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The use of GPUs to accelerate DNN training and inference is already widely adopted, allowing for 
a significant performance increase. However, this performance is usually obtained at the cost of a 
consequent increase in energy consumption. While several solutions have been proposed to perform 
voltage-frequency scaling on GPUs, these are still one-dimensional, by simply adjusting the frequency 
while relying on default voltage settings. To overcome this limitation, this paper introduces a new 
methodology to fully characterize the impact of non-conventional DVFS on GPUs. The proposed approach 
was evaluated on two devices, an AMD Vega 10 Frontier Edition and an AMD Radeon 5700XT. 
When applying this non-conventional DVFS scheme to DNN training, the obtained results show that 
it is possible to safely decrease the GPU voltage, allowing for a significant reduction of the energy 
consumption (up to 38%) and of the EDP (up to 41%) on the training procedure of CNN models, with 
no degradation of the networks accuracy.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

In the last few years, Deep Neural Networks (DNNs) have had a 
significant impact on industry and society, by allowing for impor-
tant breakthroughs in many application domains, including com-
puter vision, speech recognition, natural language processing, drug 
discovery, genomics, etc. [20]. However, although the end-user per-
ception of DNNs is most often circumscribed to their inference 
phase, before DNN models can be deployed they need to pass by a 
costly training procedure, which usually requires the use of signif-
icant computational resources, particularly when considering the 
training of very deep and complex networks, and/or when dealing 
with high dimensional data, such as images and videos.

For such purpose, researchers (and data scientists, in general) 
often rely on accelerators, to cope with the associated computa-
tional effort and reduce the processing time. Nowadays, Graphics 
Processing Units (GPUs) have emerged as the de-facto computa-
tional accelerators for the execution of DNNs, both for the training 
and inference phases. They differ from conventional CPUs by in-
cluding thousands of computing cores (Compute Units - CUs) and a 
large bandwidth memory module. As a result, GPUs are now com-
monly deployed on most supercomputers, data centers and other 
computational infrastructures related with the development and 
deployment of artificial intelligence algorithms.
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In another perspective, researchers have also been investigat-
ing and developing different software infrastructures, algorithms 
and techniques to manage and optimize the execution of DNNs on 
GPUs [13]. However, most optimization techniques neglect the en-
ergy impact of the training phase of Deep Learning (DL) models, 
usually resulting in high electricity costs.

To overcome this problem, several research works have also 
explored other solutions that allow mitigating the energy impact 
of neural network training. One particular and common approach 
relies on the use of low-precision arithmetic [14,17], eventually 
trading network accuracy with increased processing performance 
and lower energy consumption.

Researchers have also looked at other alternative approaches, 
such as the exploitation of Dynamic Voltage and Frequency Scal-
ing (DVFS) on both the inference and training phases. In fact, 
by carefully selecting the used voltage-frequency levels, signifi-
cant energy savings can be obtained, although depending on the 
considered DNN architecture and computing device [22]. This is 
achieved through a careful balance between the performance and 
power consumption of the different GPU components (particularly 
the core and global memory) in order to minimize stalls in the 
compute cores. In fact, not only can DVFS be used to decrease 
the power consumption, but it can also boost the system per-
formance [22], by increasing the voltage and frequency levels at 
certain parts of the applications (as long as the GPU total power 
envelope and thermal limits are not surpassed).
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Nevertheless, most state-of-the-art works only consider tightly 
coupled Frequency-Voltage (F-V) levels, often predefined by GPU 
manufacturers. However, these F-V levels usually neglect the volt-
age margin that is usually introduced to guarantee fail-safe de-
signs, as well as its variation with the kernel instruction sequence 
and the corresponding use of specific GPU components. Supported 
on this observation, this work starts by investigating such margins, 
by relying on a set of carefully crafted micro-benchmarks. Then, 
F-V scaling techniques are applied for the training and inference 
of state-of-the-art networks, leading to the conclusion that signif-
icant energy savings and Energy Delay Product (EDP) gains can be 
attained by working outside of the conventional range of the F-V 
levels.

In accordance, the main contributions of this work are:

• Proposal of a new methodology, and a corresponding open-
source synthetic benchmark suit,1 to fully characterize the im-
pact of F-V scaling on modern GPU architectures;

• Evaluation of the proposed methodology with two different 
GPUs (AMD Vega 10 Frontier Edition and AMD Radeon 5700 
XT), leading to the observation that both devices can be safely 
undervolted (from the default voltage setup), with the DRAM-
Cache controller and the Arithmetic and Logic Unit (ALU) be-
ing the most sensitive components to voltage drops.

• Demonstration that decoupled F-V scaling provide significant 
energy savings, but also that it can also contribute to some 
performance gains, as a side effect of the observed power sav-
ings.

• Evaluation of the introduced computational errors (due to un-
dervoltage), showing that it can be safely applied to both the 
training and inference phases of DNNs without compromising 
the networks accuracy.

The rest of the paper is organized as follows. Section 2 in-
troduces some related work on applying DVFS to DNNs and the 
background knowledge that sustains it. Section 3 describes the 
proposed methodology and demonstrates the implications of ap-
plying decoupled F-V scaling to the primary GPU architectural 
components. Section 4 outlines the application of this technique 
on different DNN layers and section 5 concludes this work.

2. Related work

Several authors have already exploited DVFS to reduce the 
GPU power consumption and attain energy savings. Different ap-
proaches have been used, most commonly by relying on perfor-
mance, power or energy consumption models (e.g., Guerreiro [4–
6], Wang [25] and Fan [1,2]) to determine the most suitable F-V 
pair to the running application. However, other alternative ap-
proaches have also been studied, such as standard machine learn-
ing techniques to predict when and how to adopt frequency scal-
ing (e.g., Guerreiro [7]), relying on performance counters gathered 
from previous executions.

Nevertheless, most of these solutions rely on tightly coupled 
F-V levels, where the voltage level is predefined by the GPU manu-
facturer and it is based on the device working operating frequency, 
with an extra voltage guardband to take into account process and 
aging variations. In contrast, this paper focuses on decoupling the 
F-V levels by investigating and then reducing the per-kernel volt-
age margins to a minimum.

Nonetheless, other works have already investigated voltage 
guardband reduction on different processors to improve energy 
efficiency. Kalogirou et al. [8] explore such a concept to reduce 

1 Available at: https://github .com /hpc -ulisboa /nonconventional -dvfs.
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the CPU consumption on cloud data centers. Papadimitriou et al. 
[16] comprehensively characterized the voltage guardbands in dif-
ferent ARM processors to predict the minimum working voltage 
using performance counters across different types of applications. 
Nakhaee et al. [15] exploit the properties of error-resilient applica-
tions to operate CPUs with negative guardbands, i.e., with timing 
violations that introduce insignificant errors in the application re-
sults. However, although unveiling important results, these works 
are not directly applicable to GPUs.

