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Abstract—Signal processing hardware designers of Low-
Density Parity-Check (LDPC) decoders used in modern optical
communications are confronted with the need to perform multi-
parametric design space exploration, targeting very high through-
put (hundreds of Mbit/s) and low-power systems. This work
addresses the needs of current designers of dedicated GF(2m) NB-
LDPC decoders that necessitate robust approaches for dealing
with the ever-increasing demand for higher BER performance.
The constraints pose tremendous pressure on the on-chip design
of irregular data structures and micro-circuit implementation for
supporting the complex Galois field mathematics and communi-
cations of hundreds of check nodes with hundreds of variable
node processors. We have developed kernels targeting GPU and
FPGA (HLS and its equivalent RTL) descriptions of this class
of complex circuits for comparing area, frequency of operation,
latency, parallelism and throughput. Exploiting techniques such
as using custom bit-widths, pipelining, loop-unrolling, array-
partitioning and the replication of compute units, results in
considerably faster design cycles and demands less non-recurring
engineering effort. We report a throughput performance of 800
Mbps for the FPGA case.

Index Terms—design space exploration; roofline model; high-
throughput; parallelism; low-power; FPGAs; GPUs; RTL; HLS;
NB-LDPC decoding.

I. INTRODUCTION

Next-generation optical communications will demand bit
error rates (BER) in the range of 10−15 for long-distance
communications (hundreds to thousands of kilometres) for
optical fibre submarine cable systems or between base sta-
tions (e.g., ITU-T G.975). Here two distinct worlds have to
coexist, viz., 1) coding theorists that propose and test new
codes, in particular exploiting the powerful low-density parity-
check (LDPC) codes [1], and 2) hardware system developers
who deploy them in normal operating modes, achieving high
throughput [2] under limited power and BER constraints.

Compared to binary codes [3], non-binary (NB) LDPC
codes allow higher coding performances and lower BER.
Moreover, for achieving such BER performance, code block
lengths can be smaller as compared with the binary counter-
part [3]. For this class of non-binary algorithms, the challenges
are: i) hardware and computational complexity increase as they

operate on the Galois field domain; ii) operations are based on
intensive and irregular accesses to memory; iii) the standards
demand low latency. In order to achieve high-throughput and
low-power performance, both key for success, design space
exploration has to be done quickly and efficiently. This paper
deeply analyses the roofline models of all optimisation options
in order to quantify how close they are from theoretical peak
performance for GPU and FPGA devices. Moreover, the paper
addresses the optimized use of HLS and RTL descriptions on
reconfigurable FPGA technology for simultaneously achieving
high throughput performance.

We have made the following contributions:
• High-throughput NB-LDPC decoder implementations on

GPU and FPGA;
• HLS-based design space exploration for dealing with

the high number of degrees of freedom that are a
characteristic of these algorithms;

• Custom RTL design to compare the performance of these
algorithms with HLS solutions;

• Roofline model based comparison of CPU / GPU / FPGA
platforms for throughput and energy efficiency.

II. MIN-MAX ALGORITHM

The Min-Max algorithm described by V. Savin [3], pro-
poses an approach to NB-LDPC decoding. By using proper
metrics, this decoding algorithm is capable of achieving low-
complexity and quasi-optimal performance. Binary codes are
rather easy to express in hardware in bit-level logic. On the
other hand, non-binary codes are harder to solve, becoming
a multi-valued logic search space for finding the minimum
probability symbol.

The Tanner graph represents the connections between
checks nodes and variable nodes. Mathematically, the Tanner
graph is represented by H. Given the probabilities (γn(a)),
the variable node message (αm,n(a)) is initialised. The Row-
wise check node processing (CNP) starts by calculating the
forward and backward metrics (F (a), B(a)) and finishes in
the check node message computation (βm,n(a)). The metrics
are initialised by attributing the first element of αm,n(a) on
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Algorithm 1: Min-Max decoding algorithm
1: {Initialisation:}
2: γn(a) =

ln(Pr(cn=sn|channel))
ln(Pr(cn=a|channel)

3: αm,n(a) = γn(a)
4: while (cn HT ̸= 0 ∧ it < I) {cn-decoded word; I-Max. no. of

iterations.}
do

5: {Check node processing:}
6: F0(a) = αm,n0 (h

−1
m,n0a)

