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ABSTRACT In the quest for exascale computing, energy-efficiency is a fundamental goal in high-
performance computing systems, typically achieved via dynamic voltage and frequency scaling (DVFS).
However, this type of mechanism relies on having accurate methods of predicting the performance and
power/energy consumption of such systems. Unlike previous works in the literature, this research focuses
on creating novel GPU predictive models that do not require run-time information from the applications.
The proposed models, implemented using recurrent neural networks, take into account the sequence of
GPU assembly instructions (PTX) and can accurately predict changes in the execution time, power and
energy consumption of applications when the frequencies of different GPU domains (core and memory) are
scaled. Validated with 24 applications on GPUs from different NVIDIA microarchitectures (Turing, Volta,
Pascal and Maxwell), the proposed models attain a significant accuracy. Particularly, the obtained power
consumption scaling model provides an average error rate of 7.9% (Tesla T4), 6.7% (Titan V), 5.9% (Titan
Xp) and 5.4% (GTX Titan X), which is comparable to state-of-the-art run-time counter-based models. When
using the models to select the minimum-energy frequency configuration, significant energy savings can be
attained: 8.0% (Tesla T4), 6.0% (Titan V), 29.0% (Titan Xp) and 11.5% (GTX Titan X).

INDEX TERMS GPU, DVFS, Modeling, Scaling-Factors, Energy Savings

I. INTRODUCTION
Over the past decade, the high-performance computing
(HPC) area has observed a noticeable upsurge in the utiliza-
tion of accelerators, more specifically graphics processing
units (GPUs). The energy efficiency of these devices can
have a large impact on the total cost of large-scale computer
clusters. As an example, the Summit supercomputer (number
one system of June’2019 Top500 list [1]), uses a total of
27 648 NVIDIA Volta GPUs to achieve a peak performance
of almost 200 petaflops. For that, it requires a power supply
of 13 million watts, which corresponds to an estimated cost of
17 million dollars per year (on power supply alone) [2]. The
magnitude of such values highlights the importance of effec-
tive mechanisms to maximize the energy efficiency of these
systems, as a mere 5% decrease in the energy consumption
could generate savings of around 1 million dollars.

One example of such mechanisms is the dynamic voltage
and frequency scaling (DVFS), which allows placing devices
into lower performance/power states. When carefully applied

to match the needs of the executing applications, DVFS can
lead to significant power and energy savings, sometimes with
minimum impact on performance [3], [4]. A recent study
showed that using DVFS techniques in GPUs executing deep
neural networks applications can provide energy savings up
to 23% during training and 26% during inference phases [5].

However, an efficient use of energy management tech-
niques, such as DVFS, requires accurate models that can
predict how the energy consumption changes with the GPU
operating frequencies (and voltages). This type of modeling
is often done by separately modeling the performance and the
power consumption of the GPU, focusing on how each one
separately scales with DVFS [6], [7]. On the other hand, sev-
eral previous works have shown that the performance/power
behavior of GPU applications considerably vary with the
application characteristics [8], [9], which makes these predic-
tive models to require some information from the application
to provide accurate predictions.

When performing DVFS management, the run-time uti-
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lization of the GPU components 1 can be used in the im-
plementation of predictive models, significantly reducing the
overall search space of available voltage-frequency (V-F)
configurations. However, to obtain those utilizations levels,
most of the existing GPU modeling approaches require (at
least) one execution of the application. An alternative and
highly promising approach consists in providing predictions
of the DVFS impact on the application behavior, prior to its
execution. This alternative relies on using the GPU assembly
of the kernels 2 [10]–[12] (described in the NVIDIA PTX
ISA [13]), which can be obtained at compile-time. Although
this approach is expected to yield less accurate results (when
compared with state-of-the-art run-time models), it allows
the first execution of an application to be done at a close
to the optimal V-F configuration. Additionally, new usage
scenarios occur from this type of static modeling, such as
allowing programmers to easily evaluate how changes in the
source code can affect the DVFS behavior of applications.

Accordingly, the goal of the herein proposed work is to
provide accurate predictions on how the GPU execution time,
power and energy consumptions of applications scale when
DVFS is applied, without requiring their execution. To that
end, the proposed methodology uses the PTX assembly code
given by the compiler. However, unlike previous works that
simply rely on general code statistics, such as the histogram
of instructions in the PTX code [12], [14], the proposed
approach takes a step further and considers the specific
sequence of kernel instructions, to improve the prediction
accuracy. To model how the pattern of instructions stresses
the GPU components, thus contributing to different perfor-
mance, power and energy scalings, a deep neural network is
used. In particular, the proposed research leverages the recent
advances in deep neural networks, particularly in the field
of natural language processing (NLP), by using a recurrent
encoder architecture, based on Long Short-Term Memory
(LSTM) blocks.

The proposed models were extensively validated on four
different GPU devices (Tesla T4, Titan V, Titan Xp and
GTX Titan X) from the four most recent NVIDIA GPU
microarchitectures (Turing, Volta, Pascal and Maxwell). To
assess the accuracy of the trained models, a collection of
24 benchmarks (not used in model training) was considered.
These benchmarks were selected from five commonly used
suites (CUDA SDK [15], Parboil [16], Polybench [17], Ro-
dinia [18] and SHOC [19]). The obtained results show that
the proposed models are able to provide accurate predictions.
In particular, the power consumption scaling model provides
average errors of 7.9% (Tesla T4), 6.7% (Titan V), 5.9%
(Titan Xp) and 5.4% (GTX Titan X), which is comparable
to the accuracy achieved by run-time counter-based models.
Furthermore, when the proposed energy scaling model is
used to select the minimum-energy V-F, it allows achieving

1Utilization: the ratio of the amount of time the unit is active over the total
kernel execution time.

