
Department: Head
Editor: Name, xxxx@email

Compiling for Vector
Extensions with Stream-based
Specialization

Nuno Neves ∗†

Joao Mario Domingos ∗

Nuno Roma ∗†

Pedro Tomás ∗†

Gabriel Falcao ‡§

∗INESC-ID, †Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
‡University of Coimbra and §Instituto de Telecomunicações, Coimbra, Portugal

Abstract—To overcome the current performance wall, data streaming and data-flow computing
paradigms have been gradually making their way into the general-purpose domain. However, the
proliferation of such paradigms is often hindered by the lack of compilation support, as their
execution model is usually incompatible with the internal static single-assignment (SSA) form
used in modern compilers. Accordingly, we propose a new compilation flow that leverages the
LLVM infrastructure to automatically extract and encode the memory access pattern and
computation data-flow graph with streaming representations. The proposed compilation flow is
used to generate code for the recently presented Unlimited Vector Extension (UVE), which tackles
the shortcomings of vector-length agnostic SIMD extensions by deploying a data streaming
paradigm with implicit memory access and loop control. We show that our proposed tool is
capable of detecting, representing, and vectorizing a much wider range of loop patterns than
existing solutions while providing significant performance gains.

DATA-LEVEL PARALLELISM explored
by Single-Instruction Multiple-Data (SIMD)
Instruction Set Architecture (ISA) extensions
is currently viewed as a de facto solution to
accelerate general-purpose High-Performance
Computing (HPC) workloads [1]–[3]. However,

these extensions traditionally rely on fixed-size
registers (e.g., Intel AVX or ARM NEON)
posing a non-trivial question regarding the
vector length [1], [3], as its optimal size is
workload-dependent and leads to portability
issues when scaling the vector size.

IEEE Micro Published by the IEEE Computer Society © 2021 IEEE 1

Department Head

Vector-length agnostic (VLA) SIMD exten-
sions mitigate this issue by allowing runtime
configuration of the vector length (as in RISC-V
Vector extension (RVV) [2] – see Fig. 1.C) or by
relying on loop predication (as in ARM SVE [1] –
see Fig. 1.D). As an added benefit, VLA also
helps to solve the classic vectorization issue,
where the compiler has to inject loop tails when
the loop trip count does not evenly divide the
vector length. However, the additional instruction
overhead required to control the vector length and
its execution may actually hinder the application
throughput when compared to traditional SIMD
extensions [3].

Meanwhile, data-flow and stream-based ap-
proaches have been gaining momentum, mostly
driven by the emergence of domain-specific ar-
chitectures. Although not applicable to all classes
of applications, they allow programmers to ex-
plore several complementary features to increase
throughput, such as memory access decoupling
and specialization, data prefetching, and efficient
parallel computation. These benefits recently drove
the adoption of data streaming beyond domain-
specific computing into general-purpose proces-
sors, as an attempt to push past the limitations
of the von Neumann architecture [4], [5]. In
particular, most dynamic accesses in known work-
loads are characterized by affine or indirect data
patterns susceptible to data streaming [4]. This
allows data transfers to be offloaded to specialized
modules to increase the application throughput and
improve the functional units utilization and energy
efficiency [5].

However, data streaming is not circumscribed
to affine and indirect access patterns [6]. As long
as the address sequence of the memory access
is mathematically deterministic, it is possible
to describe it using an hierarchical combination
of affine equations. Based on this knowledge,
we recently took a step forward from existing
general-purpose streaming solutions by propos-
ing the Unlimited Vector Extension (UVE) [7]
(see Appendix A). In essence, UVE is a vec-
tor extension with an execution model that dis-
tinguishes itself by combining both VLA and
data streaming paradigms. The latter leverages
a formal mathematical model to encode complex,
multi-dimensional, strided, and indirect memory
accesses in a descriptor-based representation, thus

covering a wide range of HPC access patterns.
UVE enables automatic streaming of data to the
processor vector registers, while linearizing scatter-
gather operations, simplifying vectorization. It also
effectively transforms each computational loop
into a data-flow execution scheme with implicit,
indexing-free memory accesses and control-flow,
thus simplifying the loop code and reducing the
number of executed instructions. As a result, it
provides significant throughput gains regarding
other VLA extensions, such as ARM SVE [7].

