
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11265-021-01687-7

A Reconfigurable Posit Tensor Unit with Variable‑Precision Arithmetic
and Automatic Data Streaming

Nuno Neves1 · Pedro Tomás2 · Nuno Roma2

Received: 25 October 2020 / Revised: 11 April 2021 / Accepted: 26 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The increased adoption of DNN applications drove the emergence of dedicated tensor computing units to accelerate multi-
dimensional matrix multiplication operations. Although they deploy highly efficient computing architectures, they often lack
support for more general-purpose application domains. Such a limitation occurs both due to their consolidated computation
scheme (restricted to matrix multiplication) and due to their frequent adoption of low-precision/custom floating-point formats
(unsuited for general application domains). In contrast, this paper proposes a new Reconfigurable Tensor Unit (RTU) which
deploys an array of variable-precision Vector Multiply-Accumulate (VMA) units. Furthermore, each VMA unit leverages
the new Posit floating-point format and supports the full range of standardized posit precisions in a single SIMD unit, with
variable vector-element width. Moreover, the proposed RTU explores the Posit format features for fused operations, together
with spatial and time-multiplexing reconfiguration mechanisms to fuse and combine multiple VMAs to map high-level and
complex operations. The proposed RTU is also supported by an automatic data streaming infrastructure and a pipelined
data transfer scheme, allowing it to accelerate the computation of most data-parallel patterns commonly present in vectoriz-
able applications. The proposed RTU showed to outperform state-of-the-art tensor and SIMD units present in off-the-shelf
platforms, and with dedicated FPGA-based accelerators, in turn resulting in significant energy-efficiency improvements.

Keywords Tensor Computation · Posit Number System · Variable-Precision SIMD · Spatial · Temporal Reconfiguration ·
Data Stream Computing

1 Introduction

The current computing demands for processing throughput
and energy efficiency have been pushing the industrial and
academic research focus to domain-specific and reconfig-
urable architectures [1, 2]. Furthermore, new algorithmic

advances allied with the ever-increasing amount of data
availability, pushed the computational capacity of off-the-
shelf processing platforms to their limit and led to classical
design paradigms to be revisited, to cope with the current
computing and energy efficiency demands in several
application domains. In particular, the growing adoption
of Deep Neural Networks (DNNs) drove the research on
dedicated hardware to boost the performance of tensor
(n-dimensional matrices) multiplication [3–8]. Such calcu-
lations are essential to both the training and the inference
phases of neural network applications. Accordingly, tensor
computing units are usually designed as arrays of Fused
Multiply-Accumulate (FMA) elements, supported by dedi-
cated data communication schemes (e.g., data streaming) to
maximize throughput.

From the number representation perspective, tensor units
are also often based on custom floating-point formats with
reduced precision, as an alternative to the IEEE-754 stand-
ard. This may not only provide straightforward computing
accelerations [7, 9, 10], but also significant reductions in

This work was partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) under projects
UIDB/50021/2020 and PTDC/EEI-HAC/30485/2017.

 * Nuno Neves
 nuno.neves@inesc-id.pt

 Pedro Tomás
 pedro.tomas@inesc-id.pt

 Nuno Roma
 nuno.roma@inesc-id.pt

1 INESC-ID, Instituto de Telecomunicações, Lisbon, Portugal
2 INESC-ID, Instituto Superior Técnico, Universidade de

Lisboa, Lisbon, Portugal

/ Published online: 28 November 2021

Journal of Signal Processing Systems (2021) 93:1365–1385

http://orcid.org/0000-0003-0628-2259
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-021-01687-7&domain=pdf

1 3

chip area, allowing to release silicon area for additional
computing and storage resources. As a result, less memory
storage is required per operand and higher computing band-
widths can be achieved, while reaching lower power and
energy consumptions. Hence, major computing market play-
ers, such as Intel [10], Google [9], NVIDIA [7], Xilinx [4],
and Microsoft [3], have already proposed or adopted such
alternative formats in their off-the-shelf platforms and
accelerators.

Despite their success in DNN applications, these tensor
units present quite consolidated architectures that often con-
strain their usage on operations other than tensor multiplica-
tion. For example, the tensor cores equiping recent NVIDIA
Graphics Processing Units (GPUs) [7] are restricted to
multiply-accumulate operations, with strict rules on the
shape of input tensors [11]. Moreover, tensor units often
adopt very-low precision floating-point formats [9],
imposing accuracy losses in higher-precision applications,
or are limited to the IEEE-754 format [7], hence not sup-
porting lower precision arithmetic.

To that end, the Posit number system [12] has been
gaining a growing attention as a possible alternative (or
complement) to the IEEE-754 standard, by consistently
attaining similar accuracies to IEEE-754, with significant
fewer bits [13, 14]. Posits offer an intrinsic trade-off between
a wider dynamic range and an increased decimal precision,
effectively allowing a higher decimal accuracy, while lower-
ing the operand precision. Additionally, the posit format is
particularly suited for fused operations (such as multiply-
accumulate), since it avoids overflow and accuracy losses
by i) adopting an exact accumulator structure (named
quire) and ii) not requiring re-normalization of intermedi-
ate results [15].

From the hardware perspective, while some existing
tensor-based accelerators present reconfiguration capabili-
ties [16], they are mostly used to adapt the accelerator to the
shape of the network. However, there is also an opportunity
to further exploit the resources of a tensor unit, in order
to deploy higher-level and more complex operations. This
can be done by introducing spatial and time-multiplexing
reconfiguration mechanisms at the level of the tensor unit,
as it is typically deployed in Coarse-Grain Reconfigurable
Architectures (CGRAs) and Field-Programmable Gate
Arrays (FPGAs) at an accelerator level [17–19]. These
mechanisms would allow the reconfiguration of the tensor
unit to combine multiple FMA blocks and map operations
with diverse complexity, by switching between several con-
figurations to accommodate the deployment of multiple
execution phases in a single hardware structure.