2Kernel: routine to be executed in a massively parallel fashion on a GPU,
by multiple threads.

considerable energy savings of 8.0% (Tesla T4), 6.0% (Titan
V), 29.0% (Titan Xp) and 11.5% (GTX Titan X).

Accordingly, the most significant contributions of this
paper are the following:
• Novel deep learning network, implemented using recur-

rent neural blocks (LSTMs), which takes the sequence
of PTX assembly code of a GPU kernel and encodes it
into a latent space representation that characterizes how
the kernel utilizes de GPU components.

• Three new GPU predictive models: i) performance scal-
ing, ii) power consumption scaling, and iii) energy con-
sumption scaling, which can predict how the executing
time, power consumption and energy consumption of
an application changes for different V-F configurations,
based solely on the application PTX assembly code (i.e.,
no execution of the application is required).

• Validation of the proposed models with 24 applica-
tions (not used during training), by comparing the pre-
dicted performance/power/energy scaling-factors with
the measured values on four different GPU devices
(including one from the most recent NVIDIA Turing
microarchitecture). The models can be used in different
ways, out of which two are analysed, namely, for finding
the minimum energy V-F configuration and for finding
the set of Pareto-optimal configurations.

The complete source code of this framework is pub-
licly available online at https://github.com/joaofilipedg/
cudaAssemblyReader.

II. BACKGROUND AND MOTIVATION
A. PARALLEL THREAD EXECUTION (PTX) LANGUAGE
The NVIDIA Parallel Thread Execution (PTX) [13] is an
intermediate assembly language for NVIDIA GPUs, where
the program has not yet been fully assembled into the device-
specific code. NVIDIA provides the PTX instruction set
architecture (ISA) for the different generations of GPU de-
vices [13] and the nvcc compiler can be used to obtain the
PTX code (in plain-text) from CUDA programs.

This work leverages the PTX code as an effective way
of characterizing a given GPU application. Its adoption (in
favor of higher level CUDA code) was decided because it
is more specific to the GPU hardware, allowing a better
modeling of the device. From the PTX code of an application,
it is generally possible to make the connection between each
instruction and the GPU resource that is exercised during its
execution. Hence, the proposed approach uses the PTX code
to infer a information similar to the one obtained from hard-
ware counters (as used in previous GPU modeling works).

B. DVFS IMPACT ON APPLICATION BEHAVIOR
Modern GPU devices have two independent frequency do-
mains: the core (or graphics) domain, clocked at fcore, and the
memory domain, clocked at fmem. Each frequency domain
is associated with a specific voltage level. The existence of
these independent domains allows adapting their voltage and
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FIGURE 1: DVFS impact on the energy scaling and speedup of four applications executed on the GTX Titan X. Each point
corresponds to a specific V-F. Values are normalized to the values obtained at the highest V-F (maximum performance).

frequency to the specific requirements of the executing appli-
cation — this is called DVFS. Depending on how a given ap-
plication exercises the GPU resources, DVFS can have vastly
different effects its performance/power consumption, which
can in some cases result in considerable energy savings [3],
[4], [20]–[22]. However, finding the best voltage-frequency
(V-F) levels for a given application is not a trivial task [4], [9],
[23]. To properly apply DVFS without harming the execution
of an application, one must be able to accurately predict
how the changes to V-F can affect the application behavior
(execution time, power and energy consumption).

Fig. 1 presents an example of the execution of four ap-
plications on the GTX Titan X GPU (NVIDIA Maxwell
microarchitecture). Each subplot presents the variation of
the application energy and performance normalized to the
values at the highest V-F configuration, which in this case
is Fmax = (fmem = 3505 MHz, fcore = 1164 MHz). Each
point corresponds to a different V-F, out of the considered
32 (2 memory levels, 3505 MHz and 810 MHz, and 16 core
levels in the range [595, 1164] MHz).

From this figure, it can be seen that the unique application
characteristics (used algorithm, data types, operations, size of
the input data, dimensions of the grid of threads, etc.), lead
to vastly different behaviors. For example, in the MD5Hash
benchmark, decreasing the memory frequency from 3505
MHz to 810 MHz has a negligible impact on performance
(speedup does not change between the different fmem levels),
indicating that this application is not memory-intensive. On
the other hand, the BlackScholes benchmark has a significant
drop in speedup when the memory frequency is changed
to the lowest level, indicating that this application is very
memory-intensive. In fact, for the BlackScholes, once the
memory is set to the lowest frequency, any changes in fcore,
within the range allowed by the device, does not lead to any
further changes in speedup.

These examples also confirm that it is not trivial to find the
best V-F configuration. On one hand, the V-F that leads to the
minimum energy significantly differs from application to ap-
plication. On the other hand, the performance degradation as-
sociated with that V-F level can also be highly application de-
pendent. When considering the BlackScholes and MD5Hash
benchmarks, it can be seen that the minimum-energy con-
figurations (FOracle) are (3505,975) and (810,709), for the

two applications respectively. In the case of the BlackScholes
benchmark, this leads to energy savings of 13.5% (vs. FMax)
at a cost of only 2.2% drop in performance. However, for the
MD5Hash benchmark, using its corresponding FOracle leads
to much higher energy savings (34.2%), at a much higher
performance cost (37% performance drop-off).