On the other hand, Leng et al. [10] studied the undervoltage 
effect in NVIDIA GPUs to conclude that there is a significant volt-
age guardband dependent on application kernels, which can result 
in up to 25% energy savings if reduced to a minimum. Similarly, 
Thomas et al. [23] studied the joint effect of process variations 
and voltage noise on GPU architectures and developed a solution to 
dynamically reduce the voltage margins, achieving 15% energy sav-
ings. Similarly, Tan et al. [21] investigated the impact of reducing 
the voltage guardband at the register file and developed a solution 
to make the computation viable with unreliable register files in a 
low voltage operation. However, these works did not consider the 
additional impact of frequency scaling, as it will be addressed in 
this paper, making their experimental studies at a fixed frequency.

This same problem was also investigated in Field Programmable 
Gate Array (FPGA) devices. As an example, [19] and [18] charac-
terized the BRAMs behavior, although again, disregarding the fre-
quency scaling influence.

Hence, a more ambitious exploitation of voltage and frequency 
scaling is envisaged in this paper. Contrarily to a strict application 
of conventional DVFS techniques, the research herein presented 
considers a complete detachment of the voltage and frequency 
setups to identify the most energy-efficient operation in each ap-
plication. To attain this objective, a comprehensive characterization 
of the several GPU components will be undertaken (namely the 
memories and execution units) by defining a convenient set of 
benchmarks that will allow an individual characterization of each 
component. The gathered information will then support the defini-
tion of non-conventional DVFS mechanisms that will allow a truly 
decoupled scaling of the GPU voltage and frequency. A final case 
study will be presented by applying these contributions to the op-
timization of a set of DNNs.

3. Architecture characterization with independent voltage and 
frequency scaling

To thoroughly characterize the GPU architecture sensitivity to 
decoupled F-V scaling, a set of kernels was devised, which were 
carefully crafted to stress different GPU components. By following 
the workflow depicted in Fig. 1, each kernel was executed under 
different F-V configurations, exploring the range of possible fre-
quencies and voltages (coined as Usable Exploration Space - UES). 
This allows determining the frequency-dependent minimum oper-
ating voltage that (still) leads to a correct GPU operation (Vmin) 
and to understand the impact of independent voltage scaling on 
performance and energy consumption. The kernels, presented in 
Table 1, are described in the following subsections and are avail-
able as open source at https://github .com /hpc -ulisboa /
nonconventional -dvfs.

3.1. Characterization benchmarks

The devised benchmarks individually characterize the differ-
ent components of the two main F-V domains (global memory
and core), namely: DRAM, Shared Memory, L2 Cache, and ALU. 
The ALU experiments cover both Multiply and Accumulate (MAC) 
and non-linear operations, as well as the impact of branches. Ev-
ery benchmark was tested for multiple data types by replacing a

https://github.com/hpc-ulisboa/nonconventional-dvfs
https://github.com/hpc-ulisboa/nonconventional-dvfs
https://github.com/hpc-ulisboa/nonconventional-dvfs
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Fig. 1. Overview of the conducted methodology and its objective outputs.

Table 1
Devised set of kernels to characterize GPU to Non-Conventional DVFS.

Micro-kernels Data Type Objective

DRAM FP32, INT32 Minimum Read & Write voltage, bit-flip, data-corruption

Cache L2 INT32 Minimum Read & Write voltage, data-corruption
Shared Memory INT32 Minimum Read & Write voltage, data-corruption
ALU FP64/32/16, INT64/32/16/8 Computation errors due to timing violations
SFU FP64/32/16 Computation errors due to timing violations
Branch Minimum voltage for correct scheduling operation

Mix (reduction) FP64/32/16 Evaluates the simultaneous impact of stressing multiple GPU components
DATA_TYPE placeholder with standard integer, single and double 
precision floating-point types. However, due to space limitations, 
only the experimental results that reveal a greater sensitivity to 
Vmin will be herein reported, corresponding to DRAM, Cache, and 
MAC.

Finally, it will also be evaluated a coarser and more representa-
tive kernel in many GPGPU applications - the reduction - simulta-
neously stressing multiple architectural components.

3.1.1. DRAM
The DRAM benchmark (see Listing 1) was devised (and vali-

dated through GPU counters) to determine the memory sensitivity 
to decoupled F-V scaling. In this benchmark, including a single ker-
nel, each thread is responsible for accessing the global memory 
and retrieving two values. The accesses are defined to guarantee 
coalescing between threads and ensure a high memory through-
put. These two values are summed and placed on an output vector. 
A constant value (C ) determines the distance between accesses, 
and its value is sufficiently large to guarantee that the new data to 
be fetched is not present on the local caches. For each data fetch, 
the OPS parameter controls the number of arithmetic operations 
to be performed before the data is placed on the DRAM again. A 
lower OPS value results in a more memory intensive kernel, even-
tually leading to a memory bound kernel. In contrast, a higher OPS
results in a less memory intensive kernel and, since the memory 
accesses become more spaced in time, eventually results in a com-
pute bounded kernel.

Listing 2 renders a benchmark that was specifically designed to 
evaluate the occurrence of the bit-flip phenomenon and the preser-
vation of the data in memory when exposed to undervoltage. A 
bit-flip is an unintentional state switch (from 0 to 1, or vice versa) 
of any individual bit stored on a DRAM or other kinds of volatile 
memories. Kim [9] exposed the existence of bit-flipping on CPU 
DRAM, induced by the continuous activation of a DRAM row, try-
ing to corrupt the data in near-by rows. The benchmark presented 
34
on Listing 2 is a GPU implementation of the rowhammer2 bench-
mark, which was specifically developed by Google to test this exact 
problem, and was used here to assess if undervolting the GPU in-
creases the possibility of bit-flipping.

For the considered memory tests (DRAM, Cache and Shared 
Memory), only the integer data type was considered, since the ef-
fects on memory are the same for floating-point operations and it 
is easier to identify data corruption with integer data types.

3.1.2. Cache
Even though the caches are part of the memory subsystem, 

they are under the core F-V domain. The devised benchmark, pre-
sented in Listing 3, follows a similar stressing pattern to Listing 1. 
However, it includes an addition external loop on variable k, which 
ensures that after the first execution the data is available on one of 
the two levels of cache. Hence, this kernel is able to test both the 
state machines responsible for cache management and communi-
cation with the DRAM (as verified by relying on GPU counters).

For this benchmark, the number of issued requests to the cache 
and to the DRAM-cache controller stays the same independently 
of the OPS value. However, the frequency of those requests is in-
versely proportional to OPS.