Although such a solution broadens the range of supported
application domains, the increase in operation complexity
does not change the data-parallel and control-free nature of
the supported computations (mostly still matrix-based). As

such, data streaming [16, 18–20] remains the most suited
approach to support the data communication infrastructure
of a reconfigurable tensor unit. Besides their natural support
for spatial computing schemes [18], stream-based execution
models allow a complete detachment between data indexa-
tion and computation, allowing independent data acquisi-
tion. This removes memory address calculation from the
critical path, in turn accelerating execution.

Accordingly, this paper proposes a new Reconfigurable
Tensor Unit (RTU) architecture that deploys a data-stream
computing model in a 2D array of Posit-based Processing
Elements (PEs). The proposed RTU introduces the following
contributions and features:

– A new Vector Multiply-Accumulate (VMA) unit
(included in each PE) that deploys a variable-precision
Single-Instruction Multiple-Data (SIMD) computing
scheme with a fully vectorized datapath. It also exploits
the Posit format to increase data and computing through-
put, by lowering the width of the vector elements when-
ever possible.

– A combined spatial and time-multiplexing reconfigura-
tion mechanism, allowing each PE to instantly recon-
figure to switch between different vector precisions and
interconnection schemes with neighbour PEs. Addition-
ally, a novel PE fusing technique is proposed, leveraging
Posit fused operations to combine multiple VMAs and
deploy more complex operations.

– An efficient data streaming infrastructure, capable of
autonomously generating the most common data pat-
terns susceptible to streaming. It is also combined with
a banked memory organization, maximizing the exploita-
tion of data-locality and data reutilization.

The proposed RTU was fully implemented in RTL and
synthesized with a 45nm technology. The obtained results
show that the combination of the RTU data streaming and
the reconfigurable execution models, paired with its Posit-
enabled variable-precision SIMD capabilities, allow to effi-
ciently execute a broader range of applications than those
supported by standard tensor units. In particular, it was capa-
ble of attaining SIMD speedups up to 346x, 14x, and 31x
when compared with SIMD/tensor units equiping an ARM
Cortex-A9, an Intel i7-8700K and an NVIDIA GV100,
respectively. The RTU is also capable of outperforming
specialized FPGA-based accelerators, deployed on a Xilinx
ZC702 FPGA device, by as much as 372x. The obtained per-
formance gains also resulted in significant energy efficiency
improvements over all platforms.

The remainder of the manuscript is organized as follows.
Section 2 provides some background information regarding
the Posit format and discusses the most relevant works in
the areas of reconfigurable accelerators and data streaming.

1366 Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

In Sect. 3, it is presented an overview of the proposed RTU
architecture and execution model. Sections 4 and 5 describe
the architecture of each PE and the data streaming mecha-
nism, respectively. Section 6 presents experimental results
and performance comparisons. The manuscript is con-
cluded in Sect. 7, by addressing the main contributions and
achievements.

2 Background and Related Work

2.1 Posit Number System and Implementations

The posit number system was proposed in 2017 [12], being
the third iteration of unum, a numbering format defined to
represent real values in computer arithmetic as an alterna-
tive to the IEEE-754 standard. The posit format was intro-
duced by relaxing some mathematical properties from
the previous iterations and by making its utilization more
hardware-friendly.

A posit number [12] is defined as posit<n,es>, where n is
the total number of bits (precision) and es is the maximum
exponent size, and it is represented as:

Similarly to the IEEE-754, the structure of the posit format
(also depicted in Fig. 1) includes a sign bit field, an expo-
nent field, and a fraction (or mantissa) field. The posit also
comprises a variable-sized regime field (with the bit for-
mat rrr...r) that encodes a signed value k. Together with the
exponent field, the regime (k) represents the working range
of the represented value (or scale factor). The numerical
value of k is determined by the run length (m) of 1s or 0s in
the regime bits, such that:

As a result, the exponent and fraction contents are unknown
until the regime is decoded (see Fig. 1). In fact, depending

(1)

sign
⏞⏞⏞

s

regime
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

r0 r1 ⋯ rm+1

exponent
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

e0 e1 ⋯ ees−1

fraction
⏞⏞⏞⏞⏞

f0 f1 f2 ⋯
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

posit(n bits)

(2)k =

{

m − 1 , if r0 = 1

−m , otherwise

on the run length, they can be partly (or fully) left out of the
binary encoding. Accordingly, the posit value is given by:

The posit format also provides two binary representations
that are reserved to encode the zero value (000...0) and
Not-a-Real (100...0). The latter comprises all mathemati-
cal exceptions. In the posit format, there are no subnormal
numbers [12]. Despite the arbitrary format of the precision
and exponent parameters of a posit, there are 4 standard-
ized configurations (n = 64∕32∕16∕8 , es = 3∕2∕1∕0)
that correspond to the most commonly adopted preci-
sions and dynamic ranges used in IEEE-754 floating-point
arithmetic [15].

Finally, for fused operations (such as fused multiply-
accumulate), the posit format makes use of a quire [15]. This
quire is a fixed-point 2’s complement value, of length n2∕2 ,
with enough precision to avoid overflow and cancellations.
Accordingly, for the standard 64/32/16/8-bit posit precisions,
the quire maintains a length of 2048/512/128/32 bits.