Conversely, the stream-based execution model
of UVE (and other competing solutions [5], [8])
brings several new challenges regarding compiler
support, particularly due to its implicit data-flow
execution model. Non-conventional paradigms
tackle similar issues by making use of high-level
languages with domain-specific abstractions [9],
[10]. However, it is not straightforward to trans-
form regular application code from ubiquitous
languages (e.g., C/C++) into a stream-based exe-
cution model embedded in a general-purpose ISA.

To tackle this issue, we present a new compi-
lation flow that automatically extracts the memory
access patterns and the execution Data-Flow Graph
(DFG) of a target application, to generate the
corresponding code for a stream-based execution
model. We start by identifying that the main
problem (and part of the solution itself) lies with
the abstraction level provided by the typical static
single assignment (SSA) form of the intermediate
representation (IR) used in modern compilers (e.g.,
LLVM IR). In fact, IRs are often fundamentally
incompatible with the implicit memory accesses
and loop control introduced by the stream-based
execution model of UVE (and similar extensions),
since loop induction variables are no longer
explicitly required. Nevertheless, it is possible to
take advantage of the loop canonicalization that is
performed in the IR to expose the memory access
pattern. With this information, we shown how to
detect and encode data streams into a sequence
of hierarchical descriptors outside the compiler
typical flow and the IR SSA form, as well as
how to apply stream-related transformations and
vectorization over the computational DFG. Finally,
we also show how to generate machine code
for streaming extensions, particularly UVE. With
the proposed compilation tool, we provide a
significant contribution and complement to our

2 IEEE Micro

Figure 1. Representation of the saxpy kernel in: (A) C code and (B) LLVM IR format; in VLA SIMD extensions
pseudo-assembly based on (C) vector length configuration and (D) loop predication; and pseudo-assembly
stream-based extensions with (E) explicit and (F) implicit stream iteration (F1 – using hardware loops, F2 – with
stream vectors). Note the presence of the induction variable exposed in (B) in examples (C), (D), and (E) and its
implicit elimination in (F).

previous work [7], which was solely focused
on the design and implementation of the scalable
streaming vector ISA extension in out-of-order
pipelines.

STREAM SPECIALIZATIONS AND UVE
Early attempts to bring stream-based

paradigms into modern processors experienced
some success by specializing their memory
accessto facilitate the prefetching of repeated
access patterns [4], allowing the execution
pipeline to read data directly from dedicated
stream buffers (see Fig. 1.E). However, it was later
realized that streaming specializations could be
extended all the way into the processor pipeline,
by configuring all memory access patterns in
the loop preamble and automatically streaming
data directly to the processor’s registers [5],
[7]. This way, memory accesses become totally
implicit to the processor, allowing the application
code to be devoid of instructions for indexing,
load/store, and induction variable-based loop
control (see Fig. 1.F). In turn, it results in
a two-fold acceleration by speeding up data
acquisition and decreasing loop instructions. This

approach is the core of solutions such as the
SSR [5] (see Fig. 1.F1) and the UVE [7] ISA
extensions.

However, while SSR [5] was conceived as
a dedicated streaming extension, UVE [7] was
designed as a VLA extension with transparent
data streaming (see Appendix A for more details).
In fact, the main goal of UVE is to address
the limitations of VLA SIMD, while offering
a new level of acceleration. Hence, besides its
implicit memory access and loop control, its
stream-based paradigm combines some of the
scalable vectorization characteristics of VLA, such
as vector-length predication and auto-scaling (to
automatically disable vector elements that fall
out of loop bounds), with enhanced vectorization
capabilities (e.g., handling reductions with uneven
element counts without loop tails). This was
achieved through a formal mathematical model
to represent complex multi-dimensional, strided,
and indirect memory access patterns through
exact descriptor representations encoded in the
loop preamble. These representations also allow
linearizing memory access patterns, simplifying
vectorization. The model follows the typical struc-

December 2021 3

Department Head

ture of nested for loops and is represented by an
n-dimensional affine function:

y(X) = ybase +

dimy∑
k=0

xk × Sk

with X = {x0, . . . , xdimy
}

and xk ∈
[
Ok, Ek +Ok

] (1)

Hence, each stream access y(X) is described
as the sum of the base address of an n-dimensional
variable (ybase) with dimy pairs of indexing vari-
ables (xk) and stride multiplication factors (Sk),
where each k value corresponds to a dimension of
the pattern (usually, bound to a different loop in
the code). Each indexing variable xk is represented
by an integer range, varying between Ok and
Ek+Ok, where Ek is the number of data elements
in dimension k and Ok represents an indexing
offset. The indexing variable x0, corresponding
to the first dimension of the variable, has an
offset (O0) equal to 0 and is associated with the
variable’s base address (ybase).