Considering that sometimes such performance drop-offs
cannot be tolerated, looking for the minimum-energy V-
F may not always be the best option. An alternative ap-
proach, as suggested by Fan et. al. [12], is to consider a
multi-objective optimization problem, with a set of Pareto-
optimal solutions. In other words, one could search for the
V-F configurations that maximize the speedup and minimize
the normalized energy, i.e., the configurations that are not
dominated by any other configuration. In this case, not being
dominated in performance means that for the same energy,
there are no frequencies that lead to higher performance lev-
els (higher speedup). On the other hand, not being dominated
in energy means that for the same speedup, there are no
frequencies that lead to a lower normalized energy. The set
of Pareto-optimal V-Fs for a given application can be found
by iterating between all available configurations and seeing
if it is dominated by any other configuration.

Fig. 1 shows the Pareto-optimal set for the four considered
example applications. As one might expect, not only do
the configurations in each Pareto-optimal set depend on the
application, but also the size of the set can vastly differ.
The most memory intensive benchmark (BlackScholes) has
five V-F configurations in the Pareto-optimal set (all with
fmem=3505 MHz), while the most compute intensive one
(MD5Hash) has 10 Pareto-optimal V-Fs (all with fmem=810
MHz). Between these two extremes are the Backprop and
3MM benchmarks, with 15 and 16 Pareto-optimal V-Fs,
respectively (split across the two available memory levels).

These observations highlight the importance of accurate
DVFS-aware performance/power/energy models, since no
matter the goal (e.g., finding minimum-energy V-F vs. Pareto-
optimal V-F set), it is imperative to be able to characterize
how these three metrics (performance/power/energy) change
with the V-F of the GPU domains.

C. RELATED WORK
There have been many research works that have addressed
the goal of improving the energy efficiency of GPU de-
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vices [21], [24]–[31], [37]. In particular, the work of Hong
et al. [32] was one of the first to accurately characterize
the performance of GPU applications. They also proposed
a power model for a GTX280 GPU (Tesla microarchitecture)
based on an analysis of both the binary PTX and the device
pipeline at run-time [33], attaining highly accurate predic-
tions. However, the trained model could not be replicated
at different core or memory configurations. Leng et al. [34]
integrated Hong’s power model inside the GPGPU-Sim [35]
simulator, creating the GPUWattch tool, which can estimate
the cycle-level GPU power consumption during application
execution (with support for the Tesla and Fermi microarchi-
tectures). Furthermore, cycle-level simulators are too slow to
be applied in run-time and predict the optimal V-Fs.

Nath et al. [36] developed a run-time analytical per-
formance model able to predict the performance changes
with GPU DVFS, with an average prediction error of 4%.
However, the proposed approach requires the addition of
extra logic to the GPU scoreboard, making it infeasible
to be replicated on real hardware. Alternatively, statistical
models can be developed using performance counters already
available on the GPUs, as it was done in the work by Wu
et al. [38], which studied how the performance and power
consumption of AMD GPUs scale with the core and mem-
ory frequencies. The proposed approach groups applications
based on their performance/power scaling-factors. Properly
trained neural network classifiers are used to characterize
new applications, by predicting which scaling-factor better
represents an application. The proposed approach achieves
average prediction errors of 15% (performance) and 10%
(power) on the considered AMD Radeon HD 7970 GPU.

Guerreiro et al. [7] proposed a DVFS-aware GPU power
consumption model, which predicts the GPU power con-
sumption for any V-F configuration, by using performance
counters gathered at a single configuration. To estimate the
model of each GPU device, the authors devised a suite of
publicly available microbenchmarks. The model was vali-
dated on three GPUs, achieving average errors of 7% (Titan
Xp), 6% (GTX Titan X) and 12% (Tesla K40c). This model
was later extended, by focusing on its different use-cases [39]
(e.g., using the proposed model to predict only the scaling-
factors of the GPU power). This largely improved the predic-
tions accuracy, leading to average errors of 3.5% (Titan Xp),
4.5% (GTX Titan X) and 2.4% (Tesla K40c).

By following a similar approach Wang et al. [6] proposed
a DVFS-aware GPU performance model. The authors esti-
mated the GPU architecture parameters using a collection
of microbenchmarks and a group a performance counters,
measured during their execution. Validated across a wide
range of core and memory frequencies, on a Maxwell GPU,
the model attains an average prediction error of 4.83%.

More recently, some works have started to tackle the topic
of GPU static analysis, specifically regarding modeling based
on the PTX code of a kernel. Arafa et al. [11] presented a
static GPU performance model. The authors converted the
PTX code to a list of tasks with known modeled behavior

(through microbenchmarking done by Andersch et al. [40]),
achieving prediction errors within 10% of the measured
performance. However, the work does not consider DVFS.