3.1.3. Shared memory
The benchmark devised to characterize the Shared Memory is 

presented in Listing 4. This component is shared between threads 
in the same compute unit (CU) and it is used to ensure the com-
munication between the different executing threads. Hence, the 
developed benchmark uses this component to move data around. 
Similarly to the DRAM and cache kernels, the OPS parameter con-
trols the distance between memory requests, allowing to control 
the level of stress over this component. To guarantee a correct 
and repeatable execution, the synchronization directive __sync-

2 github .com /google /rowhammer-test.

http://github.com/google/rowhammer-test
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void DRAMcode(DATA_TYPE *IN0, DATA_TYPE *IN1, DATA_TYPE *OUT) {
const int ite = (blockIdx.x * THREADS + threadIdx.x) % MEM_BLOCK;
volatile register DATA_TYPE r0;

#pragma unroll
for (int i = 0; i < N; i++) {

r0= IN0[i * C + ite] + IN1[i * C + ite];
#pragma unroll
for(int j = 0; j < OPS; j++) asm volatile ("");
OUT[threadId] = r0;

}
}

Listing 1: DRAM Benchmark Code.

void DRAMstresser(DATA_TYPE *IN, DATA_TYPE *OUT) {
const int ite = threadIdx.x;
volatile register DATA_TYPE r0;

// Initiate output memory
OUT[ite] = IN[ite];
OUT[ite + THREADS * BLOCKS] = IN[ite + THREADS * BLOCKS];

for (int i = 0; i < N; i++) {
r0 = IN[ite];
#pragma unroll
for(int j = 0; j < OPS; j++) asm volatile ("");
OUT[ite] = r0;

}
}

Listing 2: DRAM Bit-Flip Stress Test Code - rowhammer inspired benchmark.
void CacheL2code(DATA_TYPE *IN, *OUT) {
const int ite = blockIdx * THREADS + threadIdx;
volatile DATA_TYPE r0;

for (k=0; k<N; k++) {
#pragma unroll
for(j=0; j<COMP_ITE; j++) {

r0= IN[ite];
#pragma unroll
for(m=0; m<OPS; m++)

asm volatile ("");
OUT[ite] = r0;

}
}

}

Listing 3: CacheL2 Benchmark Code.

void SharedMemorycode(DATA_TYPE *IN, DATA_TYPE *OUT) {
__shared__ DATA_TYPE shared[THREADS];
const int ite = blockIdx * THREADS + threadIdx;
const int t = threadIdx.x;
const int tr = THREADS - t - 1;
volatile register DATA_TYPE r0 = IN[ite];

for (int i = 0; i < N; i += UNROLL_ITE) {
#pragma unroll
for(int j = 0; j < UNROLL_ITE; j++)

shared[t] = r0;
__syncthreads();
for(int k = 0; k < OPS; k++)

asm volatile ("");
r0 = shared[tr];
__syncthreads();

}
OUT[ite] = r0;

}

Listing 4: Shared Memory Benchmark code.

threads() is used to synchronize all the threads that use the 
same shared memory.

3.1.4. MAC
Listing 5 presents the devised benchmark to stress the ALU. A 

greater emphasis was devoted to the MAC operation, due to its 
prevalence in the DL domain. It is expected that some computa-
35
void ALUcode(DATA_TYPE *IN, *OUT) {
const int ite = (blockIdx*THREADS+threadIdx)*4;

volatile DATA_TYPE r0, r1, r2, r3, r4, r5;
r0=IN[ite]; r1=IN[ite+1]; r2=IN[ite+2];
r3=IN[ite+3]; r4=IN[ite]; r5=IN[ite+1];

for(j=0; j<COMP_ITE; j++) {
r0 += r0 * r{(0-d)%4}; r1 += r1 * r{(1-d)%4};
r2 += r2 * r{(2-d)%4}; r3 += r3 * r{(3-d)%4};
r4 += r4 * r{(4-d)%4}; r5 += r5 * r{(5-d)%4};

}
OUT[ite/4] = r0;

}

Listing 5: ALU Benchmark Code.

tional errors may occur when overly undervoltage is applied to 
this component, due to timing violations across the critical path. 
Another factor under test is the influence of dependencies in the 
code, as these may influence how the warp scheduler orders the 
threads for execution on the CUs. Since DL workloads are usually 
characterized by massive levels of parallelism, which translates to 
a high number of warps per block, the benchmark was devised 
to mimic this situation. The benchmark can also be used to study 
the influence of different dependencies that can exist in the appli-
cation, by assigning a value between 0 and 5 to variable d. When
d=0, no dependencies exist in the code. The setup with d=1 repre-
sents the worst-case scenario, since it introduces Read-after-Write 
(RaW) dependencies between all operations. This particular depen-
dency setup was emphasized in the presented study, due to the 
variability of kernels executed by DL workloads. On the other hand, 
the setup with d=3 was considered a general case, with a medium 
level of dependencies still existing in the code.

3.1.5. Non-linear operations
Besides the MAC operation, the ALU also computes a set of non-

linear functions, including exponential, logarithmic and trigono-
metric operations. For such purpose, it uses the Special Function 
Unit (SFU). The devised benchmark, presented in Listing 6, tests 
those operations to find if the undervoltage mechanism, when in 
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void NonLinearcode(DATA_TYPE *IN, DATA_TYPE *OUT) {
const int ite = (blockIdx * THREADS + threadIdx) * 4;
volatile DATA_TYPE r0, r1, r2, r3;

r0=IN[ite]; r1=IN[ite+1]; r2=IN[ite+2]; r3=IN[ite+3];

for(j=0; j < N; j+= UNROLL_ITE) {
#pragma_unroll
for(j=0; j < UNROLL_ITE; j++) {

r0 = exp(r2);
r1 = cos(r3);
r2 = log(r0);
r3 = sin(r1);

}
}
OUT[ite/4] = r0;

}

Listing 6: Non-linear Operations Benchmark Code.

use, introduces some modifications in the critical path and so, neg-
atively influences the guardband size.

3.1.6. Branches
Listing 7 presents the benchmark devised to test the DVFS in-

fluence on the execution of branches on a kernel, as these may 
cause divergence between threads and/or break the execution flow. 
In this listing, the #define BRANCHES directive sets the desired 
number of branches to test, with the corresponding value being 
defined from the set {1,2,4,8}.

3.1.7. Reduction
The reduction benchmark, presented in Listing 8, performs 

the reduction of a N-sized vector to N/blockDim elements, by per-
forming an element-wise sum. The tested implementation of this 
operation is considered the one that achieves the highest perfor-
mance, and so, it is the most widely used. It makes use of the 
shared memory to enable inter-thread communication and im-
prove performance. Hence, this benchmark stresses all elements 
of the architecture (DRAM, Cache, shared memory and ALU) and 
allows to assess a more complex use-case, where a single kernel 
stresses multiple architectural units.

3.2. Non-conventional DVFS experimental setup

The devised benchmarks were applied to characterize two AMD 
GPUs from different architectural generations: the AMD Vega 10 
Frontier Edition (GNC5) and the AMD Radeon 5700 XT (RDNA), 
whose specifications are presented in Table 2. The sole inclusion 
of AMD devices comes from the reduced availability of drivers and 
convenient software APIs from other manufacturers (e.g., NVIDIA) 
for an independent and decoupled control over the GPU frequency 
and voltage. In accordance, the GPU vendor rocm-smi3 tool was 
used to set an independent and decoupled control over the fre-
quency and voltage levels applied to these devices. Moreover, to 
ensure that the GPU power cap does not limit any of the intended 
configurations, its value was changed to match each GPU thermal 
design cap (220W to 300W for the Vega 10 and 190W to 285W 
on the Radeon 5700 XT). The GPUs under test were installed on a 
machine equipped with an Intel i7 4770K CPU, with 32 GB of main 
memory.