UVE leverages this model with a set of
descriptors that encode each affine function’s
parameters (depicted later in Fig.3). This scheme
allows achieving higher representation complexity
through the combination of multiple descriptors
and specific modifiers. To model inter-loop induc-
tion-variable dependencies (e.g., when the loop
conditions are generated by the iteration of an
outer loop – imperfect loops), a static modifier
allows assigning the result of an affine function
to the limits of the indexing variables of another
function. To model indirect memory accesses, an
indirect modifier is used to assign the data obtained
by the sequence of addresses generated by one an
affine function to the offset, stride, or indexing
variable limits of another function.

However, the viability and proliferation of
stream specializations, such as those proposed
in UVE, can only be assured through an effective
support on standard compilers. This requires
detecting the memory access patterns in a loop
that are amenable to streaming, as well as their
representation using the target streaming model,
and extending the compiler’s capabilities to sup-
port implicit memory accesses and loop control.

Figure 2. Typical compilation flows for (A) the base
LLVM infrastructure, (B) LLVM-based custom compil-
ers, and (C) the proposed compilation flow.

COMPILER SUPPORT FOR DATA
STREAMING

The typical structure of a modern compiler
is composed of a sequence of phases that pro-
gressively lower the level of abstraction from
the programming language to the machine code
(see Fig. 2.A). The LLVM compiler performs
these operations by first parsing the source code
into a structural syntax representation (Abstract
Syntax Tree (AST)) and then translating it to
its intermediate representation (IR). The IR is
then optimized and, finally, lowered to a machine-
specific IR and compiled to machine code.

Hence, the LLVM IR can be regarded as a
low-level representation of the application code
that follows the SSA form to canonicalize the loop
structure and the iteration of induction variables
(see Fig. 1.B). As such, it represents a power-
ful baseline for the implementation of several
analyses and transformations for optimizing the
application code. However, it is known to struggle
with the modeling and optimization of high-level
abstractions used by domain-specific constructs or
non-conventional computing paradigms (such as
data streaming) [11]. As a result, these paradigms
often either rely on Domain Specific Languages
(DSLs) or develop custom IRs to interface with
the compiler and implement domain-specific opti-
mizations [9], [10] (as illustrated in Fig. 2.B).

Despite their success in some cases [8], [11],
DSLs and custom IRs work at a higher level of
abstraction and eventually map to LLVM IR. How-
ever, the implicit memory access and loop con-
trol characteristics of stream-based extensions are

4 IEEE Micro

present on a lower level of abstraction than the
IR and, as such, are themselves fundamentally
incompatible with its operation. In fact, explic-
itly removing load/store instructions and induction
variables from the loop would not only invalidate
its iteration (since a trip count could not be kept)
but would also make the computation code invari-
ant (since the source input/output values would
be eliminated), effectively turning the loop into
dead code, resulting in its later elimination during
IR optimization.

Nonetheless, it is still possible to take advan-
tage of the IR loop canonical form to detect mem-
ory access patterns and encode data streams, as
demonstrated by the SSR supporting toolchain [5].
Although SSR only supports constant-strided
patterns, the underlying mathematical model of
UVE [7] hints that it is possible to take a step
further. In fact, since our model is based on the
same affine relations that are used to canonicalize
loops, it can not only be used to encode much more
complex multi-dimensional, induction-dependent,
and indirect memory access patterns, but also
used as a reference to detect the combinations
of induction variables that match those patterns.

Hence, our proposed compilation flow relies
on a dedicated pass that uses the model from
Equation 1 to extract all the loop information
from the IR. It operates outside the typical
compilation pipeline (as depicted in Fig. 2.C)
to perform stream encoding, stream-based code
transformations, and apply stream vectorization
without being limited by the SSA form. The
code is then compiled to UVE and linked to the
remaining compiled code.