7: Fi(a) = min
a′+hm,ni

a′′=a
(max(Fi−1(a

′), αm,ni (a
′′)))

8: Bdc−1(a) = αm,n(dc−1)
(h−1

m,n(dc−1)
a)

9: Bi(a) = min
a′+hm,ni

a′′=a
(max(Bi+1(a

′), αm,ni (a
′′)))

10: βm,n0 (a) = B1(hm,n0a)
11: βm,n(dc−1)

(a) = F(dc−2)(hm,ndc−1a)
12: βm,ni (a) =

min
a′+a′′=a

(max(Fi−1(hm,ni−1a
′), Bi+1(hm,ni+1a

′′)))

13: {Variable node processing:}
14: α

′
m,n(a) = γn(a) +

∑
m′∈M(n)\{m}

βm′,n(a)

15: α
′
m,n = min

a∈GF (q)
α

′
m,n(a)

16: αm,n(a) = α
′
m,n(a)− α

′
m,n

17: {Tentative decoding:}
18: γ̃n(a) = γn(a) +

∑
m∈M(n)

βm,n(a)

19: cn = arg min
a∈GF (q)

(γ̃n(a))

20: end while

each row to F (a) and last element to B(a). The next elements
of each metric are calculated using the previous ones, from the
initial to final element in F (a), and backwards on the B(a)
metric. To initialise βm,n(a), the first element of B(a) and
last of F (a) are attributed to the initial and final elements of
βm,n(a). The remaining elements calculate the minimum of
the maximum for the different symbols on the Galois field.

The variable node processing (VNP) is calculated column-
wise and uses γn(a) and βm,n(a) to compute a temporary
variable node message (α′

m,n(a)). From this variable and
for each element in GF(q), it is determined the most likely
symbol (min operation). For the algorithm to be computa-
tionally stable, the most likely symbol is subtracted from
α′
m,n(a), producing the variable node message (αm,n(a)) to

be used in the next iteration of the check node processing.
In the tentative decoding, if a codeword satisfies the check
equation (cTnH = 0), the decoding process successfully
terminates. Otherwise, the CNP and VNP are executed until
they verify a valid check equation or a maximum number
of iterations is reached. As the order of the field increases,
the number of symbols increments by powers of 2, causing
an exponential growth of the used memory easily occupying
several GigaBytes of memory, turning the system infeasible for
higher Galois fields. The use of CSR (compressed sparse row)
and CSC (compressed sparse column) data formats allows
compressing the H by up to 95%. FPGAs can use less memory
than GPUs since they allow for custom bit lengths to be used
in contrast with GPUs, which have a granularity of bytes.
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Fig. 1: Min-Max algorithm mapping to a GPU architecture. Forward
and backward metrics are row-parallel while VNP is column-parallel.
The beta kernel is symbol-parallel.

III. MAPPING PARALLELISM ON EMBEDDED DEVICES

The input probabilities (log-likelihood ratios [3]) received
from the channel were converted from double precision to
integer, reducing the computational complexity, and also the
pressure on the memory subsystem. The FPGA implementa-
tions use 5-bit for data representation. The GPU does not allow
single-bit manipulation and uses 8-bit for representing prob-
abilities. Reducing precision does not affect error calculation
since computations use Galois field arithmetic.

A. GPU: Multi-threading and fast local memory access

The mapping of the Min-Max decoding algorithm on the
GPU is performed used 3 parallel kernels: the F (a) and B(a)
metrics kernel, the CNP kernel and the VNP kernel as shown
in Fig 1. The figure represents the pseudo-code for each thread
executing in the kernel, as well as an example of a NB-LDPC
H matrix in the top of the figure.