The default frequencies of the GPU Core and DRAM domains, 
presented in Table 2, were selected as the starting points for the 
non-conventional DVFS. For each considered DVFS configuration, 
the benchmarks were executed ten times to obtain the median 
value of the execution time and energy consumption.

It is worth noting that the Radeon 5700 XT GPU does not have 
a DVFS DRAM domain, applying always the same frequency and 

3 github .com /RadeonOpenCompute /ROC -smi.
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voltage level on that component. For each frequency, the devised 
experiments on this particular GPU device starts at the maximum 
voltage (1200mV ) and a gradual undervoltage of the F-V domain 
under test is applied with 50mV steps.

To avoid any bias incurred by the considered data values, all 
the tests were performed using randomly generated inputs. Integer 
values were obtained from a normal distribution across their com-
plete 32-bits range. Floating-point operands were generated using 
an uniform distribution in the interval [0.1 ; 1]. This ensures that 
operations are never applied to numbers with a significantly dif-
ferent exponent value, thus avoiding rounding errors that would 
conduct to the discard of the operator with the lowest absolute 
value.

While performing the undervoltage, the GPU goes through three 
distinct stages. At the first stage (working), the GPU works regu-
larly and no changes are detected in the application output. Then, 
by continuing the reduction of the GPU voltage level, some compu-
tational errors are observed and some application outputs change 
when compared with the default voltage setup. By continuing re-
ducing the GPU voltage beyond this stage, the GPU enters into the 
crash state, becoming unusable.

To accurately determine the GPU crash point, the undervoltage 
step was reduced to 10mV when computation errors start occur-
ring. Furthermore, when dealing with the DRAM F-V domain, the 
Core F-V domain was set to its default values; during the character-
ization of the Core F-V domain, the highest frequency and default 
voltage of the DRAM was selected.

The GPU power consumption was measured using gpowerSAM-
PLER4 [4], at every millisecond. At the end of the execution, the 
energy is computed as the integral of all the measurements taken.

3.3. Characterization results

For an easier understanding of the obtained results, the fol-
lowing charts represent only the data-points that correspond to 
voltage levels equal-to and lower-than the default voltage of each 
frequency level (no interesting data is found at higher voltage lev-
els). For the Core domain, only the frequencies above and equal 
to 1440 MHz (for the Vega 10) and 1600 MHz (for the Radeon 
5700 XT) are shown in order to reduce the charts size. For all fre-
quencies below, it was found that the GPUs could be run at any 
voltage from the default to the minimum (900 mV for the Vega 
10 and 750 mV for the Radeon 5700 XT). Furthermore, the exe-
cution time, energy consumption, and energy-delay product charts 
were normalized to the results achieved at the highest core fre-
quency and default voltage level – Vega 10: (1600 MHz; 1200 mV) 
and Radeon 5700 XT: (2000 MHz; 1200 mV)) –, so that a smaller 
number indicates an improvement regarding the base configura-
tion.

3.3.1. DRAM
Fig. 2 illustrates the usable voltage range of the DRAM domain 

in the VEGA 10 GPU, together with its normalized performance and 
energy consumption when varying the OPS parameter between 
0 and 50 operations (see Listing 1). The conducted experiment 
shows that no computation error or crashes happen for the de-
fault frequencies within the complete voltage range. The kernel 
runs successfully, with no perceptible change in the output. The 
experiment also shows that for all OPS values (0 to 50), the high-
est DRAM frequency delivers not only the best performance but 
also the lowest energy consumption. Moreover, undervolting the 
DRAM at that frequency did not result in a relevant reduction in 
the total GPU energy consumption, leading to the conclusion that 

4 github .com /hpc -ulisboa /gpowerSAMPLER.

http://github.com/RadeonOpenCompute/ROC-smi
http://github.com/hpc-ulisboa/gpowerSAMPLER
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#define BRANCHES VALUE
void Branchescode(DATA_TYPE *IN, *OUT) {

const int ite = (blockIdx * THREADS + threadIdx;= % MEM_BLOCK;
const int branch = ite % BRANCHES;

volatile register DATA_TYPE r0, r1, r2, r3;

for (int i = 0; i < N; i++) {
if(branch == 0) r0 = IN[ite];
#if BRANCHES >= 4

else if(branch == 1) r1 = IN[ite];
else if(branch == 2) r2 = IN[ite];

#elif BRANCHES == 8
else if(branch == 3) r3 = IN[ite];
else if(branch == 4) r0 = IN[ite];
else if(branch == 5) r1 = IN[ite];
else if(branch == 6) r2 = IN[ite];

#elif BRANCHES >= 2
else {r3 = IN[ite];}

#endif
OUT[ite] = r0;

}
}

Listing 7: Branches Benchmark Code.

void Reduction(DATA_TYPE * idata, DATA_TYPE * odata){
__shared__ DATA_TYPE s[THREADS];
unsigned int i, k, t = threadIdx;
unsigned int index = blockIdx * blockDim * N + threadIdx;

// cooperative load from global to shared memory
s[t] = 0;
for (i=0; i< 4; i++, index += blockDim.x)

s[t] += idata[index];
__syncthreads();

// do reduction in shared memory
if(t < 64) {

s[t] += s[t+64];
__syncthreads();

}

if(tid <32){
s[t] += s[t+32]; s[t] += s[t+16];
s[t] += s[t+8]; s[t] += s[t+4];
s[t] += s[t+2]; s[t] += s[t+1];

}

// write result for this block to global mem
if(t == 0) odata[blockIdx.x] = s[0];

}

Listing 8: Reduction Kernel Code.

Table 2
Considered GPUs in the conducted experimental characterization.

Model Unit Vega 10 Radeon 5700 XT

Architecture GNC5 RDNA
CUs 64 40
DRAM size [GB] 16 8
Default Power Cap [W] 220 190
Core frequency range [MHz] [852 - 1980] [800 - 2050]
Core voltage range [mV] [900 - 1200] [750 - 1200]
DRAM frequency range [MHz] [500 - 1200] Fixed at 1000
DRAM voltage range [mV] [800 - 1200] Fixed at 1000

Default Frequency-Voltage (F-V) setups

Core [(MHz ; mV)] {(995 ; 900), (1140 ; 950), {(1200 ; 950), (1400 ; 1000),
(1350 ; 1050), (1440 ; 1100), (1600 ; 1050), (1800 ; 1100),
(1530 ; 1150), (1600 ; 1200)} (2000 ; 1200)}

DRAM [(MHz ; mV)] {(500 ; 900), (800 ;950), (950 ; 1000)} (1000 ; 1000)
37
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Fig. 2. DRAM DVFS in the VEGA 10 GPU: Normalized energy consumption, execution time and usable DRAM voltage for each frequency configuration.

Fig. 3. Core domain - Cache L2 - Usable voltage levels for each frequency configuration when varying the cache stress (O P S value).
the relative weight of the DRAM power consumption is not sig-
nificant when compared with the Core. In accordance, the highest 
DRAM frequency will be hence-forwardly considered, guaranteeing 
the maximum performance, and leaving voltage at the default lev-
els.