Other static models have been proposed that consider
DVFS. In particular, Alavani et al. [10] presented a way
to predict the execution time of an application prior to its
execution, with an average prediction error of 26.9% on a
Tesla K20 GPU (Kepler). On the other hand, Fan et al. [12]
developed DVFS-aware static models for performance and
energy of GPU devices. The two models are trained based
on a static vector of 10 features, where each component
represents the count of a type of instructions. As previously
mentioned, these authors suggest that the best V-F configura-
tion for a given application, should not be looked for in the
minimum-energy points, but in a set of Pareto-optimal V-Fs.
Validated on a GTX Titan X (Maxwell), with 12 benchmarks,
the proposed models can predict most of the frequencies in
the Pareto-optimal sets, and are able to predict the minimum-
energy V-F for two applications (out of 12).

Arunkumar et al [14] addressed the topic of multi-module
GPUs. In their work, the authors propose an instruction-
based energy estimation framework, which is able to mod-
ulate its corresponding energy-per-instruction value, for the
different types of PTX instructions. Similarly to what is
herein done, the authors also have to instrument the CUDA
code of considered applications, in order to obtain PTX code
that represents the number of executed instructions.

As it can be seen, the majority of the research that has
been performed on GPU modeling requires at least one
execution of the application to obtain predictions. On the
other hand, the works that adopt static modeling techniques
only consider the count of each type of instructions, without
any consideration to the sequence/order they are executed in.
Furthermore, these works have not been properly validated
on recent GPU architectures (the work targeting the most
recent GPU focuses on a NVIDIA Maxwell GPU, which
is from early 2015). In contrast, the herein presented work
proposes a different approach to predict the scaling behavior
of the performance, power and energy consumption of an
application before its execution. Using a recurrent neural
network (with LSTM blocks), this new approach considers
the sequence of PTX instructions. This approach is validated
on multiple GPUs across four different NVIDIA microarchi-
tectures, including the most recent Turing generation.

III. PTX-BASED MODELING
The proposed model is based on the rationale that both
the GPU performance and power consumption depend on
which GPU components are utilized during the execution
of applications [9]. The utilization of a specific component
is not only dependent on the total number of instructions
executed by the component and its ratio over the other types
of instructions, but also on the order these instructions are
executed on. Hence, the proposed modeling framework takes
into account not only the different types of instructions of
a given application, but also their corresponding sequence.
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FIGURE 2: Diagram of the proposed PTX-based characterization models.

The goal of this framework is to output simultaneously the
scaling-factors for three different metrics (execution time,
power and energy) at the different V-F configurations (vs. the
selected reference configuration).

A. DEEP STRUCTURED STATIC MODELING

The modeling methodology proposed in this work, presented
in Fig. 2, can be divided into two main learning blocks: i)
a recurrent neural network (RNN), and ii) three output fully
connected feedforward neural networks (FNNs). To represent
each instruction, an embedding step is used, which encodes
not only the PTX instruction, but also the PTX instruction
modifiers, the number of operands used, the existence of
operand dependencies and the type of dependency, namely
if the operand was produced by a previous memory or
compute instruction. Hence, the RNN works as an LSTM-
based encoder, taking as input the sequence of embeddings
(x) of a kernel and providing as output a latent space vector
that encodes that kernel (z) and, particularly, the way it
utilizes the GPU components. The second learning block is
comprised of three separate, fully connected, FNNs. These
networks take as input the latent space representation and are
trained to provide, at their outputs, the scaling-factors of the
execution time, power consumption or energy consumption
for the different V-F configurations.

Formally, a kernel code is represented as a sequence of N
instruction embeddings x = {x1, x2, . . . , xN} ∈ XN , where
xi ∈ X , with X denoting the space of possible instruction
embeddings. This sequence is given as input to an LSTM-
based encoder Eφ : XN → Z, where Z = RL is the
latent space and L denotes its dimensionality, extracting a
representation z = Eφ(x). The latent space representation is
then appended with the considered frequency configuration
F = (fmem, fcore), such that zF = [z, F ], where zF ∈ Z2

(Z2 = RL+2). Finally, the frequency latent space represen-
tation is used by the three separate fully connected FNNs
W{T,P,E} : RL+2 → R to predict the scaling factors of the
execution time, power consumption and energy consumption.
As an example, and looking at the prediction given by the first
output FNN, i.e., the execution time scaling-factor, the whole

network is given by:

∆̂T = WT (zF ) = WT (Eφ(x)). (1)

B. EMBEDDINGS

In order to feed the RNN layer with the sequence of PTX
instructions, first they have to be encoded into an appropriate
format. To that end, an embeddings stage is proposed, which
takes into account not only each specific instruction, but also
the context of past instructions. In particular, the embeddings
takes into account the following information from each spe-
cific instruction:

• instruction name, from the known list of instructions
defined in the PTX ISA (e.g., ld, add, fma, bra, etc.).

• state space specifier, also defined in the PTX ISA,
usually associated with memory instructions and cor-
responding to a specific storage area (e.g., .local,
.global, .shared, etc.).

• data type specifier, which specifies both the considered
basic type and the size of the destination operand (e.g.,
.u8, .f32, .f64, etc.).

• number of operands, corresponding to the number
of register operands used by the instruction (input +
destination).

All this relevant information allows the model to clearly
identify the GPU components that are used during the ex-
ecution of each instruction. Additionally, the embedding of
each instruction also takes into account the following in-
formation based on past instructions, which are relevant to
identify dependencies scenarios that can impact both kernel
performance and the average power consumption:

• closest input operand dependency, corresponding to
the closest previous instruction that had as a destination
register one of the registers used as input (0 if there are
no dependencies).