The main constraints to parallelisation of the algorithm are
data dependencies present between the forward and backward
metrics and the beta kernels and CNP and VNP. In order
to maximise the occupancy rate, each block is configured
to run 1024 threads with dimension of 1024

a by a, being
a the size of the Galois field. The F (a) and B(a) metrics
kernel, represented from line 6 to 9 of Algorithm 1, executes
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Fig. 2: Block Diagram of the implementation of Min-Max algorithm
in FPGAs. The CNP represents row wise operation and the VNP
represents column wise operations.The CNP is unrolled and the VNP
is pipelined.

horizontal slices from the H matrix running M
1024
a

blocks in
one dimension. The CNP kernel (line 10 to 12 of Algorithm 1)
executes M

1024
a

by dc blocks with individual threads processing
individual symbols since inter-symbol data dependencies are
non-existent. The VNP kernel (line 14 to 16 of Algorithm 1),
executes vertical-parallel slices in N

1024
a

by dv blocks. These
blocks are automatically scheduled and executed by the GPU.

The scalability of this algorithm can be challenging. For
codes with dimension higher than 1024 (M> 1024, N> 1024)
it is hard to implement a competitive solution since in CUDA,
blocks can only execute with a maximum of 1024 threads.
The use of shared memory poses a barrier to scalability. Dif-
ferent devices have different amounts of shared memory and
compiling the same kernel in different devices, might result in
different SM configuration which could be detrimental in some
devices. However, the kernels need to be tailored for the target
GPU device, ensuring scalability. The GPU implementation
is considered as a parallel baseline version and used for
comparing different implementations.

B. FPGA: Reduced bitwidth, pipelining, loop unrolling and
block partitioning

Fig. 2 shows the FPGA implementation of the Min-Max
algorithm. For FPGAs, we used both the HLS and RTL
implementations. The primary goal for the HLS approach was
to produce a low latency implementation of the Min-Max
algorithm. With high-throughput in mind, this work exploits
the high-level of parallelism available in FPGAs, namely by
identifying appropriate concurrent execution blocks in the
code. For the HLS implementation, we used a combination
of loop unrolling and pipelining in both the blocks along with
block partitioning of βm,n(a) ,αm,n(a) in both the dimension,
storing them in registers as shown in Fig. 2. For the RTL
implementation, in the check node block there are column
dependencies within the F (a) and B(a) metrics. It takes
2×(a+1) cycles to assign values to the first and last columns
of F (a) and B(a) wherein, a cycles are spent to initialise

Galois field elements with the BRAM taking 1 cycle. Followed
by this, sequentially, the other columns of the F (a) and B(a)
are computed, taking (dc−1)×(4+a) cycles for each column.
In the last stage, outputting βm,n(a) requires a cycles. Hence
the total number of cycles is 19 + (7 × a) for the CNP.
In the VNP block, 3 × a cycles are required to process the
obtained βm,n(a), one clock pulse to find the minimum of the
temporary α′

m,n and a cycles to update αm,n(a). The total
number of the VNP block is (a × 3) + (a + 1). The total
number of cycles required for the entire design running 10
iterations can be found as 10× ((11× a) + 20).

IV. EXPERIMENTAL SETUP

The GPU version of the code was validated on an Nvidia
Jetson TX2 equipped with a low-power Nvidia GP10B GPU,
using 256 cores (1.3 GHz) [4]. This implementation is written
in CUDA. Each experiment is executed 20 times and the values
presented in this paper are averaged. The FPGA device used
for conducting experiments in HLS and RTL is the Virtex
Ultrascale+ XCVU13p-FSGA2577-1-i. Xilinx SDx 2019.1
was used on the Nimbix online platform with 192 GB RAM
(20 CPU cores). C/RTL co-simulation is used to ascertain the
functional correctness of the design in HLS and RTL post-
synthesis simulation was done for functional validation of the
design. For HLS, FPGA resource utilisation, power and energy
consumption were obtained after exporting the IP into the
Vivado synthesis tool.

V. EXPERIMENTS AND RESULTS

All experimental results were obtained by executing the
decoder for 10 iterations on GF(22) and GF(23). To build the H
matrix of dimension (384,256), it was used a process described
by authors Kasai et al [5]. This method ensures a regular NB-
LDPC code with a rate of 1/3, dc = 3 and dv = 2 [6], [7]. The
encoded codeword is composed of zeros embedded in additive
white Gaussian noise (AWGN) with an SNR of 2dB.