Some hardware implementations have already been pro-
posed to support the adoption of the posit format. Jaiswal
et al. [21] proposed one of the first parameterized algo-
rithmic computational flows for posit addition/subtraction
arithmetic and modeled its architecture implementation.
Forget et al. [22] introduced a template library to imple-
ment operators for custom size posits and their associ-
ated quire. Following these initial approaches, Chaurasiya
et al. [14] proposed a parameterized pre-synthesis posit unit
generator for adders and multipliers of any bit-width. They
observed that the area and energy consumption of the opera-
tors are comparable to their IEEE-754 compliant counter-
parts, and that they can provide comparable accuracies to
the IEEE-754 standard for FIR filter implementations. More
recently, Charmichael et al. [13] applied the posit format
to DNNs. They proposed the Deep Positron with ≤8-bit
posit precisions for the inference phase. By implementing a
precision-adaptable FPGA soft-core for the exact multiply-
and-accumulate (MAC) operation, they demonstrated that
the 8-bit posit precision achieves an accuracy comparable to
those obtained with a 32-bit IEEE-754 floating-point imple-
mentation. Zhang et al. [23] proposed the first Application-
Specific Integrated Circuit (ASIC) implementation of a
posit-based accelerator, by introducing a posit MAC unit
generator for deep learning applications. They presented
a 5-stage pipeline design capable of meeting the speed
requirements of modern processors.

2.2 Data Streaming Schemes

Data streaming follows the general principle that regular
applications are characterized by complex memory access

(3)(−1)s × 2
exp+k2es × 1.fraction

Fig. 1 IEEE-754 standard (left) and Posit (right) formats.

1367Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

patterns that can be represented by an n-dimensional aff-
ine function [24]. The memory address (y) is calculated by
considering an initial offset, and pairs (one per dimension)
of increment variables xk and stridek multiplication factors:

Such a representation allows indexing a significant amount
of regular access patterns. Nonetheless, several approaches
have been proposed that rely on dedicated ISAs [18, 25] and
descriptor-based mechanisms [20, 26] to represent patterns
with higher complexity (by combining multiple functions). As
an example, Hussain et al. [26] proposed a 3D regular data-
fetching mechanism with support for scatter-gather and tiled
accesses. To ease the description of regular data-patterns, the
Hotstream framework [25] adopts an assembly-like program-
mable approach. Similarly, Nowatzki et al. [18] proposed a
stream-dataflow ISA capable of generating streams with 2D
affine patterns. By taking a step further from the description
of low-dimentionality patterns, Neves et al. [20] proposed a
dynamic descriptor specification to encode arbitrarily com-
plex (regular) data-patterns.

2.3 Domain‑Specific Accelerators

An outstanding emergence of Domain-Specific Architectures
(DSAs) as been observed in recent years. In particular, the
high computational requirements of DNN applications drove
the development of new and sophisticated tensor-based
architectures. Being Google’s Tensor Processing Unit [9]
one of the current flagships in this class of processors, it is
solely focused on accelerating DNNs. While still focused on
tensor multiplication, NVIDIA’s tensor cores [7] provide an
slightly increased level of usability through their integration
in general-purpose GPUs. Other accelerators have also been
proposed to tackle this application domain. As an example,
Chen et al. [16] proposed an accelerator capable of reconfig-
uring itself to support different DNN filter shapes.

To provide a more general-purpose support, new recon-
figurable accelerators have also been proposed in recent
years [18, 19]. In particular, CGRAs have been deployed
by combining spatial and temporal computation schemes to
achieve energy-efficient acceleration. They are designed to
take advantage of highly parallel computing resources and
data transfer channels (spatial computation), combined with
time-multiplexing resources to perform multiple operations
with different levels of complexity (temporal computation).
As an example, Prabhakar et al. [19] proposed the Plasticine,
designed to efficiently execute parallel patterns, through a
2D array of reconfigurable units. Nowatzki et al. [18] pro-
posed a stream-dataflow CGRA capable of reconfiguring its
datapath and memory streams.

(4)y(X) = offset +

n
∑

k=1

xk×stridek , xk∈{0,⋯ , dimk}

To ease the deployment of such accelerators, there has
also been a growing interest in Domain-Specific Languages
(DSLs) that allow the mapping of high-level programming
structures to reconfigurable hardware accelerators. One
example is Spatial [17], which allows the description of
hardware in Scala, by using highly optimized and param-
eterized templates and provides a set of low-level abstrac-
tions for control and memory access. This framework uses
a design space exploration algorithm to explore large design
spaces, including coarse-grain pipelining and parallelization
factors, to select optimal design implementations for FPGAs
and CGRAs.

3 Proposed Reconfigurable Tensor Unit

The proposed Reconfigurable Tensor Unit (RTU) architec-
ture (depicted in Fig. 2) is composed of a dense process-
ing structure, comprising a 2D array of reconfigurable PEs
(described in Sect. 4), each implementing a 64-bit posit Vec-
tor Multiply-Accumulate (VMA) unit (see Fig. 3). Its execu-
tion model is based on a data streaming operation, supported
by autonomous stream generators connected to a banked
scratchpad/buffering memory structure (see Sect. 5). The
proposed unit is programmed i) by providing the sequence
of configurations for each individual PE (locally managed
by dedicated low-footprint controllers); and ii) by defining
a memory access pattern descriptor for each data stream
generator. Although the definition of pattern descriptions is
out of the scope of this paper, this information can be eas-
ily obtained by modern compilation tools [27] or derived
from existing DSLs, making the proposed RTU suitable for
deployment both in CPUs (as a functional unit) or in dedi-
cated accelerators.

3.1 RTU Reconfiguration and Execution Models

The proposed RTU takes a step further from existing ten-
sor units by adopting a combination of data-streaming with
spatial and temporal computation mechanisms, deployed by
a high-throughput reconfigurable processing architecture.