3.3.2. Cache
Figs. 3(a) and 3(b) present the usable voltage intervals for dif-

ferent F-V setups for the two tested GPUs when executing the 
proposed Cache L2 benchmark code (see Listing 3). Only for Core-
domain frequencies higher than 1530 MHz the applied undervolt-
age resulted in the program crash. A critical observation is that no 
computation errors occur, meaning that the Cache L2 either works 
normally or makes the GPU crash. This phenomenon is of signif-
icant importance to identify the root cause of failures: whenever 
it is observed a GPU crash without prior computation errors, the 
Cache L2 might be the preeminent component causing it. Further-
more, it is observed that an increase of the OPS parameter allows 
for a higher amount of undervolt. Since this change only affects 
the stress over the DRAM-Cache controller (the number of cache 
accesses and hit-rate remains the same), it can be concluded that 
it is the Cache-DRAM controller that limits the undervoltage range.

A similar behavior is observed for the Radeon 5700 XT GPU. For 
frequencies below 1600 MHz, it is possible to use the GPU at the 
lowest voltage level without any computation errors or crashes be-
ing observed. For higher frequencies, the GPU may crash when the 
voltage is reduced. Increasing the value of the OPS parameter (de-
creasing the Cache stress) increases the undervoltage capabilities.

In what concerns the energy and performance variations (see 
Figs. 4(a) and 4(b)), applying voltage scaling at the default fre-
quency (dashed line) allows a reduction of energy consumption as 
high as 46.1% for the Vega 10 GPU and 30% for the Radeon 5700 
XT GPU. However, this also results in a performance degradation of 
38
61% on both GPUs. Nevertheless, the advantage of performing non-
conventional DVFS becomes clear by setting the operating point to 
one of the observed configurations that provide some energy re-
duction without any performance degradation. As an example, it 
is possible to run the GPU Core at 1600 MHz and 1000 mV (the 
last operating point of the red line in Fig. 4(a)), thus achieving 
an energy reduction of 35.7% with no performance degradation. In 
the Radeon 5700 XT case, the use of non-conventional F-V pairs 
yields a minimum energy consumption that is even lower than 
the most energy-saving default F-V configuration (rightmost point 
of the black dashed line in Fig. 4(b)), with the configuration of 
{1800 MHz; 0.8V} achieving an energy consumption reduction of 
41% with only a 10% performance downgrade (last operating point 
of the orange line in Fig. 4(b)). It can also be observed that the 
greatest reduction of the energy consumption is twice the one that 
is achieved at the most energy-saving default F-V configuration.

Figs. 5(a) and 5(b) present the obtained Energy-Delay Product 
(EDP) for the L2 Cache benchmark. As it can be observed, this 
component favors the utilization of the lowest voltage levels to 
achieve an EDP improvement of over 40%. Hence, when compar-
ing the non-conventional F-V results to the default ones, it can be 
concluded that using the proposed configurations significantly im-
proves performance and energy-consumption, and so the resulting 
energy efficiency.

3.3.3. ALU
Figs. 6(a) and 6(b) represent the usable undervoltage range for 

the ALU MAC benchmark. Since most DL frameworks adopt single-
precision floating-point numbers by default, the presented results 
of the benchmark refer to this specific data type. For frequencies 
below 1440 MHz, the benchmark successfully runs for all voltage 
values. For higher frequencies, it is observed that after a certain 
amount of undervoltage, computation errors start appearing and 
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Fig. 4. Core domain - Cache L2 - Normalized energy and performance variations with OPS=0. The black dashed line connects the default F-V configurations. The colored 
arrow lines represent successive F-V operating-points that were evaluated during the undervoltage process.

Fig. 5. Core domain - Cache L2 - Obtained normalized Energy-Delay Product (EDP) with OPS=0.
the GPU crashes if further undervoltage is applied. It is also ob-
served that the voltage margin increases with the operating fre-
quency, from around 170 mV for 1440 MHz to around 210 mV 
for 1600 MHz. On the Radeon 5700 XT GPU, the ALU benchmark 
works correctly independently of the applied voltage for frequen-
cies below 1600 MHz. At higher frequencies, and similarly to what 
happens with the Vega 10 GPU, a computation error margin exists 
when undervolting, before the occurrence of crashes. Overall, the 
Radeon 5700 XT GPU allows more than 200 mV of safe undervolt-
age across the complete frequency spectrum. It is also observed 
a small reduction of the undervoltage capabilities for the d pa-
39
rameter values that incur in the existence of code dependencies 
(see Listing 5). However, when compared with the setup with no 
dependencies, the undervoltage range of the benchmark configura-
tion that represent the general case (d=3) is only reduced by 10
mV.

Figs. 7(a) and 7(b) represent the normalized (to the highest 
core domain F-V configuration) energy consumption and execution 
time of the MAC benchmark for different F-V pairs. An interest-
ing phenomenon is observed in the energy-execution time plot 
for the highest frequencies of both GPUs. Performing undervolt-
age not only reduces energy consumption (as expected), but it 
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Fig. 6. Core domain - ALU-MAC - Usable voltage margins for the different data types and operands precision.

Fig. 7. Core domain - ALU-MAC - Normalized energy and performance chart for the benchmark setup with different values of d for single precision floating-point (see 
Listing 5). The dashed lines connect the results for default F-V configurations.
also allows for a faster overall execution time. An explanation can 
be found by analyzing the power consumption during the bench-
mark execution. For the default voltage, the power surpasses the 
power cap, which activates the GPU protection mechanisms, pacing 
the execution (i.e., scaling F-V down) until the power is reduced. 
By undervolting, the power significantly decreases (as P Static ∝ V
and P D ynamic ∝ V 2, see [4]), which allows a sustained maintenance 
40
of the desired F-V configuration without activating the protection 
mechanisms.

Finally, Figs. 8(a) and 8(b) present the obtained EDP chart when 
using the single-precision floating-point data-type. It can be seen 
that while the Vega 10 GPU favors higher frequencies to achieve 
the best energy efficiency, the Radeon 5700 XT achieves better re-
sults at the frequencies where it is possible to undervolt the most.
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Fig. 8. Core domain - ALU-MAC - Obtained normalized Energy-Delay Product (EDP) for d=1,3.

Fig. 9. Core domain - Reduction benchmark - Usable voltage level for each frequency configuration with varying operand type: Int - 32-bit Integer, SP - Single-Precision 
Floating-Point, DP - Double-Precision Floating-Point.
3.3.4. Reduction
Figs. 9(a) and 9(b) present the usable voltage range for the 

reduction benchmark. As it can be seen, due to the high pres-
sure exercised on the L2 cache by this benchmark, the minimum 
usable voltage coincides with the one already measured for the 
Cache benchmark. The ALU benchmark can explain the compute 
errors range for the several data types, as well as the Vmin value 
differences, with double-precision floating-point having a greater 
margin of computational errors (on the Radeon 5700 XT) and an 
overall reduced voltage guardband at the higher frequencies on 
both GPUs.

3.3.5. General comments and remarks
Fig. 10 presents a comprehensive comparison of the valid volt-

age ranges for all the considered architectural components of both 
GPUs. The general observation is that the Cache L2 and the ALU 
are the two components that tend to compromise the undervolt-
age capabilities. Cache L2 affects the kernels that are more mem-
ory intensive, while the ALU limits those that are more compute-
intensive, either with linear or special/non-linear operations.