A. GPU

The GPU uses multi-threading, running 1024 in multiple
blocks. The kernels also exploit fast memory accesses through
the use of shared memory (48KB available for each block).
These kernels use full SM occupancy for all Galois fields ex-
cept for the first kernel in GF(22). Throughput for GF(22) and
GF(23) on the GPU was 1.856 and 2.335 Mbps, respectively.
Throughput performance tends to decrease for higher Galois
fields as the decoder’s complexity increases.

B. FPGA

The Min-Max algorithm is implemented for GF(22) and
GF(23). In the HLS implementation an m axi interface was
used as an interface to the Min-Max module and eight opti-
misation strategies were applied to a sequential version of the
C code. Table I lists these optimisation indices.

Index I is the sequential version with the applied CSR/CSC
compression. Index II uses block partitioning of the matrices
α, β and unrolling of the innermost loops to extract paral-
lelism. Index III introduces pipelining the VNP in addition to
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TABLE I: Description of Optimisations Implemented

Index Description
I C sequential version
II Array block partitioning + loop unrolling of inner loops
III II + pipelining the VN alone
IV Pipelining the CN alone with complete array partitioning
V Pipelining the CN + II
VI Pipelining the CN with complete array partitioning +

unrolling inner loops in VN
VII Pipelining the VN & CN with complete array partitioning
VIII Implementation using Custom bit allocation +

using instances + VII

the optimisations used in Index II. Index IV pipelines the CNP
alone with complete array partitioning for the input matrix γ.
Index V pipelines the CNP in addition to the optimisations
used in index II. Index VI pipelines the CNP with complete
array partitioning of all the matrices and unrolling the inner
loops in the VNP. Index VII pipelines both VNP and CNP
with complete array partitioning of all the matrices. For index
VIII, the code was restructured to expose parallelism, custom
bit-width were assigned (using ap int library) for the Galois
field operators and multi-dimensional array partition applied,
in addition to Index VII.

For the HLS implementation for GF(22), the highest
throughput was obtained for the optimisation index VIII at
91.92 Mbps. For GF(23) the optimisation index VIII surpassed
performance at 92.6 Mbps as shown in Fig. 4. Optimisation
Index VIII had high throughput due to the high extent of
parallelism as described in section III-B. Fig. 3 shows the
variation of frequency for various Galois fields. For GF(22)
and GF(23),the highest frequency of operation were 571.42
MHz and 469.48 MHz respectively. The high frequency was
obtained due to the presence of Flip-Flops. Table II shows
the area utilisation for different optimisation solution for all
the Galois fields. For GF(22) and GF(23), the highest area
utilisation was obtained for optimisation index VIII. Compared
to the other optimisations, index VIII shows high resource
utilisation due to mapping of arrays into registers in both
dimensions.
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The state-machine implementation of the custom RTL code
was analysed for GF(22) and GF(23). The current version
of code was optimised for latency using parallel access to
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Fig. 4: Comparison of Min-Max algorithm for all Galois fields for
FPGAs in terms of throughput and power variation for varying
optimisation indices. The left axis is represented in logarithmic scale.
The bars represent throughput and the lines represent power.

data (α and β) stored in BRAMs. The latency and throughput
for the RTL design are plotted along with the best-case HLS
implementation reports in both Fig. 3 and 4. The maximum
frequency of operation for the RTL implementation for GF(22)
was obtained at 168.94 MHz. The highest throughput obtained
in RTL is also for GF(22), at 202.74 Mbps. From Table II,
it can be seen that as Galois fields increase, the area util-
isation increases proportionally. The RTL implementation is
optimised for parallel memory access through multiple BRAM
instantiation, which results in low latency, high frequency and
BRAM utilisation.

Throughput and power levels for GF(22) and GF(23) are
given in Fig. 4. High LUT utilisation on account of parallel
instantiation of Galois field operators results in a correspond-
ing increase in power for GF(23).

C. Roofline model analysis

The roofline model in Fig. 5 gives a comprehensive
overview of the performance bottlenecks in a system. Here,
we compare the design space exploration of the Min-Max
algorithm on: (1) diverse micro-architectures, viz., CPU, GPU
and FPGA and (2) across Galois fields GF(22) and GF(23).
All the implementations lie in the compute-bound region.

The number of executed operations is obtained by running
the nvcc profiler. For a given application we assume that
the number of operations remains constant across the three
devices. Data size refers to the non-zero elements of H and in
RTL it is smaller since it uses fewer bits to represent symbols.