3.1.1 Stream‑Based Computation

The RTU execution model was devised by observing that
the most common data patterns and computation schemes
present in matrix-based applications are susceptible to data
streaming. This is mainly because those applications typi-
cally present data-parallel and control-free computing char-
acteristics, allied with compile-time deterministic memory
accesses. While the first allow a straightforward exploita-
tion of spatial computing schemes (e.g., vectorization), the
latter effectively allows an explicit detachment of memory

1368 Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

address calculation and computation. Such characteristics
provide the opportunity to explore a two-fold acceleration,
by deploying a stream-based execution model.

3.1.2 Time‑Multiplexing Reconfiguration

When mapping computing kernels other than tensor mul-
tiplication, it is possible that part of the RTU resources
become underutilized and susceptible to be turned
off. This can occur when the computing scheme is too

computationally intensive and does not present enough data
parallelism, or when the required data throughput saturates
the available bandwidth. To maximize the resource utiliza-
tion, the proposed RTU adopts a time-multiplexing recon-
figuration scheme. This allows each individual PE to modify
its own configuration (at runtime), enabling a simultaneous
mapping and switching of multiple operations with different
levels of complexity, in distinct areas of the PE array. As an
example, a reconfigurable execution scenario is shown in
Fig. 4 to obtain the average of a matrix columns.

Fig. 2 Proposed RTU block diagram, depicting the PE array and data streaming structures.

Fig. 3 Overview of the PE module, its components and functionality.

1369Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

3.1.3 Posit‑based Fused Arithmetic and SIMD

The proposed RTU adopts the Posit floating-point format
in each PE’s VMA. This design choice allows the deploy-
ment of a floating-point format that supports standardized
precisions ranging from 8 to 64 bits, contrasting with the
IEEE-754 (which does not support precisions lower than 16
bits) and with custom very-low precisions (that are unsuited
for general-purpose computation). Furthermore, since the
Posit format does not require intermediate normalization
and rounding in fused operations [15], it is possible to fuse
multiple VMAs - at the quire level (see Fig. 3) - to map more
complex operations (such as reduction trees - illustrated in
Fig. 5). However, the main benefit of the Posit format is its
capability of attaining similar accuracy with half the pre-
cision (or even lower) of the IEEE-754 standard [13, 14,
28]. Although such a scenario is usually dependent on the
dataset’s dynamic range, it still provides an opportunity to
increase the SIMD vectorization, allowing a decrease in the
effective memory bandwidth requirement per data element
and, in turn, increasing the unit’s throughput.

3.2 Data Communication Schemes

To support the proposed reconfiguration and execution
models, the RTU’s PE array implements a number of
data-parallel communication mechanisms, including i)
data streaming; ii) 2D pipelined execution; and iii) VMA
fusing.

– Data Streaming: Data stream acquisition and storage is
assured by an autonomous data streaming infrastructure

(see Sect. 5), by deploying a dedicated pattern genera-
tor for each input operand of the PEs located in the first
column of the array, and for each PE output in the last
column (see Fig. 2). Each pattern generator leverages a
descriptor-based approach to generate the most common
data patterns present in regular applications.

– 2D Pipelined Execution: Intercommunication between
adjacent PEs is supported by a 2D pipelined register
transfer grid (implemented by the R modules in Fig. 2).
This is done by placing a pipeline register bank attached
to each PE (see Fig. 3 and Sect. 4), allowing data for-
warding to three adjacent PEs (right, bottom, and bottom-
right), as it is depicted in Fig. 4.

– VMA Fusing: By leveraging the Posit fused-operations,
each VMA is capable of forwarding its quire to one of the
three adjacent PEs. This allows the configuration of more
complex fused operations than the y = a × b + c format,
as well as high-level constructs such as parallel reduc-
tions (through the mapping of a reduction tree within the
PE array - see Fig. 5).

The combination of the pipelined execution and VMA fusing
also allows the mapping of several FMA-based arithmetic
operations typically deployed in Digital Signal Processors
(DSPs), such as non-restoring division and square-root (see
Sect. 4). This is done by including a small pre-processing
module (PRE - see Fig. 3) at the input of each VMA (see
Sect. 4).

Finally, all internal communication schemes are defined
through the individual configuration of each PE. In particu-
lar, data is flown across the array by adopting a configuration
in each data-recipient PE that selects the correct data input.

Fig. 4 Example configuration
of the RTU illustrating the com-
putation of the column average
of a matrix. In the example, the
left half of the RTU is accu-
mulating the column vectors,
while the right half PE array is
initially configured to perform a
division pre-computation and it
is later reconfigured to calculate
the final average result for each
column.

1370 Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

4 Variable‑Precision Processing Element

As it was referred before, each PE of the RTU is composed
of a variable-precision Vector Multiply-Accumulate (VMA)
unit (see Figs. 2 and 6). Its architecture comprises a pipe-
lined 64-bit posit SIMD datapath, supporting vector arith-
metic for 1 ×64, 2 ×32, 4 ×16, and 8 ×8-bit posit vectors. This
is achieved by reconfiguring the datapath, allowing it to sup-
port different vector configurations using the same hardware
resources as it would need for a 64-bit scalar operation. Each
PE is also paired with i) a set of pipeline registers, to support
the RTU’s pipelined execution scheme; and ii) a dedicated
controller module that manages the configuration of the PE.

To reduce the hardware footprint and latency of each
PE, it was decided to move the required posit decoding and
encoding logic to the data streaming infrastructure of the
RTU (see Sect. 5), due to their high hardware complexity. As
such, each streamed posit operand is decoded before enter-
ing the PE array and the output results are encoded only after
leaving the array. Accordingly, each PE accepts and outputs
data already decoded in sign, exponent and fraction vectors.
As a side benefit, it allows operating over other floating-
point storage formats, simply by changing the decoding and
encoding logic on the streaming infrastructure. The follow-
ing sections detail each PE component.