COMPILATION FLOW FOR
STREAM-BASED VECTOR EXTENSIONS

Our proposed compilation flow (see Fig. 2.C)
is fully implemented as an LLVM IR analysis
and transformation pass. It works by analysing
an application kernel represented in LLVM IR
to encode each loop’s data streams and ob-
tain the corresponding computational DFG. The
obtained information is then used to perform
stream vectorization and generate UVE machine
code. To fully take advantage of the LLVM
IR, we let the compiler run all the passes that
fully optimize the code, but without running
any form of vectorization or loop unrolling

(by using flags -O3 -fno-unroll-loops
-fno-vectorize). This way, we ensure that all
loops and induction variables are in the canonical
form and that loop-invariant code motion is
applied.

Memory Access Pattern Detection
The proposed flow starts by analysing the

optimized IR of an application kernel to detect its
loop hierarchy and control-flow, by making use
of the built-in LLVM IR functions.

Data streams are detected and encoded to
descriptors with an initial search for load/store
instructions in the loop structure, while marking
them as stream candidates. Then, for each can-
didate, we perform a Depth-First Search (DFS)
trace to find the corresponding GetElementPtr
(GEP) instruction and its corresponding offset and
induction variable. With this reference pair, two
dependency analyses are performed to: i) identify
the relation between the induction variable and
the loop control, obtaining its iteration parameters
according to the affine model of Equation 1; ii)
relate the offset with other induction variables
(higher data pattern dimensions) or other load/store
instructions (access indirection).

Each stream candidate is analysed to validate
if stream vectorization is possible. In particular, if
aliasing can occur between two (or more) memory
accesses, the tool discards them as stream candi-
dates to avoid intersections between streams. Sim-
ilarly, the presence of loop-carried dependencies
(e.g., read-after-write memory accesses) will also
cause stream candidates to be discarded, since they
are not susceptible to vectorization. Although they
could be translated to scalar streams, new stream
coherence mechanisms currently not supported by
stream-based extensions would be required [5],
[7].

When considering the trace performed over
the induction variables, several situations may
occur that immediately dictate the type of memory
access pattern present in the loop. The most
common scenario is the detection of a purely affine
iteration, where the variable’s initial value and
limit are statically defined outside the loop, and
the step is found by tracing the parent phi and add
instructions. This results in a straightforward n-
dimensional descriptor encoding (as illustrated in
Fig. 3.A1). However, in the presence of induction-

December 2021 5

Department Head

Figure 3. Illustration of each step of the LLVM IR pass that implements our proposed compilation flow, including
depictions of (A) the memory access pattern detection (multi-dimensional, induction-, and data-dependent) and
stream encoding schemes; and (B) the vectorization and code generation procedures.

6 IEEE Micro

variable dependencies, the trace will detect a
dependency between the phi node of an outer loop
and the phi node of the induction variable. This
indicates that either the initial or limit values of the
induction variable are generated by an induction
variable of an outer loop (see Fig. 3.A2). In this
case, the descriptor encoding will be performed
with static modifiers to represent the evolution
of the induction variable interval over the loop
iteration.

Finally, a data-dependency between an induc-
tion variable and another load instruction translates
into an indirection between another stream and
the induction variable’s limits (see Fig. 3.A3). In
this case, it is necessary to encode the output
data as input of another stream with the aid of
an indirect descriptor modifier. Similarly, depen-
dencies can also occur between the offset and
another load instruction. Such a scenario occurs
when the original application code defines multi-
dimensional accesses with pointer table structures
(e.g., A[i][j]) instead of affine relations between
indexing variables (e.g., A[i × sizeJ + j]). In
this case, the stream is also encoded with indirect
modifiers linking the output of the outer loop
stream to the offset of the inner loop stream (see
Fig. 3.A3).

Stream-based Vectorization
As previously discussed, our mathematical

model allows the stream descriptors generated
by the initial analysis step to effectively linearize
multi-dimensional and indirect memory accesses.
As such, vectorization is functionally achieved
by allowing stream data to fill stream registers.
However, it is necessary to ensure the synchroniza-
tion between dimension iterations of each stream,
according to the nesting level of the original data
access and that of the corresponding computation.