The single-thread CPU performance decreases as the Galois
field grows due to the increase of data. The GPU shows peak
performance for GF(23), where utilisation is at its peak, and
shared memory and thread configuration fit the best occupancy
rate. The use of shared and constant memory increases the
performance for the same arithmetic intensity. For FPGAs, the
peak performance is observed for GF(22) in RTL and GF(23)
in HLS. In RTL, for GF(23), the performance decreases due to
implementation complexity and area increase. For HLS, Fig. 5
shows an increase in both performance and arithmetic intensity
as the Galois field is incremented. The increase in performance
is linear, as it uses more resources. Using loop unrolling, array
partitioning and pipelining increases the performance for the
same number of operations. Using reduced precision instead of
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TABLE II: Area Utilisation for HLS and RTL implementation.

GF(22) GF(23)
Index BRAM (%) FF (%) LUT (%) BRAM (%) FF (%) LUT (%)

I 18 (0.6) 3440 (0.1) 5900 (0.3) 30 (1.1) 5721 (0.1) 8939 (0.5)
II 23 (0.9) 8371 (0.2) 10200 (0.6) 35 (1.3) 11403 (0.3) 15105 (0.8)
III 24 (0.9) 9804 (0.3) 11527 (0.7) 36 (1.3) 13856 (0.4) 18895 (1.1) )
IV 24 (0.8) 11584 (0.4) 13319 (0.7) 40 (1.4) 22479 (0.6) 32286 (1.8)
V 18 (0.8) 24431 (0.7) 23500 (1.3) 36 (1.3) 34233 (0.9) 44775 (2.5)
VI 24 (0.9) 11458 (0.3) 13034 (0.7) 40 (1.4) 22828 (0.6) 32315 (1.8)
VII 24 (0.1) 11489 (0.3) 13073 (0.8) 40 (1.4) 22999 (0.6) 32649 (1.8)
VIII 48 (1.78) 137508 (3.97) 637639 (38) 96(3.56) 275016(7.94) 1275278(76)

RTL 768 (28.6) 83932 (2.7) 333587 (19.3) 768 (28.6) 188586 (5.46) 1380989 (79.92)

double or single floating-point precision reduces the memory
requirement for HLS and RTL.

D. Energy and efficiency analysis

Table III shows the energy consumption for the CPU,
GPU and FPGA. The RTL implementation achieves lower
energy consumption compared to the other implementations.
On Jetson TX2 the power measurements are written to a file by
the OS. Reading sampling rates must be higher than 1 second
to increase resource utilisation [4]. It was assumed a realistic
mean power of 5 W. For the FPGA as the size of the Galois
field increases more energy is consumed.

The peak energy efficiency for GF(22) is obtained for the
RTL implementation, at 22.16 (Mbps/W), while for GF(23)
it is achieved 9.14 (Mbps/W), as shown in Table III. Among
all the devices, the FPGA shows higher performance while
requiring low energy consumption.

E. Discussion

RTL is more suitable to manually introduce parallelism in
the hardware. The current implementation minimises latency,

TABLE III: Energy consumption and efficiency for Min-max algo-
rithm on CPU, GPU and FPGA for HLS and RTL.

Energy consumption (uJ) Efficiency (Mbps/W)
CPU1 GPU1 HLS RTL CPU1 GPU1 HLS RTL

GF(22) 5180 2068 73 34 0.15 0.37 10.22 22.16
GF(23) 16390 2465 136 126 0.07 0.47 8.42 9.14

1Assuming 5 W running on the Jetson TX2 [4].

Fig. 5: Roofline models for the Denver 2 CPU, GPU, HLS and RTL
with the associated performance.

hence directly improves throughput. Optimising the Galois
field operators for higher frequencies would result in an in-
crease in overall throughput. HLS exploits micro-architectural
design space exploration. Replicating the decoder IP core to
accommodate the entire FPGA area, with a small area reserved
for orchestration/control, synchronisation and communication,
increases data-parallelism and throughput.

With the area utilisation as in Table II for GF(22), the RTL
design can be replicated 4 times, allowing multi-codeword
decoding. This replication of the decoder cores will give the
overall throughput of RTL to be 812 Mbps, which surpasses
the current state-of-the-art [11].