• dependency type, corresponding to the type of depen-
dency (if there is any), namely if it is a dependency to a
memory access or computational instruction.
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DATA_TYPE r0, r1, r2, r3;
 
r0=A[threadId];
r1=r2=r3=r0;
for (int i=0;i<LIM;i++) {
  r0 = r0 * r0 + r1;
  r1 = r1 * r1 + r2;
  r2 = r2 * r2 + r3;
  r3 = r3 * r3 + r0;
}
B[threadId]=r0;

ld.global.f64  %f1,[%rd1];
mov.f64  %f2,%f1;
mov.f64  %f3,%f1;
mov.f64  %f4,%f1;
BA1:
  fma.rn.f64  %f5,%f1,%f1,%f2;
  fma.rn.f64  %f6,%f2,%f2,%f3;
  fma.rn.f64  %f7,%f3,%f3,%f4;
  fma.rn.f64  %f8,%f4,%f4,%f1;
  ...  
  add.s32  %r5,%r5,32;
  setp.lt.s32 %p1,%r5,512;  
  bra  BA1;
st.global.f64  [%rd1],%fd5;

CUDA Code PTX Code: 
with DATA_TYPE = float

PTX Code: 
with DATA_TYPE = double

ld.global.f32  %f1,[%rd1];
mov.f32  %f2,%f1;
mov.f32  %f3,%f1;
mov.f32  %f4,%f1;
BA1:
  fma.rn.f32  %f5,%f1,%f1,%f2;
  fma.rn.f32  %f6,%f2,%f2,%f3;
  fma.rn.f32  %f7,%f3,%f3,%f4;
  fma.rn.f32  %f8,%f4,%f4,%f1;
  ...  
  add.s32  %r5,%r5,32;
  setp.lt.s32 %p1,%r5,512;  
  bra  BA1;
st.global.f32  [%rd1],%fd5;

FIGURE 3: CUDA source code example and the corresponding PTX codes depending on the data type.

C. TRAINING METHODOLOGY

To train the whole network, a specific procedure is proposed
that allows training the three output FNNs at the same
time. To this end, the set of training applications is first
separated into different batches, organized by kernel length
(e.g., batches of 8 applications). At each training epoch, each
batch is used to train only one of the output networks. For
example, the first batch is propagated forward only through
the execution time network (Encoder + FNN1 in Fig. 2).
The considered optimization loss is the mean absolute error
(MAE) between the predicted values and the measured ones.
Then, based on the obtained errors, backpropagation is used
to update the weights of both the Encoder and FNN1. After-
wards, the next batch is propagated forward only through the
power consumption network (Encoder + FNN2), followed
again by backpropagation of the errors. This process is re-
peated for all batches (in each training epoch), interleaving
them between the three output FNNs, which are therefore
being updated one at a time, while the encoder is always
being updated. Finally, the training procedure implements
a mechanism that ensures that, across different epochs, the
same batch of applications is not always propagated forward
to the same FNN.

One particular feature of the proposed training procedure
is the fact that, by allowing the three output FNNs to be
trained semi-simultaneously, it allows the encoder LSTM to
have information on the three target metrics (execution time,
power consumption and energy consumption). An alternative
approach would be to fully train an encoder + FNN for each
of the output metrics or even focus on a single output FNN
at each epoch. However, by interleaving the training of the
FNNs to each smaller batch of applications, the proposed
training procedure tries to ensure that the LSTM encoder
is able to learn and generate a more robust latent space,
capable of describing how the different GPU components
are stressed. Experimental validation confirmed that the pro-
posed approach provides better accuracy than if each network
was fully trained separately.

D. MICROBENCHMARKING THE GPU
To model the usage of the different GPU components, a group
of publicly available microbenchmarks was used, namely the
ones proposed by Guerreiro et al. in [7] 3 and Arunkumar
in [14] 4. The considered benchmarks were carefully selected
not only to contain most of the PTX instructions defined
in the PTX ISA, but also to include a wide variety of
code patterns (different instruction mixes, GPU components
utilizations, arithmetic intensities, memory access patterns,
etc.). Overall, 145 microbenchmarks were used.

Fig. 3 presents an example of a considered bench-
mark, illustrating its CUDA source and two correspond-
ing PTX codes depending on the defined data type.
Specifically, it presents two examples, corresponding to
the cases when DATA_TYPE is single precision (float)
and double precision (double). It can be seen that
the same CUDA instruction r0 = r0 * r0 + r1 can
be converted into different PTX instructions. If r0 and
r1 are of type float, the corresponding PTX in-
struction is fma.rn.f32 %f5,%f1,%f1,%f2, while if
they are of type double the corresponding instruction
is fma.rn.f64 %f5,%f1,%f1,%f2. Hence, depending
on the data type, the same instruction is issued to different
computational units (32-bit floating-point or 64-bit floating-
point, respectively).

Similarly, load (or store) instructions (e.g. r0 =
A[threadId]) can also map to different PTX instructions
depending on the data source (or destination). In Fig. 3,
data is loaded and stored back to global memory, hence
the .global modifier in the PTX ld and st instructions.
However, if, for example, the data had been written to shared
memory, they would use instead the .shared modifier.
Since the shared and DRAM memories have very distinct
characteristics (different latencies and peak power consump-
tions) and are even clocked at different operating frequencies,
this modifier is crucial to the proposed model and is therefore
taken into account in the proposed embeddings.