In more detail, the results of both benchmarks that test the ALU 
are similar. This allows concluding one of two things: either there 
41
are two similar critical paths (in terms of timing constraints) on 
both the linear and non-linear data paths; or the critical path is 
at the beginning of the ALU, where the operands are forwarded to 
the appropriate computational unit. Although it is not possible to 
assess which preposition is the correct one, the second explanation 
tends to be more credible. These conclusions will allow to under-
stand and predict the behavior of more elaborate DL applications 
(see section 4).

Fig. 10 also presents the corresponding results for branch in-
structions, which allow to conclude that branch miss-prediction 
does not negatively impact the minimum voltage.

In general, even though two completely different GPU architec-
tures are under evaluation, the general behavior of both is similar. 
At the lower frequencies, the minimum voltage can be safely ap-
plied without the introduction of computation errors or crashes. 
The utilization of undervoltage for higher frequencies will depend 
on which components the application being executed stresses the 
most. Across all frequencies, both GPUs allow for more than 20%
of safe undervoltage, being a considerable amount to be explored 
in the following section.
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Fig. 10. Comparison of usable GPU core voltage ranges for all the considered architectural components of the GPU.
3.4. Temperature model

The ALU and Cache L2 benchmarks were tested at a set temper-
ature of 45 ◦C, by fixing the GPU fan to 100% and waiting for the 
temperature to stabilize between runs. This specific temperature 
was chosen by observing that, while executing short benchmarks, 
the GPU’s temperature stabilized around this value. However, dur-
ing the execution of longer applications (or when changing the 
environmental conditions), the device can become hotter.

The work of Leng et al. [10] pointed out that only a small vari-
ation on Vmin is observed due to temperature variations. However, 
the performed experiments only covered temperature levels up to 
70 ◦C, easily surpassed by the GPU under use.

To access the undervoltage capabilities in broader temperature 
ranges, the benchmarks were continuously executed on both GPUs 
by varying the GPU fan speed, while analyzing the execution out-
put. Varying the frequency did not change the temperature be-
havior, so the results of all executions were combined in Fig. 11, 
where only the results corresponding to voltage variations were 
represented.

Hence, changing the amount of undervolt or fan speed resulted 
in the same three different output scenarios that were previously 
observed:

• Working - the benchmark’s output was correct and was the 
same as when running with conventional F-V pairs;

• Computation Errors - the benchmark’s output was not correct; 
however, the GPU was still working and responding to the ker-
nel commands;
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• Crash - the GPU stopped working and responding to the com-
mands of the application.

Overall, the undervoltage capabilities stay relatively the same un-
til the 70 ◦C to 75 ◦C temperature, with the highest undervolt-
age capabilities being achieved at the 55 ◦C mark. After the 75 ◦C 
mark, and by following Freijado’s work [3], the carriers’ mobility 
decreases and starts limiting the undervolting capabilities of the 
CMOS circuit. This result led to the definition of a simple tempera-
ture model that limits the undervoltage potential for temperatures 
above 70 ◦C, as indicated in Fig. 11. This model acts as a fail-safe 
condition that guarantees that the non-conventional F-V explo-
ration performed at 45 ◦C (as described until now) can be safely 
used across the complete temperature spectrum. Hence, the end-
user will have to limit the applied percentage of undervoltage ac-
cording to this model, depending on the current GPU temperature. 
By doing so, it guarantees that setting a safe non-conventional F-V 
pair will not cause a GPU crash as a consequence of the tempera-
ture rise.

4. CNN layer characterization with independent voltage and 
frequency scaling

As it was referred in Section 2, Tang [22] has recently studied 
the impact of frequency scaling on the performance and energy 
consumption of DNNs executed in GPUs. By extending this study 
with the capability to also apply decoupled undervoltage tech-
niques, a broader range of F-V configurations is herein envisaged 
to provide even greater benefits.

In fact, an important characteristic of DNNs is their tolerance to 
a certain degree of computation errors [26], without any significant 
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Fig. 11. Undervoltage capabilities with changing temperature conditions and the defined temperature model.
change in the training and inference results. As a consequence, it is 
important to complement the characterization that was performed 
in the previous section with the voltage scaling effects in DNNs 
training and inference phases and, in particular, with its influence 
on the computation errors that might occur when exploring the 
existing voltage margins.

On the other hand, depending on the field of application and 
the type of data being analyzed, different DNN architectures are 
commonly used to better tailor the learning capabilities of the 
network to the execution scenario. Two of the most common ar-
chitectures are convolutional neural networks and transformers 
neural networks. Accordingly, these architectures are often used to 
tackle problems in computer vision and natural language process-
ing (NLP).

With this observation in mind, the presented study was focused 
on convolutional and fully connected layers. These layers represent 
the two fundamental layers used by convolutional neural networks 
to detect patterns in images. The same layers are also present as 
the building blocks of the state-of-the-art natural language mod-
els using transformer architectures [24]. In this case, the layers are 
used to perform the analysis of sequential inputs of data. Convolu-
tional and fully connected layers are also the only neural network 
layers supported and optimized by the GPU manufacturer (AMD) 
in their GPGPU mathematical libraries.

Looking at the particular case of the Convolutional Neural Net-
work (CNN), its feature extraction ability is mainly supported on 
the convolution operator. Nonetheless, CNNs also include other 
types of layers, such as fully connected and pooling layers. How-
ever, convolution and fully connected layers take up to 97% of 
the GPU energy consumption [11], which makes them particularly 
suited to exploit energy saving mechanisms.

Hence, to extend the presented benchmarking results to more 
ambitious analyses based on the use of high-level deep learning 
frameworks (e.g., PyTorch, TensorFlow), the default mathemati-
cal libraries provided by the considered GPU manufacturer (AMD) 
were extensively evaluated. This section reports the main achieved 
conclusions for the convolution operator and fully connected layers 
on the Vega 10 GPU.
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4.1. Convolution layer

The MIOpen library5 provides multiple convolution implemen-
tations, being the Direct, GEMM and Winograd the ones that are 
more often used. At the beginning of the execution, this library 
performs one convolution operation with each of these algorithms. 
Then, the algorithm that takes the smallest execution time is cho-
sen and it is used to perform the remaining convolutions of the 
current layer.

To conduct this analysis, a set of convolution layer configura-
tions was selected from the DeepBench benchmark,6 in order to 
understand how each algorithm is affected by DVFS, both in its in-
ference and training phases.

Fig. 12 presents the set of valid voltage ranges that were ob-
tained for the convolution layer in the inference and training 
phases. When comparing these results with those that were ob-
tained in the previous section, it can be observed that some com-
putation errors (and even some GPU crashes) were detected at 
lower voltage levels. In fact, since this operation is more complex 
and requires the utilization of multiple architectural components, 
the undervoltage limit is more likely to be violated by the voltage 
drops induced by the activation and deactivation of the GPU ar-
chitectural components [23]. This phenomenon will make certain 
parts of the GPU not to work properly (even momentarily), pro-
ducing an increased rate of computation errors and a increased 
crash threshold voltage.