Hence, an analysis is performed that detects
the data flow of the computation between streams,
matching it to their loop nesting level. This
is done by building a DFG between the origi-
nal scalar load/store instructions corresponding
to each stream (see Fig. 3.B2). To ensure its
correct computation flow, the DFG is checked
for conditional control paths (indicated by an
IR select instruction). If found, the paths are
fused through the generation of the corresponding
masking and predication instructions, latter applied

to the final vector instructions. Then, vectoriza-
tion is applied by synchronizing the iteration
of descriptor dimensions that correspond to the
induction variable of the lower nesting level of
the loop. If required, the DFG is transformed by
including scatter-gather operations to move data
between vectorized and scalar streams (which are
only affected by higher nesting level induction
variables). Fig. 3.B2 illustrates the process of
moving a non-vectorized stream access outside
the loop and the introduction of a vector-to-scalar
reduction operation to gather the loop result vector.
Finally, when transformations are applied to the
DFG, any streams that are moved in/out of the
loop have their descriptors adjusted accordingly
(see Fig. 3.B3).

After this procedure, the transformed DFG
and stream descriptors are passed to the code
generation phase of the proposed compilation flow.

Code Generation
The final stage of the proposed flow is re-

sponsible for translating the accelerated loops to
UVE instructions. First, all loops where stream
vectorization can be successfully applied are
extracted into new functions (with built-in LLVM
IR tools). Then, they are individually compiled
for UVE [7].

At this stage, the code generation step operates
by first encoding all stream descriptors with the
corresponding UVE instructions, placing them in
the correct loop preambles, according to the loop
hierarchy. The DFG generated in the previous
step is then used to build the corresponding UVE
computation loop. This is done by generating the
stream computing instructions corresponding to
each operation and wrapping the loop with branch
instructions tied to the correct stream dimensions,
and according to the performed locality synchro-
nization.This process is illustrated in Fig. 3.B.

Finally, the generated UVE code for each
stream-vectorized loop is linked back to the
remaining application code, which is compiled
with the typical compilation flow (see Fig. 2.C).

EVALUATION
The proposed compilation flow was fully

implemented in the LLVM 10.0.1 compiler in-
frastructure as an IR pass.

December 2021 7

Department Head

We evaluated the proposed compilation tool
by comparing it with the data stream detec-
tion and encoding capabilities of the SSR com-
piler [5], and with the vectorization capabili-
ties of the ARM SVE Compiler (configured
with flags -O3, -march=armv8-a+sve and
-fsimdmath). Comparisons against ARM SVE
are done by using out-of-order processor setups
(see Fig. 5.A) featuring 512-bit vectors, modeled
using modified versions of the Gem5 simulator [7],
[12]. A representative set of benchmarks from
several application domains was used, as char-
acterized in Fig. 4.A. When compiled with the
proposed tool, all benchmarks resulted in assembly
codes equivalent to the manual implementations
from the originalUVE evaluation [7].

Data Streaming and Vectorization Comparison
The base mathematical model of the proposed

compilation flow allows a significant coverage
regarding the detection and description of mem-
ory access patterns. This is emphasized when
comparing our tool with the SSR compilation
flow [5] (see left column of Fig. 4.B), as SSR
is only capable of streaming up to 4D access
patterns with constant strides. Conversely, our
mathematical model allows to describe induction
and data dependencies in the form of inter-loop
induction variable relations and indirect memory
accesses. Such capabilities allow the proposed
tool to accelerate a much broader range of loop
hierarchies and enable vectorization, as it is often
hardly done by existing compilers.

To highlight such advantages, the proposed
tool was also compared with the ARM Compiler,
which fails to vectorize five benchmarks (see
Fig. 4.B), namely Seidel-2D, MAMR (both vari-
ants), Covariance and Floyd-Warshall.
Conversely, the proposed tool is capable of
handling the higher loop complexities of these
benchmarks and achieve vectorization. This is a
direct result of the memory access linearization
that occurs with the introduction of the UVE data
streaming paradigm.

