieira, N. Roma, G. Falcão,, P. Tomás. A compute cache system for
signal processing applications. J. Signal Process. Syst., 93(10):1173–1186,
2021.

[17] D. Fujiki, S. Mahlke,, R. Das. Duality cache for data parallel acceleration.
In Proceedings of the 46th International Symposium on Computer
Architecture, 397–410, 2019.

[18] Y. Kim, W. Yang,, O. Mutlu. Ramulator: A fast and extensible DRAM
simulator. IEEE Comput. Archit. Lett., 15(1):45–49, 2016.

[19] G. Singh, J. Gómez-Luna, G. Mariani, G. F. Oliveira, S. Corda, S. Stuijk,
O. Mutlu,, H. Corporaal. NAPEL: near-memory computing application
performance prediction via ensemble learning. In DAC, 27. ACM, 2019.

[20] Y. M. Qureshi, W. A. Simon, M. Zapater, D. Atienza,, K. Olcoz. Gem5-
X: A Gem5-Based System Level Simulation Framework to Optimize
Many-Core Platforms. In SpringSim, 1–12. IEEE, 2019.

[21] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G. Saidi,
A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K.
Sewell, M. S. B. Altaf, N. Vaish, M. D. Hill,, D. A. Wood. The gem5
simulator. SIGARCH Comput. Archit. News, 39(2):1–7, 2011.

[22] H. C. Neto, M. P. Véstias. Very low resource table-based FPGA evaluation
of elementary functions. In ReConFig, 1–6. IEEE, 2013.

[23] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee,, K. Skadron.
Rodinia: A benchmark suite for heterogeneous computing. In IISWC,
44–54. IEEE Computer Society, 2009.

[24] J. Redmon, S. K. Divvala, R. B. Girshick,, A. Farhadi. You only look
once: Unified, real-time object detection. In CVPR, 779–788. IEEE
Computer Society, 2016.

[25] J. Redmon, A. Farhadi. Yolov3: An incremental improvement. CoRR,
abs/1804.02767, 2018.

[26] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu, S. Gupta,
D. Sánchez,, N. Beckmann. Livia: Data-centric computing throughout
the memory hierarchy. In ASPLOS, 417–433. ACM, 2020.

[27] W. A. Simon, Y. M. Qureshi, A. Levisse, M. Zapater,, D. Atienza.
BLADE: A bitline accelerator for devices on the edge. In ACM Great
Lakes Symposium on VLSI, 207–212. ACM, 2019.

[28] D. Sánchez, C. Kozyrakis. Zsim: fast and accurate microarchitectural
simulation of thousand-core systems. In ISCA, 475–486. ACM, 2013.

[29] C. Yu, S. Liu,, S. M. Khan. Multipim: A detailed and configurable
multi-stack processing-in-memory simulator. IEEE Comput. Archit. Lett.,
20(1):54–57, 2021.