Moreover, when comparing the three convolution algorithms, it 
is observed that Direct allows for the greatest amount of undervolt-
age, followed by GEMM and Winograd. The Direct algorithm is the 
simplest of the three, requiring no data transformation and move-
ment before its execution. In contrast, GEMM and Winograd require 
a pre-processing step, resulting in the activation of more GPU com-
ponents, and making these algorithms more prone to GPU voltage 
drops.

When comparing the training and inference phases, it is ob-
served that they present similar undervoltage capabilities (for all 

5 github .com /ROCmSoftwarePlatform /MIOpen.
6 github .com /baidu -research /DeepBench.

http://github.com/ROCmSoftwarePlatform/MIOpen
http://github.com/baidu-research/DeepBench
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Fig. 12. Convolution Layer - Usable voltage range when applying F-V scaling to the GPU core.
algorithms), with the crash point diverging only around 10 mV. 
However, the inference algorithm is more prone to the introduc-
tion of computation errors, as can be seen by the bigger size of 
the red bars in Fig. 12.

Figs. 13(a) and 13(b) illustrate the impact of decoupled F-V scal-
ing on the energy consumption, execution time and EDP. When 
working at each frequency default voltage level (black dashed 
lines), the Direct and GEMM algorithms exhibit a valley in their 
performance chart, with the frequency of 1530 MHz providing the 
best performance. In contrast, the Winograd achieves its best per-
formance with the lowest frequencies. Upon the introduction of 
independent voltage scaling, it is possible to improve the execu-
tion time and energy consumption (in comparison with the de-
fault voltage) by 8% and 23%, 19% and 8%, and 14% and 24% for 
the Direct, GEMM and Winograd algorithms, respectively. The EDP 
charts depicted in Fig. 14 indicate that the most energy efficient 
configuration for the three algorithms is observed at the lowest 
frequencies and maximum undervoltage possible. At these config-
urations, although the execution time is reduced by 16% (for the 
Direct and GEMM algorithms), it is still possible to achieve a re-
duction in energy consumption of up to 46%. The use of the most 
efficient configuration for the Winograd algorithm improves both 
the execution time and the energy by 15% and 32%, respectively.

4.2. Fully connected layer

The RocBlas library7 provides a single API for matrix multipli-
cation - the underlying mathematical operation of the fully con-
nected layer. By analyzing the performance counters and the ker-
nels called by this library, it is possible to understand that multipli-
cation is performed in one of two ways, depending on the size of 
the matrices. According to [12], small matrices are first loaded to 
cache and all the operations are performed in this device, making 
the operation compute bounded. For large matrices, the multipli-
cation is executed wherever the necessary data is available on the 
memory and local caches. The threshold size corresponds to the 
size of the L1 Cache.

As a result, non-conventional DVFS will impact these two im-
plementations of the matrix multiplication in different ways. For 
small matrices, it is the ALU that will limit the undervoltage. Con-
sequently, it is expected that a valley-like shape is observable in 
the performance chart after the application of frequency scaling 
(see section 3.3.3). On the other hand, for large matrix sizes, the 
cache will be stressed the most, with constant requests on the 
DRAM-Cache controller limiting the undervoltage. Consequently, 

7 github .com /ROCmSoftwarePlatform /rocBLAS.
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the results will be similar to those that were observed in sec-
tion 3.3.2.

Fig. 15 illustrates the results of the conducted experiments and 
confirm the prediction: for small matrix sizes it is possible to per-
form a higher degree of undervoltage. Furthermore, the results 
depicted in the normalized energy-performance chart (see Fig. 16) 
and EDP heatmap (see Fig. 17) show that it is possible to have 
an improvement in the execution time and energy consumption 
for both cases. The EDP chart indicates the same energy efficiency 
configuration for both cases, which results in an average reduction 
of 52% in energy consumption and 8% in execution time.

4.3. Error analysis

To evaluate the eventual occurrence of computation errors due 
to the utilization of decoupled F-V scaling, each benchmark was 
executed both with the default “automatic” parameterization and 
with the F-V pair under testing, with the same input data. A 
warmup_kernel was also executed before each of these two runs, 
to fill the cache with random data.

For the architecture characterization benchmarks (see Sec-
tion 3), a computation error was asserted whenever any of the 
output vectors differs between the executions. For the CNN lay-
ers characterization (see Section 4), a different error metric was 
adopted due to the utilization of software libraries (versus custom 
kernels) operating over floating-point numbers (as before, gen-
erated from an uniform distribution in the interval [0.1 ; 1] to 
ensure that operations are never applied to numbers with signif-
icantly different exponent values). These libraries can launch the 
kernels in a different order, changing the order of operations, with 
a possible impact in the final result. In fact, by conducting experi-
ments on the default voltage, it was observed that the order of the 
kernel execution resulted in a relative output difference not greater 
than 10−6. In accordance, a computation error was asserted when-
ever the relative difference in each position of the output vectors 
was greater than or equal to 10−5.

4.3.1. Convolution layer
Fig. 18 depicts the distribution of the output results of the con-

volution layer for the three considered convolution algorithms (at 
both inference and training phases) for the minimum usable volt-
age values (i.e., before GPU crash) across all considered core fre-
quency values. The obtained results emphasize the little effect of 
the applied undervoltage on the computed values. Most of the out-
put results are still fully accurate and only a small portion of the 
results present deviations. In fact, it should be emphasized that not 
only is the fraction of non-accurate results very small, but the nor-
malized relative error of those non-accurate results has a very low 
magnitude.

http://github.com/ROCmSoftwarePlatform/rocBLAS
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Fig. 13. Convolution Layer - Normalized energy and performance chart when applying F-V scaling to the GPU core during inference and training phases.

Fig. 14. Convolution Layer - Energy Delay Product (EDP) when applying F-V scaling to the GPU core during inference (top) and training (bottom) phases.
45



F. Mendes, P. Tomás and N. Roma Journal of Parallel and Distributed Computing 165 (2022) 32–51

Fig. 15. Fully Connected Layer - Usable GPU core voltage range. Values represent matrix sizes (example Aa×b · Bb×c ).

Fig. 16. Fully Connected Layer - Normalized energy and performance chart for small and large matrices, when applying F-V scaling to the GPU core (black dashed lines 
connect the results for default F-V configurations).
Fig. 17. Fully Connected Layer - Energy-Delay Product heat-map for small (left) and 
large (right) matrices when applying F-V scaling to the GPU core.

A particular observation is worth noting about the results of the 
inference phase with the GEMM algorithm. Although the amount 
of non-accurate results is greater than in the other configurations, 
the magnitude of the normalized relative error is much smaller.