Performance Comparison
The performance results (speed-up) presented

in Fig. 4.C show that the compiled UVE code
provides an average performance advantage (as
high as 2.4×) over the ARM SVE (considering

only the vectorized benchmarks). These gains
result from two main contributions: i) significant
code reductions (see Fig. 4.D), with an average
60.9% less committed instructions than ARM
SVE; and ii) the streaming infrastructure, which
significantly reduces the load-to-use latency and in-
creases the effective memory hierarchy utilization.
These advantages also contribute to a consequent
reduction of the pipeline stalls, particularly at the
rename stage. In fact, by decreasing the number
of instructions in the code, UVE alleviates the
pressure at the reorder-buffer and issue queue. On
the other hand, by reducing the load-to-use latency,
UVE allows incoming instructions to leave the
pipeline earlier, decreasing the pressure on the
physical register file.

Such advantages are particularly highlighted
when considering that the proposed compilation
tool allows to vectorize a much wider range of
applications than the ARM Compiler. In particular,
they allow the UVE ecosystem to produce as much
as 17× performance improvements over ARM
SVE for the subset of benchmarks which the ARM
compiler was not able to vectorize (see Figs. 4.B
and C).

CONCLUSIONS
The recent resurgence of data streaming and

data-flow paradigms on general-purpose contexts
opened space for a new era of computing accelera-
tion. However, their sustained viability can only be
assured with the development of proper compila-
tion support. Nevertheless, modern compilers still
struggle to handle the unconventional data-flow
and data-streaming execution models, generally
incompatible with the SSA form often used by
compiler IRs. To circumvent this limitation, we
propose a new alternative compilation flow that
leverages the LLVM IR to analyze a loop memory
access patterns and data-flow graphs. With the
gathered information, we obtain a high-level
data streaming representation that can be directly
compiled for stream-based vector extensions and
linked to conventional machine code.

APPENDIX A - UNLIMITED VECTOR
EXTENSION

The main aim of the recently proposed Unlim-
ited Vector Extension (UVE) is the combination
of VLA processing with data streaming in mod-

8 IEEE Micro

Speed-up
(vs. ARM scalar)

1
0 4 8 12 16

21.8

18.5

DYNAMIC

PROGR.

A
L
G

E
B

R
A

S
T
E
N

C
IL

Memcpy

M
E
M

.
B

L
A

S

N-BODY

STREAM

SAXPY

GEMM

3MM

MVT

GEMVER

Jacobi-1D

Jacobi-2D

Seidel-2D

MAMR

HACCmk

Floyd-Warshall

Trisolv

D
A
T
A

 M
IN

IN
G

KNN

#
S

tr
e
a
m

s

#
K

e
r
n

e
ls

M
a
x
.

L
o
o
p

N

e
s
ti

n
g

M
e
m

o
r
y

A
c
c
e
s
s

P
a
tt

e
r
n

MAMR-Diag

Covariance

1

10

3

4

3

8

17

8

12

10

2

3

4

5

3

2

8

3MAMR-Ind

1

4

1

3

3

2

4

2

2

1

1

1

1

1

1

1

3

1

1

2

1

1

3

2

2

1

2

2

2

1

3

2

2

2

3

2

1D

2D

1D

4D

4D

2D

2D

1D

2D

2D

2D

1D

4D

2D + SM

2D + IM

2D + SM

4D + SM

2D + IM

C.

SM - Static Modi er IM - Indirect Modi er

S
S

R

D
e
te

c
ts

S
tr

e
a
m

s Commited Instructions
(vs. ARM scalar)

D.

49.8%

100%0% 6% 12% 24%

S
V

E

V
e
c
to

r
iz

e
sA.

Benchmark
Suite

B.
Pattern
Support

B

C

D

E

F

G

H

I

J

K

L

A

M

N

O

Q

R

P

100%0% 6% 12% 24%

21.5

0 4 8 12 16

B

C

D

E

F

G

H

I

J

K

L

A

M

N

O

Q

R

P

STENCIL

B

C

D

E

F

G

H

I

J

K

L

A

M

N

O

Q

R

P

ARM SVE

UVE

ARM SVE

UVE

P
r
o
p

o
s
e
d

S
o
lu

ti
o
n

B

C

D

E

F

G

H

I

J

K

L

A

M

N

O

Q

R

P

Figure 4. Characterization of the adopted benchmark set regarding (A) loop structure and memory access
pattern, (B) SSR stream detection and SVE vectorization coverage, (C) UVE performance, and (D) code
reductions (measured in number of committed instructions during execution).