4.1 Variable‑Precision VMA unit

The VMA architecture (depicted in Fig. 6) implements a
4-stage pipeline FMA compute unit with three input vector
operands (Va,Vb and Vc). It is composed of the following
modules: i) 1-stage floating-point multiply (M); ii) 1-stage
quire arithmetic unit (Q); and iii) 2-stage fraction and expo-
nent extraction (EF). Each unit accepts 3 input decoded posit

vectors and outputs 1 result vector. It supports: i) common
vector addition, subtraction, and multiplication operations;
ii) fused multiply-add and multiply-accumulate operations;
and iii) a vector-to-scalar reduction operation. To implement
the VMA fusing within the RTU, each unit also accepts and
forwards the quire values from/to other VMAs in adjacent
PEs.

4.1.1 Vector Data Formats

To support the variable-precision hardware that imple-
ments the VMA, 64-bit posit vectors (see Fig. 7A) are
decoded (during streaming) into three unified vector
formats that gather the posit sign, exponent and fraction
components, for each supported vector element precision
(see Fig. 7B). Hence, each operand of the VMA corre-
sponds to a 104-bit vector format, comprising an 8-bit
sign vector, a 32-bit exponent vector, and a 64-bit fraction
vector. The same scheme is used for the quire vector, by
adopting a 2048-bit vector format that gathers the quire
for each vector precision (see Fig. 7C). In the adopted
formats, bits that are unnecessary to represent vector ele-
ment values are set to ’0’.

4.1.2 Floating‑Point Multiplier

The first VMA stage (see Fig. 6) performs the multiplica-
tion of the Va and Vb vectors (and propagates Vc to the next
stage). To provide the aimed variable-precision functional-
ity, exponent vectors are added with a specialized carry-
lookahead adder (described in Fig. 8). This module is
capable of breaking its carry-chain (through single-bit mul-
tiplexers) to perform the addition of either 1 ×32-, 2 ×16-, 4 ×
8-, or 8 ×4-bit vectors. Similarly, the fraction components are

Fig. 5 Example configuration of
the RTU illustrating a dot-prod-
uct operation with a parallel
reduction. The example shows
the reduction tree implemented
via VMA fusing.

1371Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

multiplied with the aid of a dedicated module implementing
a vectorized radix-4 Booth multiplier (see Fig. 9), generating
64 partial products in carry-save format, generated by 64
radix-4 booth encoders. These partial results are gathered
and added through a carry-save accumulator tree, resulting
in a 128-bit carry-save value. The multiplier is configured
to the supported vector configurations by activating and
deactivating specific encoders, as depicted in Figs. 9B1-B4.
Finally, the resulting sign vector is calculated by performing
a bitwise XOR to the input sign vectors. Due to the adopted
fraction vector format, all configurations can be multiplied
the same way since every element has a padding of at least
2 bits, protecting each element from overflowing to its left
neighbour.

4.1.3 Quire Arithmetic Unit

The second stage of the VMA unit (see Fig. 6) implements
an arithmetic unit for the quire vector. In the first step, it
obtains the two’s complement of the fraction vectors com-
puted by the M stage and from the Vc operand. This is done
by complementing each vector element and incrementing
the value depending on the corresponding sign bit with a
carry-save adder. Next, both fraction vectors are converted
to the quire fixed-point format, by sign-extending the frac-
tion vector elements and shifting them according to the cor-
responding exponent value. This is done with a specialized
left barrel shifter that performs partial shifts within a 2048-
bit word and unifies them by OR’ing the results between

Fig. 7 Vector data formats for
(A) posit vectors, (B) VMA
input/output vectors, and (C)
quire vectors. Grey areas repre-
sent unused bits (set to ’0’).

Fig. 6 Vector Multiply-Accu-
mulate (VMA) unit architecture.

1372 Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

shifting levels, depending on the considered precision (see
Fig. 10A). At this point, two operands for the quire arith-
metic unit are selected from i) the product quire; ii) the Vc
quire; iii) a forwarded quire value (from an adjacent PE);
or iv) a registered quire value (for accumulation). Upon
selecting the two operands, they are sent to a 4:2 carry-save
adder/subtractor module and the output is accumulated with
a chain of 64 32-bit carry-select adders.

4.1.4 Fraction and Exponent Extraction

The final two stages of the VMA (see Fig. 6) are respon-
sible for re-normalizing the quire and extracting the sign,
exponent, and fraction vectors. Accordingly, the quire vector
is first converted to unsigned (via two’s complement with
another carry-select module) and the sign vector is obtained.
Next, the unsigned quire is sent to a vectorized leading-zero
counter, which obtains partial counts for each vector element

and generates a final zero-count vector (depicted in Fig. 11).
The final stage of the VMA takes the unsigned quire vec-
tor and the computed zero-count vector (which corresponds
to the exponent vector) and generates a normalized frac-
tion vector with the aid of a vectorized right barrel shifter,
that also performs rounding by OR’ing shifted-out bits (see
Fig. 10B).

4.1.5 Quire Forwarding and Vector‑to‑Scalar Reduction

The quire vector values registered in the Q stage are also
forwarded to adjacent PEs, in order to support the RTU’s
VMA fusing scheme. Moreover, to support vector-to-scalar
reduction operations, the VMA offers an optional module
that is capable of splitting a quire vector in half and gener-
ating two quire vector values to be fed back to the Q stage
(see Fig. 6). By successfully performing this operation, it is
possible to reduce a vector to a single scalar value (of the
same precision).