As an example of how the proposed embeddings can be ex-
tracted from a PTX instruction, looking at the fma.rn.f32

3https://github.com/hpc-ulisboa/gpupowermodel
4https://github.com/akhilarunkumar/GPUJoule_release
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TABLE 1: Summarized description of the used GPUs.

Tesla
Titan V Titan Xp

GTX
T4 Titan X

Base architecture Turing Volta Pascal Maxwell
Compute capability 7.5 7.0 6.1 5.2
Memory frequencies (MHz) 5001 850 {4705, 5705} {810, 3505}
Core freq. range (MHz) [300:1590] [135:1402] [582:1911] [595:1164]
Default mem. frequency 5001 850 5705 3505
Default core frequency 585 1200 1404 975
Number of SMs 40 80 30 24

Per SM

CUDA cores
64 64 128 128

(SP/INT units)
DP units 2 32 4 4
SF units 32 32 32 32

Shared memory
up to 96K up to 96K 96K 96K

(bytes)
L2-cache size (bytes) 4M 4.5M 3M 3M
Global memory size (bytes) 16G 12G 12G 12G
Memory bus width (bits) 256 3072 384 384
Memory bus type GDDR6 HMB2 GDDR5X GDDR5
TDP (W) 70 250 250 250

%f5,%f1,%f1,%f2 instruction (from the float exam-
ple presented in Fig. 3). The information considered in the
embeddings is: i) instruction name (fma); ii) state space
specifier (none); ii) instruction type specifier (.f32); iii)
number of operands (3 input and 1 destination); iv) closest
input operand dependency (%f2 was written 3 instructions
before); v) dependency type (%f2 was changed by a mem-
ory instruction).

As it can be seen it is generally possible to infer from the
PTX code of an application which GPU resources will be
exercised during its execution. However, it is important to
stress that, unlike previous approaches, the proposed strategy
does not rely on any information obtained from the applica-
tions execution. Nevertheless, it is also important to mention
that there are some inherent limitations to using the PTX
code. For example, the nvcc compiler performs several code
optimizations before creating the lower-level code. One of
such optimizations is the unrolling of for loops a specific
number of times (usually 32, provided that the size of the
loop is greater than 32). After those 32 repetitions of the main
loop instructions, a branch instruction is placed to redirect
the program execution back to the beginning of the loop
(bra BA1 in Fig. 3). The number of times that this jump
is taken depends on the limit of the for loop (the value of
LIM in Fig. 3). This means that two applications with the
same kernel code, but different values of LIM, for example,
LIM=64 and LIM=2048, can have the same optimized PTX
code, despite the actual number of executed instructions
being rather different. For this reason, all the considered
microbenchmark kernels (and the applications later used to
test the trained models) have their loops manually unrolled,
ensuring that the sequence of instructions in the PTX code is
the same as the sequence of executed instructions.

Another potential limitation inherent to any static analysis
approach regards the global memory accesses. For exam-
ple, even though load (or store) operations can have the
.global modifier, it is unknown where exactly the data

TABLE 2: Standard benchmarks used for model validation.

Suite Application Name
CUDA SDK [15] Blackscholes

Parboil [16] MRI-Gridding

Polybench [17]
2MM, 2DCONV, 3MM, ATAX, BICG,
CORR, COVAR, FDTD-2D, GEMM,

GESUMMV, GRAMSCHM, MVT, SYRK
Rodinia [18] Backprop, Hotspot

SHOC [19]
FFT, MD5Hash, S3D, S3D_double,
Sort, Stencil2D, Stencil2D_double
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FIGURE 4: Different types of instructions for the testing
benchmarks, on the GTX Titan X.

is coming from. Depending on the data access pattern, the
same instruction can result in data transfers from different
hierarchy levels (e.g., L1 cache, L2 cache or main DRAM).
Since these memory elements have very different charac-
teristics, they can have completely distinct impacts on both
performance and power consumption, despite the initial PTX
instruction being the same. It is left for future work to infer
more information on the access patterns of the PTX kernel, in
order to improve the kernel characterization and the resulting
performance/power/energy prediction accuracy.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
The proposed models were validated on four GPUs from the
most recent NVIDIA microarchitectures, namely the Turing,
Volta, Pascal and Maxwell family of GPUs (summarized in
Table 1). Experiments with the Volta, Pascal and Maxwell
GPUs were performed on a Linux CentOS 7.5 server, with
CUDA 10.0 and NVIDIA driver v410, while the most recent
Turing GPU was tested using Google’s Cloud Platform [41],
using a Debian GNU/Linux 9 server, also with CUDA 10.0
and NVIDIA driver v410.

In order to obtain the PTX source code of each ap-
plication, the nvcc compiler was used with the -ptx
flag. Additionally, to adjust the version of the PTX
ISA to the different generations of the devices, the flag
-gencode=arch=compute_70,code=compute_70
was also used (in this case for the Titan V, which has a
compute capability of 7.0). NVIDIA’s NVML [42] library
was used to change the GPU operating frequencies, as well
as to measure the GPU power consumption. The power
consumption of each kernel was computed as the average of
all samples gathered during the application execution. Each
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FIGURE 5: Results of the DVFS-aware power scaling model on different GPUs (Number of benchmarks: 130 for training, 15
for validation, 24 for testing).

kernel execution was repeated whenever necessary, in order
to achieve an execution time of at least 1 second at the fastest
GPU configuration (Fmax, i.e., highest core and memory
frequencies), given that some GPU power sensors have a low
sampling frequency [7].