Figure 5. System overview, depicting (A) the system model configuration parameters (based on public information
about the ARM Cortex A76, and both [1], [7]), and (B) the system architecture featuring the UVE Streaming
Engine embedded in an out-of-order core and its connections to the memory hierarchy. The Streaming Engine
parameters are specific for UVE, with the remaining being common to UVE, baseline (ARM) and SVE.

ern general-purpose processors (RISC-V based),
providing significant performance improvements

over the state-of-the-art counterparts (e.g., ARM
SVE). UVE essentially allows to describe data

December 2021 9

Department Head

streams with specific instructions, as illustrated in
Fig. 3.B1 and explained in the next subsections.
A detailed specification can be found in [7].

Instruction Set Architecture
UVE is a scalable vector extension with sup-

port for all conventional data types, from byte
to double-word, and the usual set of operations
provided by RISC-V. Besides the natural adoption
of a vector register file, it includes 32 predicate
registers (allowing per-lane execution control and
enabling control-dependent memory accesses), as
well as a streaming interface that provides effec-
tive and timely prefetching of data, while facili-
tating vectorization by linearizing non-coalesced
memory accesses. Each data stream is implicitly
associated with a specific vector register, allowing
any instruction to transparently consume data from
(or produce to) the corresponding stream. As such,
the progression/iteration of streams is automatic
and happens after each interaction with the vector.
With the adopted register predication, the boundary
conditions of vector processing are automatically
solved by disabling the outbound elements. This,
in turn, allows loop control to be performed with
only a basic set of stream-conditional branches.

The stream model is defined by using a hierar-
chical descriptor-based representation. It encodes
each dimension of the affine formulation defined
in Equation 1 in a set of dedicated instructions (see
Fig 3.B1-Code Generation), while also providing
mechanisms to combine multiple functions and to
allow for complex and indirect access patterns.

Microarchitecture Baseline
To support UVE, the processor pipeline ag-

gregates a dedicated Streaming Engine (Fig. 5)
besides minor adaptations to its architecture. In
particular, the decode stage, the register file, and
some execution units are extended to support
the UVE instruction-set extension, embracing
new vector registers and the corresponding logic,
arithmetic and branch functional units. Stream re-
naming (analogous to vector register renaming) is
introduced to support the speculative configuration
of new streams while others (with the same logical
naming) are still executing. In the commit stage,
it is added support for the commit and squash of
streams, by signaling the Streaming Engine with
all miss-speculation and commit events related

to the streams under processing (configuration,
iteration, and termination).

The Streaming Engine itself is responsible for
managing the state of the streams and issuing
memory requests. It consists of: i) a Stream
State Management block, where the state is
synchronized with the pipeline speculation state;
ii) multiple Address Generation Units (AGUs),
which process the configured streams into the
respective addresses (in parallel), issuing them
to the core load/store unit (LSU); iii) a set of
Load and Store FIFOs that buffer data between
the core and memory, providing lower latency in
the accesses.

The speculation state is synchronized between
the relevant pipeline stages and the streaming
engine, transparently embedding the latter, and
ensuring that data is always processed in the
program order with all data dependencies satisfied.
The stream iteration process (after each read/write
from/to a stream register) is handled through the
iteration of the streaming engine FIFOs, where
both speculative and effective (committed) states
are present. Finally, to minimize the impact on
caches and avoid the inclusion of additional L1
access ports, input/output stream requests are
merged with conventional memory loads and
stores, before accessing the L1 (see Fig. 5).

Acknowledgements
This work was partially supported by

national funds through Fundação para a
Ciência e a Tecnologia (FCT) under projects
UIDB/50021/2020, UIDB/EEA/50008/2020, and
PTDC/EEI-HAC/30485/2017, and by funds from
the European Union Horizon 2020 Research and
Innovation programme under grant agreement No.
101036168.

REFERENCES
1. N. Stephens et al., “The ARM Scalable Vector Extension,”

IEEE Micro, vol. 37, pp. 26–39, 3 2017.