Fig. 8 Vectorized carry-lookahead adder architecture for 64-bit vectors. It is built with 3 levels of 4-bit carry-lookahead structures with a specialized
modification allowing each of them to be split in half, by breaking the carry chain (with a multiplixer) and redirecting the carry propagation and genera-
tion logic to an alternative 2-bit carry-lookahead structure. The introduced modification allows the 64-bit adder to be instantly reconfigured for each sup-
ported vector configuration (i.e., 1x64-bit, 2x32-bit, 4x16-bit, and 8x8-bit).

1373Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

4.1.6 Input Pre‑Processing for Non‑Restoring Arithmetic

The execution model of the proposed RTU allows the map-
ping of several FMA-based algorithms typically deployed
in DSPs. Some examples of these algorithms comprise the
Newton–Raphson and/or Goldschmidt algorithms [29] for
non-restoring division (and square-root). These algorithms
perform a predefined number of FMA iterations to find the
reciprocal of the divisor, and then multiplying it by the divi-
dend [29]. To do so, it is first necessary to scale the divi-
sor to the [0.5; 1] numerical interval and apply the same
scaling factor to the dividend. This is done by a dedicated
pre-processing module (PRE - see Fig. 2B) placed at the
input of the PE, to scale the input value and generate the
corresponding scaling factor.

4.1.7 Pipeline Registers

Each VMA unit is paired with a local 8 ×106-bit register file
with a dual functionality. These 106-bit registers can be used
both for local vector storage (e.g., for intermediate results or
constant storage) or as pipeline registers (for data forwarding
between adjacent PEs). Dedicated input and output masks
are used to select which registers are used to accept input
data and which are forwarded to adjacent PEs.

4.2 Configuration Controller

Each PE is managed by a dedicated configuration control-
ler (see Fig. 2B). It deploys a low-profile sequencer module,
composed of a counter and a local configuration memory. To

Fig. 9 Vectorized radix-4 Booth multiplier architecture for 64-bit vectors. The block diagram shows (A) the partial product generation scheme
with radix-4 booth encoders and (B) the encoder activations for each supported vector configuration, i.e., 1x64-bit (B1), 2x32-bit (B2), 4x16-bit
(B3), and 8x8-bit (B4).

1374 Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

configure the PE, the controller makes use of a 64-bit control
word that generates all the necessary control signals (depicted
in Fig. 2B) for: i) register control, pipeline masks, operand
storage and input selection; ii) pre-processing module activa-
tion; iii) vector configuration; iv) VMA stage activation; v)
quire operation and operand selection; and vi) quire splitting
logic activation. Accordingly, the sequencer operates by first
reading a configuration word from the local configuration

memory, which comprises a tuple formed by the control word
and a count value. Then, it uses the control word to assign
the control signals and configure the PE. Depending on the
executed operation, after a number of clock cycles (defined
by the tuple count value), the controller obtains a new con-
figuration word and re-configures the PE accordingly. Finally,
each controller also keeps an interface to the load sequences
of configurations to the local memory1.

Fig. 10 Overview of the vector-
ized barrel shifter architecture.
The block diagram illustrates the
(A) multi-level architecture of the
left barrel shifter, showing how
partial results can be extracted
between each level to obtain
shifted value for each supported
vector configuration. It also dem-
onstrates the unification of partial
results via a bitwise OR opera-
tion and their propagation to a
subsequent level. Finally, subfig-
ure (B) shows the required modi-
fications to introduce carry-out
rounding on reversed right barrel
shifter architecture.

Fig. 11 Vectorized leading zero counter architecture, illustrating (A) a basic n-bit module and (B) an implementation of a 64-bit vectorized lead-
ing zero counter.

1 Although it is out of the scope of this work, to deploy a VMA (or
the RTU) either as a CPU functional unit or as a dedicated accel-
erator, it is only required to connect each controller to a centralized
mechanism to facilitate its programming.

1375Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

5 Data Streaming Mechanism

The proposed RTU deploys an autonomous data streaming
infrastructure, composed of: i) a set of stream generators and
storage controllers; and ii) a set of banked SRAM modules.
Each stream generator/storage controller is composed of a
set of descriptor-based pattern generation units, paired with
Posit vector decoding/encoding logic (see Fig. 12).

Accordingly, the RTU’s stream-based computation mod-
els are supported by a dedicated pattern generation unit per
input (output) attached to each PE located in the left (right)
column of the array. Moreover, a 3-bank SRAM memory
module is deployed per row of the PE array, ensuring maxi-
mum data locality exploitation and parallelism (see Figs. 2
and 12A). These serve both as scratchpad memories (local
to the RTU) and stream buffers, allowing streams to flow
in and out of the PE array and promoting data reutilization.

5.1 Pattern Generation Units

Each data streaming pattern generation unit (see Fig. 12B)
adopts a descriptor format based on the affine function

defined in Eq. 4. The descriptor format is capable of describ-
ing both linear and tiled accesses, by generating incremental
stride factors (stride and count control modules
- see Fig. 12B), and adding them to a base address offset
(address generation module - see Fig. 12B and C).
Combinations of multiple descriptors allow the generation
of patterns with higher levels of complexity (such as sliding
window or banded patterns). To do so, the set of descriptors
that are used to generate a given pattern are stored in a local
descriptor memory and iterated over in the aimed sequence.

5.2 Posit Decoding and Encoding

Each pattern generation unit is also paired with a Posit
decode or encode module to perform the translation from
in-memory Posit vectors to the input vector unified format,
and vice-versa. Each module is fully vectorized and per-
forms the translation according to the schemes described
in [12–14, 21].

The decode module (see Fig. 13A) translates an input
posit vector (Vposit) to the corresponding vectors for the sign
(signposit), exponent (expposit), and fraction (fracposit) values.

Fig. 12 Overview of the
proposed RTU’s data streaming
infrastructure.

Fig. 13 Overview of the posit
vector (A) decoding and (B)
encoding modules.