To obtain all the required data points to train the proposed
models, the set of microbenchmarks (see Section III-D)
was executed on each GPU device at the available V-F
configurations. During the execution of each application,
the execution time and average power consumption were
measured. The proposed models predict the scaling-factors of
the time/power/energy in relation to a reference level, which
was defined as the maximum allowed frequency (Fmax)
of each GPU device (see Table 1). In order to guarantee
the accuracy of the presented results, all applications were
executed multiple times and the median value was recorded.

Finally, the accuracy of the estimated models was con-
firmed using 24 benchmarks from a set of widely used bench-
mark suites, as presented in Table 2. The testing benchmarks
were not used to train the models. Fig. 4 presents the mixture
of instructions of the considered testing applications (as read
from the PTX code), from which the variety of instructions
across the different benchmarks can be confirmed.

B. MACHINE LEARNING SETUP
The implemented tool, used to obtain the results herein
presented, is provided online and is open-source 5. The
machine learning models were implemented using Py-
Torch (v1.2.0), namely using the torch.nn.Linear and
torch.nn.LSTM functions. To find the best network topol-
ogy, i.e. during the hyperparameter optimization, 90% of the
microbenchmark set was used for training and the remaining
10% for validation of each obtained model. The accuracy
of each model was determined by the MAE between the
predicted value and the measured one (oracle), by using
the PyTorch SmoothL1Loss function. To maximize the
usefulness/ease-of-use of the models, the network topology
was optimized for one GPU device (GTX Titan X) and then
used for the other GPUs.

5https://github.com/joaofilipedg/cudaAssemblyReader

The best found hyperparameter configuration for the RNN
encoder results in LSTM blocks with 2 layers (unidirectional)
of size 50, with a learning rate of 0.005 and using the Adam
optimization algorithm. The considered batch size comprises
8 applications. The output FNNs have 2 hidden layers (with
sizes 100 and 70), with a learning rate of 0.01 and also using
the Adam optimization algorithm. After each hidden layer,
an activation function is applied (ReLU).

C. STATIC MODELS ACCURACY
The obtained results show that the accuracy of the predictions
obtained using the proposed static models is comparable to
the accuracy achieved by the best state-of-the-art run-time
models. Specifically, Fig. 5 presents the obtained results of
the power scaling model across the four considered GPU
devices, where each point corresponds to a value of the pre-
dicted scaling-factor vs. its measured value (oracle). Different
points represent different applications and/or V-F configura-
tions. For example, in the GTX Titan X plot, the testing set
is composed of 24 applications × 2 fmem levels × 16 fcore
levels = 768 datapoints. In this case, the model is capable of
accurately predicting the power consumption scaling-factors,
on a frequency range of up to 4.3× in memory frequency and
2× in core frequency, with a mean absolute error (MAE) of
5.35%. It is important to restate that these DVFS predictions
are made prior to any execution of benchmarks, and are
based solely on the PTX kernel code, i.e. without using any
run-time information. The power scaling model results in
similarly accurate results in the three other GPU devices, with
MAE of 7.85% (Tesla T4), 6.68% (Titan V) and 5.86% (Titan
Xp).

When compared with other state-of-the-art power mod-
els, in particular with the approach presented in [39], it is
observed that the GPU power scaling-factors model of such
proposal, based on performance counters, achieves a MAE
of 3.54% and 4.55% for the Titan Xp and GTX Titan X,
respectively. Even though the approach herein proposed can
be slightly less accurate than state-of-the-art power con-
sumption counter-based models, it should be stressed that
very accurate results can still be obtained based only on in-
formation obtained at compile-time (without any application
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FIGURE 6: Cumulative distribution of the prediction errors on the testing benchmarks, across all V-F configurations.
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FIGURE 7: Measured and predicted DVFS impact on the energy scaling and speedup of 14 testing applications, on the GTX
Titan X. Each point corresponds to a specific V-F configuration. Values are normalized to the values at the highest V-F.

execution).
Fig. 6 presents the overall accuracy of the three output

models for all considered GPU devices, by displaying the
cumulative error distribution of each model across the testing
benchmarks for all V-F configurations. The obtained results
show that the power models are (on average) the ones that
produce the best predictions, while the execution time models
are the less accurate ones. Still, across the four GPUs, 54%
(Tesla T4), 70% (Titan V), 68% (Titan Xp) and 63% (GTX
Titan X) of the predicted time scaling-factors have an ab-
solute error below 10%. The percentage of predicted values
with an error below 10% for the power model are 74% (Tesla
T4), 78% (Titan V), 85% (Titan Xp) and 84% (GTX Titan X),
while for the energy model are 77% (Tesla T4), 78% (Titan
V), 68% (Titan Xp) and 60% (GTX Titan X).

The accuracy of the 12 estimated models are summarized
in Table 3, where it can be seen that the MAE of the energy
scaling models are 19.3% (Tesla T4), 13.0% (Titan V), 9.9%
(Titan Xp) and 13.0 % (GTX Titan X).