VI. RELATED WORK

Table IV gives an overview of existing FPGA implementa-
tions of NB-LDPC decoders. In terms of throughput, the cus-
tom hardware developed using Trellis Min-Max algorithm [11]
outperforms all other implementations. The second best algo-
rithmic implementation is the weighted bit-reliability based
NB-LDPC decoding algorithm [12], followed by the full bit-
reliability-based one. The iterative reliability-based majority-
logic NB-LDPC decoding algorithm [9] is capable of achiev-
ing 90 Mbps and the enhanced algorithm can achieve at least
tens of times higher efficiency as compared to the Min-Max
algorithm. Comparatively, reliability-based majority-logic NB-
LDPC decoding algorithm has better performance with re-
duced complexity. The enhanced (E-) IHRB algorithm uses
a small amount of additional hardware to further improve
throughput [9]. Next in performance is the implementation of
the extended min-sum algorithm [8] that is able to achieve up
to 50 Mbps for GF(22) through the design of a semi-parallel
custom architecture that overlaps check node and variable node
calculations. Nevertheless, all the above implementations [3],
[8]–[17] primarily involve custom RTL design, which implies
significant design and verification time. Our focus in this paper
has been to apply both high-level synthesis techniques and
register transfer level language to perform a comprehensive
design space exploration across a range of Galois fields. The
possibility to translate high-level specifications into FPGA
performance analysis gives us the freedom to quickly explore
the impact on optimisation techniques on different Galois
fields. In this context, our implementation outperforms the
HLS-based FFT-SPA implementation [6] by about 80× for
GF(22) and 97× for GF(23) respectively. The reduction in
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TABLE IV: Comparison of FPGA-based implementation of NB-LDPC decoders

Algorithm Paper FPGA Code Galois Frequency Throughput Iterations
field (MHz) (Mbps)

C
us

to
m

R
T

L
Extended Min-Sum [8] Virtex-4 (972,486) GF(22) 131 50 NA
Majority logic [9] Virtex-5 (403, 226) GF(25) 117.6 90.68 25
Enhanced Majority logic [9] Virtex-5 (403, 226) GF(25) 109.8 84.67 25
FFT-SPA with layered scheduling [10] Virtex-5 (512, 256) GF(22) 100 33 1

(256, 128) GF(24) 100 13.2 1
(128, 64) GF(28) 100 1.56 1

Trellis Min-Max [11] Virtex-7 (2304,2048) GF(24) 226 630 10
Weighted bit-reliability based [12] Virtex-5 (403,226) GF(25) 106.3 118.98 15
Full bit-reliability-based [12] Virtex-5 (403,226) GF(25) 85.52 95.73 15
Min-Max [13] Virtex-2 (744,653) GF(25) 106 9.3 15
Min-Max [This work] Virtex Ultrascale+ (384,256) GF(22) 168.9 202.7 10

GF(23) 97.9 104.38 10

H
L

S

[6] Virtex-7 (384,256) GF(22) 250 1.17 10
FFT-SPA GF(23) 250 0.95 10

GF(24) 216 0.66 10
Min-Max [This work] Virtex Ultrascale+ (384,256) GF(22) 571.4 91.95 10

GF(23) 461.48 92.6 10

algorithmic complexity in the Min-Max algorithm and the
upgrade in device architectures add to the improvement in
throughput.

VII. CONCLUSIONS

In this paper, we compare the performance of a GPU-based
approach and FPGA designs developed using RTL and HLS
design space exploration. HLS sits in the middle of GPUs
and RTL in terms of development effort and performance, as
shown by the roofline model comparison.

The parallel instantiation of multiple RTL decoders with
a frequency optimised approach can lead to an aggregate
throughput surpassing 800 Mbps, which, for the best of our
knowledge, clearly surpasses the state-of-the-art, except, of
course, for ASIC-based designs. In terms of energy, both
FPGA-based techniques are similar, but RTL tends to achieve
superior efficiency (Mbps/W) for all Galois fields as compared
to the HLS version. Future work addresses more efficient
architectures for higher Galois Fields (above GF(25)).
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