1376 Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

For each posit vector, it starts by taking the 2’s complement
according to the sign bit of the posit, with the help of a vec-
torized carry-lookahead adder (as described in Sect. 4.1.2
and depicted in Fig. 8). Then, the regimes are decoded by
first inverting each vector element according to the first bit
of the regime. This step allows the run-length of the regime
to be obtained without the need for a leading one counter.
Instead, it is done solely with the aid of a vectorized leading
zero counter (depicted in Fig. 11). The zero count is then
simultaneously used i) to calculate the regime value, accord-
ing to Eq. 2; and ii) to shift out the regime bits from the
each vector element from Vposit with a vectorized left barrel
shifter (as described in Sect. 4.1.3 and depicted in Fig. 10A).
The resulting shifted vector contains the exponent and frac-
tion fields for each element, which are then split according to
the posit precision. Finally, the regime is concatenated to the
exponent value an a ’1’ bit is concatenated with the fraction
to obtain the fraction vector.

Conversely, the encode module (see Fig. 13B) translates
back the sign, exponent and fraction vectors to a posit vec-
tor format. It starts by concatenating the exponent (expposit)
and fraction (fracposit) fields for each vector element, and by
extracting out the regime values from the exponent value.
The regime values are then used to concatenate a ’01’ or
’10’ prefix to each vector element, according to their most-
significant bit (sign). Then, the regime are used to right-shift
the vector elements, with the aid of a vectorized rounding
barrel shifter (as described in Sect. 4.1.4 and depicted in
Fig. 10B). Finally, the resulting vector elements are comple-
mented according to the sign bits (signposit) with a vector-
ized carry-lookahead adder, which are then concatenated to
the corresponding element, resulting in the final posit vector
(Vposit).

6 Experimental Results

This section presents an evaluation of the proposed RTU
in what concerns its performance and energy efficiency, by
considering an ASIC implementation. The RTU is initially
compared with alternative SIMD units deployed in off-the-
shelf platforms, with a set of representative benchmarks
particularly suited for vectorization. The evaluation is con-
cluded with a case study comparing the RTU with dedicated
architecture implementations deployed in an FPGA device.

6.1 Hardware Implementation

The proposed RTU architecture was fully synthesized for
an ASIC implementation, by considering the Nangate 45nm
PDK. Although other configurations could be considered,
the RTU was implemented by assuming a 4 × 4 PE array
to facilitate the comparison with alternative computing

topologies, such as the NVIDIA tensor cores [7]. The sup-
porting data-streaming infrastructure comprises 4 banked
scratchpad memories (one per row of the array), each com-
posed of three 8kB SRAM memories. Hardware resources
and power estimation results were obtained with Cadence
Genus 19.11 and the SRAM banks were generated with the
OpenRAM [30] memory compiler.

The considered RTU configuration was successfully syn-
thesized with an operating frequency of 800 MHz. An area
breakdown of each RTU component is presented in Table 1,
amounting to a total area of 14.204 mm2 and an estimated
peak power dissipation of about 11.7 W. As it could be
expected, most of the area footprint is occupied by the PEs
(782 �m2), with the array occupying 91% of the RTU’s area.
This is mainly due to the VMA’s 2048-bit quire arithmetic
logic required for the 64-bit precision. Nonetheless, this area
was kept to a minimum by sharing all the resources required
to implement all the supported vector precisions, by rely-
ing on the adopted data unified formats. On the other hand,
it can be ascertained that the area overhead of the whole
streaming infrastructure only amounts to a total of 9% of
the RTU’s area, as a result of the low-profile architecture
of the pattern generator units. Such a low footprint leaves
room for the deployment of more complex and robust data
communication schemes in future implementations.

6.2 Reference Setups and Workloads

To evaluate the proposed RTU performance, it was
compared with several off-the-shelf platforms featuring
advanced SIMD units (see Table 2), including: i) an Intel
i7-8700K out-of-order processor (with the AVX2 vector
extension); ii) an ARM Cortex-A9 embedded processor
(with the Neon vector extension); iii) a NVIDIA GV100
GPU (equipped with tensor cores2 and native SIMD opera-
tion in each simultaneous multiprocessor (SM)). Several
setups were devised for each platform, by considering
floating-point double, single, and half (only in the GPU)
precisions, resulting in 7 different setups: AVX-DP, AVX-
SP, NEON-DP, NEON-SP, SM-DP, SM-SP, and SM-HP.
For the proposed RTU, different setups with 64-, 32-, 16-,
and 8-bit Posit precisions were considered, corresponding
to RTU-P64, RTU-P32, RTU-P32, RTU-P8, respectively.

A set of benchmarks (characterized in Table 3) was
selected based on real-word applications, with the goal
of evaluating different properties of the proposed RTU.
They are divided into three categories: vdot and outer

2 The adopted NVIDIA tensor core was used as a representative plat-
form in the domain of tensor accelerators not only due to its accessi-
bility, but also because it consists on a fair and valid comparison basis
since its topology is close to that of the RTU base architecture.

1377Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

implement highly-parallel algebra operations; gemm and
conv2d represent matrix-multiplication kernels usually
targeted to tensor cores; covar and sgd represent multi-
phase applications composed of multiple kernels and with
complex arithmetic.

The presented evaluation aims at solely comparing the
proposed RTU architecture with the considered off-the-shelf
SIMD units. To achieve a fair comparison, all applications
were parameterized to target a single core of each platform
(see Table 2), with data sets that fit in the first level of the
cache hierarchy (to ensure that all these units operate with
minimum latency and memory access delays). In the particu-
lar case of the GPU implementations, all benchmarks were
dimensioned to target either a single SM block or its tensor
cores (through the cuBLAS and cuDNN libraries) when-
ever possible (in the SM-HP setup). The execution times
and clock cycles measurements for the RTU were obtained
through cycle-accurate simulations in Cadence Incisive
19.03. For the Intel i7 and ARM processors, the applications
were timed and analyzed both in terms of clock cycle count
and power by accessing their internal performance counters
with the PAPI library. For the GPU, the corresponding meas-
urements were obtained with the NVIDIA profiling tools.