D. PARETO-OPTIMAL SOLUTIONS
The main use-case of predictive models, such as the ones
herein proposed, is to perform the DVFS management to
maximize the energy efficiency of the computing system.
Considering a multi-objective optimization problem with a
set of Pareto-optimal solutions, similar to the one that was

proposed in [12], this technique can be a useful approach
to find the best V-F configurations for different applica-
tions. Fig. 7 shows the measured and predicted values of
the normalized energy and speedup for 14 different testing
applications (not used in training), when considering the
GTX Titan X GPU. Each plot not only presents the values of
the normalized energy in function of the speedup (measured
and predicted), but also which V-F configurations are in
the Pareto-optimal sets (measured and predicted) and their
respective sizes. Here, it is important to note that not all
the considered GPU devices allow a similar flexibility in
choosing the V-F configuration. Since the GTX Titan X is the
GPU device that allows the larger variation of the memory
frequency, it is an interesting situation to analyze.

In Fig. 7, applications were organized from the
most memory-intensive (eg., BlackScholes, FDTD-2D,
S3D_double) to the most compute-intensive (eg., ATAX,
MRI-Gridding, MD5Hash). The obtained results show that
the estimated models for the GTX Titan X can predict how
the decrease in Fmem, from 3505 MHz to 810 MHz, af-
fects the speedup of the more memory-intensive applications.
However, as the DRAM intensity starts decreasing, resulting
in more transactions coming directly from the L2-cache (eg.,
FFT_double, 2DConvolution, Backprop), the model is grad-
ually not as accurate in describing how the decrease in Fmem

affects the energy and speedup of applications. This relates
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to the previously mentioned fact that there is no way to infer
from a PTX instruction where a data transaction is coming
from (see Section III-D). Finally, for the more compute-
intensive applications, the model successfully predicts that
decreasing Fmem has a small impact on speedup, leading to
large benefits in energy consumption.

E. ATTAINED ENERGY SAVINGS

The energy scaling predictions can also be evaluated based
on how well they can predict the minimum-energy V-F
configuration. Fig. 8 shows the results of using the energy
scaling model to find the minimum V-F configuration on the
GTX Titan X GPU. On the top of Fig. 8 are presented, for
each testing application, the values of the frequency levels
associated with the measured minimum energy (FOracle)
and the predicted minimum energy (FPred.). It can be seen
that FPred. does not always match FOracle, which means the
proposed model does not guarantee optimal energy savings.
However, the results presented at the bottom of Fig. 8 show
that, for many applications, the difference between using
FPred. and FOracle (horizontal line at 1.0, representing the
lowest energy consumption) is negligible. In reality, across
the 24 testing benchmarks, the usage of FPred. results in
an average energy consumption only 8% higher than the
optimal, while using the maximum performance configura-
tion (FMax) leads to (on average) an energy consumption
of 24% higher than the optimal. Looking at the energy
savings obtained at FPred. (see Table 3), when compared
to the energy at FMax, the proposed energy model allows
achieving average savings of 8.0% (Tesla T4), 6.0% (Titan
V), 29.0% (Titan Xp) and 11.5% (GTX Titan X).

Overall, the presented research, whose results are sum-
marized in Table 3, represents a significant step forward
in the field of GPU modeling, by allowing compile-time
predictions of the scaling behavior of the execution time,
power consumption and energy consumption. Furthermore,
this novel approach can be useful in other scenarios than the

TABLE 3: Summary of the obtained results for the proposed
models on the validation benchmarks.

Model Type Tesla T4 Titan V Titan Xp GTX Titan X

MAE
Time DVFS 19.2% 16.7% 9.9% 15.8%
Power DVFS 7.9% 6.7% 5.9% 5.4%
Energy DVFS 19.3% 13.0% 9.9% 13.0%

Median
Time DVFS 8.6% 4.5% 5.3% 5.3%
Power DVFS 4.5% 3.7% 5.4% 3.5%
Energy DVFS 5.8% 3.3% 6.5% 6.9%

Energy
Savings
(vs. FMax)

Best (at FOracle) 16.8% 9.1% 32.6% 18.1%
Model (at FPred.) 8.0% 6.0% 29.0% 11.5%

(% of Oracle) (47.6%) (65.9%) (89.0%) (63.3%)

most commonly considered case of DVFS management, such
as in allowing programmers to easily evaluate how changes in
the source code can affect the DVFS behavior of applications.

V. CONCLUSION
This work presented a novel approach to model the GPU
performance, power and energy. In particular, the proposed
approach can be used to predict how the frequency of GPU
domains will affect the execution time, power and energy
of applications, before they are actually executed, i.e. at
compile-time. To model the GPU, a suite of 145 microbench-
marks was used, carefully selected to exercise the different
GPU components. The proposed procedure results in three
output models that take into account the sequence of low-
level assembly (PTX) instructions of any unseen kernel to
predict its corresponding scaling behavior. Validated on four
different GPU devices from distinct microarchitectures (Tur-
ing, Volta, Pascal and Maxwell), the models achieve rather
accurate results. In particular, the power scaling one, which
is able to accurately predict the DVFS impact on the power
consumption of applications prior to their execution, offers
a mean absolute error of 10.2% (Tesla T4), 6.7% (Titan
V), 5.9% (Titan Xp) and 5.4% (GTX Titan X). Using the
obtained models to select the minimum-energy frequency
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configuration allows achieving (on average) energy savings
of 8.0% (Tesla T4), 6.0% (Titan V), 29.0% (Titan Xp) and
11.5% (GTX Titan X).
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