4.3.2. Fully connected
Fig. 19 represents the same evaluation for the Fully Connected 

Layer, for both small and large matrices. Even at these extreme 
configurations, it is observed that most results are still computed 
with full accuracy (98% of the cases), with a normalized relative 
error as low as 1.37 × 10−3 (on the remaining 2% of the cases).
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4.4. Complete CNN training with non-conventional F-V

The previously obtained results evidence that the small num-
ber and the insignificant amplitude of the computational errors 
introduced by under-voltage conditions is well cooped with the 
operations that are conducted in DNN layers. However, the same 
evaluation urged to be done for the whole network. For this eval-
uation, four well-known CNN models (AlexNet, LeNet, VGG11 and 
WideResNet) were trained with decoupled F-V configurations. For 
each case, the previously performed error analyses were applied to 
identify the best F-V configurations and to assess the induced er-
rors. In more detail, Fig. 20 presents the behavior of the loss and 
model accuracy of each considered network, measured with the 
test dataset over the training session on all the tested F-V pairs. 
It is possible to observe that the two metrics’ progress is, within 
small variations, the same for all tested F-V configurations. Such 
observation prompted the conclusion about the validation of the 
results obtained in the previous subsection.

Table 3 presents the obtained median classification accuracy 
over ten runs. From these results, it can be observed that, when 
compared with the default setup (i.e., no undervoltage), the intro-
duced computation errors do not induce any significant change in 
the network’s final training accuracy. Table 4 presents the identi-
fied best configurations considering the maximum undervoltage at 
the highest frequency, and the F-V configurations that minimize 
the EDP.
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Fig. 18. Convolution Layer - Average percentage of accurate results and relative error distribution of non-accurate outputs for the minimum usable core voltage across all 
considered core frequency values.

Fig. 19. Fully Connected - Average percentage of accurate results and relative error distribution of non-accurate outputs for the minimum usable core voltage across all 
considered core frequency values.

Table 3
Comparing CNN training accuracy with the application of different undervoltage levels.

Amount of undervolt [mV] AlexNet [%] LeNet [%] VGG11 [%] WideResNet [%]

0 76.59 59.84 86.14 80.32
50 76.48 60.08 86.14 80.39
100 76.60 59.94 86.04 80.23
150 76.61 60.12 86.39 80.08

Number of trained epochs 50 100 30 30

Table 4
Non-conventional F-V settings per CNN model. Percentage [%] column represents energy improvement vs default F-V 
setup.

Configuration Frequency and Voltage configuration [MHz - V]

AlexNet [%] LeNet [%] VGG11 [%] WideResNet [%]

Default GPU setup 1600 - 1.2 1600 - 1.2 1600 - 1.2 1600 - 1.2
Standard DVFS* 1270 - 1.0 1270 - 1.0 1270 - 1.0 1270 - 1.0

Proposed @ highest freq. 1600 - 1.1 24 1600 - 1.05 20 1600 - 1.1 22 1600 - 1.05 23
Proposed @ best EDP 1530 - 1.0 38 1270 - 1.0 38 1440 - 1.0 33 1530 - 1.0 38

* DVFS setup that optimizes EDP using manufacturer voltage values.
Figs. 21 and 22 depict the energy performance charts and EDP 
results for the conducted F-V exploration. It is particularly worth 
noting the comparison of the results corresponding to the auto-
matic DVFS system (represented as a black dot in Fig. 21) versus 
the non-conventional F-V configurations. In this experiment, the 
training procedure was executed while allowing the DVFS system 
to automatically vary the current F-V pair and adjust all the cor-
responding parameters. In neither of the four tested models did 
the automatic system achieve the best performance or energy con-
sumption, demonstrating the potential for decoupled F-V configu-
rations.

In particular, the default F-V pairs are able to produce either 
the lowest energy consumption or the highest performance. Hence, 
the main benefit of exploring the proposed non-conventional F-
V is the possibility to attain GPU operating-points corresponding 
to higher or even the highest frequency level (maximizing perfor-
mance), while having an energy consumption similar to a default 
low-frequency configuration.
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Finally, Table 5 emphasizes and summarizes the main achieve-
ments of this research, by comparing the CNN execution at the 
default F-V setup (with frequency scaling using default voltage 
values) with the proposed approach. It considers two operating 
conditions: (i) at the highest frequency, and (ii) at minimum EDP. 
As it can be observed, by exploring non-conventional DVFS, it is 
possible to significantly improve all three metrics (energy, train-
ing time, and EDP) without compromising the resulting accuracy 
of the whole CNN. Hence, the main benefit of this approach is to 
allow the utilization of higher or even the highest frequency (max-
imizing performance) while having a similar energy consumption 
to that of lower frequency setups.

4.5. Decoupled voltage-frequency scaling in other domains

The present study was only focused on neural networks as the 
target application since this domain respects a set of necessary 
heuristics that could guarantee more considerable success before 
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Fig. 20. Core domain - CNN models - superposition of the obtained loss and model accuracy for all considered F-V configurations.

Table 5
Evaluation of performance, energy, and EDP when applying non-conventional DVFS in the training of 
neural networks.

Metric Selected configuration Improvement vs default F-V

AlexNet LeNet VGG11 WideResNet

Energy At highest frequency 24% 20% 22% 23%
At best EDP 38% 38% 33% 38%

Training time At highest frequency 1% 2% 0% 6%
At best EDP 3% -3% -2% 0%

EDP At highest frequency 21% 22% 22% 23%
At best EDP 38% 41% 32% 36%

Improvement vs F scaling with default F-V pairs

Energy At best EDP -2% 0% -1% -2%

Training time At best EDP 8% 0% 6% 10%

EDP At best EDP 3% 0% 3% 6%

A positive value indicates an improvement vs the default F-V configuration of the GPU.
the study. The application uses an iterative process to solve the 
problem that converges to the final solution. Moreover, the algo-
48
rithm can tolerate small percentages of errors without significantly 
affecting the final result of the computation.
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Fig. 21. Core domain - CNN models - Normalized energy consumption and execution time for training + inference. The dashed line connects the default F-V pairs, and the 
diagonal striped pattern indicates the plateau of minimum energy consumption.

Fig. 22. Core domain - CNN models - Obtained normalized Energy-Delay Product (EDP) for training + inference.
As such, any other GPGPU application domain that also respects 
those two characteristics might also be an excellent candidate to 
benefit from decoupled voltage and frequency scaling.

5. Conclusion

The presented research shows that there is a great benefit in 
performing non-conventional DVFS while running CNNs (and DNNs 
in general). The conducted GPU architecture characterization al-
49
lowed to understand that the L2 Cache and the ALU are the most 
sensitive components when performing undervoltage on the tested 
GPUs. It was also observed that it is safe to undervolt the consid-
ered GPUs between 15% and 25% without significantly constraining 
the accuracy of results. On the other hand, this allows for signifi-
cant energy gains and, in some cases, it even improves the attained 
performance. Applying non-conventional DVFS to the convolution 
and fully connected CNN layers reduces the EDP by 50%, at a cost 
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of introducing a small amount of computation errors. Nevertheless, 
it was shown that the application of non-conventional DVFS to the 
training of complete CNN models does not significantly affect the 
final network accuracy. The obtained results also indicate that it is 
possible to improve the GPU EDP (by an average of 36.7%) while 
training complete CNN models. Overall, this paper shows how to 
characterize the sensitivity to undervoltage of a given GPU archi-
tecture, in order to reduce the GPU energy consumption without 
degrading the attained results.
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