2. A. Waterman and K. Asanovic, “RISC-V ”V” Vector

Extension,” tech. rep., RISC-V Foundation, 2019.

3. A. Pohl et al., “A performance analysis of vector length

agnostic code,” in International Conference on High

Performance Computing & Simulation (HPCS), pp. 159–

164, 2019.

4. Z. Wang and T. Nowatzki, “Stream-based Memory

Access Specialization for General Purpose Processors,”

10 IEEE Micro

in ACM/IEEE 46th Annual International Symposium on

Computer Architecture (ISCA), pp. 736–749, 2019.

5. F. Schuiki et al., “Stream Semantic Registers: A

Lightweight RISC-V ISA Extension Achieving Full Com-

pute Utilization in Single-Issue Cores,” IEEE Transac-

tions on Computers, vol. 70, no. 2, pp. 212–227, 2021.

6. N. Neves et al., “Adaptive in-cache streaming for effi-

cient data management,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 25, no. 7,

pp. 2130–2143, 2017.

7. J. M. Domingos et al., “Unlimited vector extension with

data streaming support,” in ACM/IEEE 48th Annual

International Symposium on Computer Architecture

(ISCA), pp. 209–222, 2021.

8. T. Nowatzki et al., “Stream-dataflow acceleration,” in

ACM/IEEE 44th Annual International Symposium on

Computer Architecture (ISCA), pp. 416–429, 2017.

9. A. E. Şuşu, “A vector-length agnostic compiler for the

connex-s accelerator with scratchpad memory,” ACM

Transactions on Embedded Computing Systems (TECS),

vol. 19, no. 6, pp. 1–30, 2020.

10. A. Brahmakshatriya et al., “Taming the zoo: The unified

graphit compiler framework for novel architectures,” in

ACM/IEEE 48th Annual International Symposium on

Computer Architecture (ISCA), 2021.

11. C. Lattner et al., “Mlir: Scaling compiler infrastructure

for domain specific computation,” in IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization

(CGO), pp. 2–14, IEEE, 2021.

12. N. Binkert et al., “The gem5 simulator,” ACM SIGARCH

Computer Architecture News, vol. 39, p. 1, 8 2011.

Nuno Neves is a Researcher with INESC-ID and
Instituto Superior Técnico, Universidade de Lisboa,
Portugal. His research interests include data stream
computing, domain-specific accelerators and compil-
ers. He is a Member of the IEEE. Contact him at
nuno.neves@inesc-id.pt.

Joao Mario Domingos is a Researcher with
INESC-ID. His research interests include computer
architectures and high-performance computing. He
is a Student Member of IEEE. Contact him at
joao.mario@tecnico.ulisboa.pt.

Nuno Roma is an Associate Professor with In-
stituto Superior Técnico, University of Lisbon, Por-
tugal, and a senior researcher with INESC-ID. His
research interests include computer architectures
and high-performance computing. He is a Senior
Member of both IEEE and ACM. Contact him at

Nuno.Roma@inesc-id.pt.

Pedro Tomás is an Associate Professor with Instituto
Superior Técnico, University of Lisbon, and a senior
researcher with INESC-ID. His research interests in-
clude energy-efficient and high-performance computer
architectures and systems. He is a Senior Member of
IEEE. Contact him at pedro.tomas@inesc-id.pt.

Gabriel Falcao is a Tenured Assistant Professor with
the University of Coimbra, and a Researcher with In-
stituto de Telecomunicações. His research interests in-
clude parallel computer architectures, energy-efficient
processing, GPU- and FPGA-based accelerators,
and compute-intensive signal processing applications.
Gabriel is a Senior Member of the IEEE. Contact him
at gff@co.it.pt.

December 2021 11

	Stream Specializations and UVE
	Compiler Support for Data Streaming
	Compilation Flow for Stream-based Vector Extensions
	Memory Access Pattern Detection
	Stream-based Vectorization
	Code Generation

	Evaluation
	Data Streaming and Vectorization Comparison
	Performance Comparison

	Conclusions
	Appendix A - Unlimited Vector Extension
	Instruction Set Architecture
	Microarchitecture Baseline

	REFERENCES
	Biographies
	Nuno Neves
	Joao Mario Domingos
	Nuno Roma
	Pedro Tomás
	Gabriel Falcao