6.3 Architectural Evaluation

Table 4 presents the measured clock cycle count for each
benchmark and setup, normalized to the NEON-DP setup (as
it is the least performant in all benchmarks). The obtained
clock cycle measurements clearly demonstrate the architec-
tural efficiency of the proposed RTU, showing average clock
cycle gains of 44x/12x/9x (in 64-bit precision), 64x/19x/15x
(in 32-bit precision), and 20x (in 16-bit precision) when
compared to the NEON-DP/AVX-DP/SM-DP, NEON-
SP/AVX-SP/SM-SP, and SM-HP setups, respectively. Such
gains are a result of the three-fold combination of: i) the par-
allel nature of the RTU PE array, allowing a two-level paral-
lelization both across the PEs and within the SIMD archi-
tecture of the VMAs; ii) the versatility introduced by the
reconfiguration mechanisms, allowing an efficient resource
utilization and code-free mapping of complex operations,
which requires the utilization of different compute units in
the reference setups; and iii) the supporting data streaming
infrastructure, by detaching memory accesses from compu-
tation, reducing the execution critical path, and by autono-
mously and efficiently generating streams in parallel with
computation.

6.4 Performance Evaluation

The architectural benefits of the proposed RTU are further
highlighted when comparing its execution time to the other

setups, as it can be observed in Fig. 14. When considering
the vdot benchmark, for example, it is possible to ascertain
the benefit of the VMA fusing characteristics to deploy a
parallel reduction tree. In fact, while all reference setups
perform this operation with successive shuffling instructions,
the RTU is capable of reconfiguring unused PEs to perform
the reduction in parallel with the dot-product partial accu-
mulations (see Fig. 5), in turn achieving 16x/3x/4x speedups
over NEON-DP/AVX-DP/SM-DP. On the other hand, the
spatial computation characteristics of the RTU become evi-
dent when considering the outer benchmark, where the
combination of the PE array topology and the vectorization
of the VMAs allows exploiting massively parallel computa-
tion. This results in a performance speedup as high as 346x,
when comparing the most extreme RTU-P8 and NEON-DP
setups.

Furthermore, thanks to its base tensor-like computing
architecture, the RTU was also compared with the tensor
cores present in the NVIDIA GPU (see green bars in Fig. 14
- *SM-HP). However, the strict set of restrictions imposed
by NVIDIA tensor cores for the type and shape of matrix
multiplications [11] only made it possible to map the gemm
and conv2d benchmarks, denoting the lack of flexibility
presented by these types of units. Additionally, although the
conv2d benchmark is also based on tensor multiplication,
it adopts the most common 3x3 filter shape, which is not
natively supported by the NVIDIA tensor cores. To allow its
mapping, the NVIDIA tools need to add padding elements
to the filter kernel (increasing the memory footprint) and
to transform the operation to a common matrix multiplica-
tion (similar to gemm). Nevertheless, when comparing the
execution of gemm and conv2d, the proposed RTU using
a 16-bit posit precision format is capable of matching and
outperforming the NVIDIA tensor cores by 1.8x and 5.3x,
respectively.

The proposed RTU still introduces an increased level
of processing efficiency over the other setups by applying

Table 1 Area breakdown for the RTU and its components.

Component Area (mm
2) Power (�)

PE 0.782 0.684
Stream Pattern Generator 0.019 0.024

Posit Decode 0.008 0.008
Posit Encode 0.009 0.010
SRAM Bank (8kB) 0.094 0.007

Streaming 12 PGs + Decode 0.324 0.397
Infrastructure 8 PGs + Encode 0.224 0.279

12 SRAM Banks 1.128 0.095
RTU 4x4 PE Array 12.528 10.936

Streaming Infr. 1.676 0.772
Total RTU 14.204 11.708

1378 Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

time-multiplexing reconfiguration to maximize its resource
utilization. This is especially emphasized when mapping
full kernels with multiple phases and/or complex opera-
tions, as it is shown by the gains obtained in the covar
and sgd benchmarks (see Fig. 14). In particular, covar
takes advantage of the RTU support to map high-latency
arithmetic functions (in this case, a division operation). This
is done by reconfiguring unused resources in the PE array,
allowing the operation to be performed in parallel with other
computations. When such runtime array-wide reconfigura-
tion between kernel phases is combined with the data reuti-
lization offered by data streaming, the RTU achieves average
speedups of 2.4x/7.8x and 1.9x/8.1x for covar and sgd,
when compared to AVX/SM (with equivalent precisions).
The streaming of patterns with high complexity (such as
sliding windows) is also evidenced by the 2.5x/3.1x speed-
ups obtained for conv2d, when comparing the same setups.

By acknowledging that the Posit format allows reducing
the precision at the minimal expense of the output accuracy
(depending on the dataset) [12–14], it is possible to identify

the maximum performance gains attainable by the RTU.
Accordingly, by halving the vector precision, it is possible
to attain average speedups of 89x/5x/13x, when compared
to the NEON/AVX/SM setups. On the other hand, by fully
reducing the precision to 8-bit Posit vectors, the RTU is
capable of attaining gains as high as 372x/14x/40x, when
compared to the NEON-DP/AVX-DP/SM-DP setups.

Finally, it is also important to note that the observed gains
were obtained by considering a CMOS process technology
(45nm) to implement the RTU that is much greater than
the state-of-the-art process technologies used in the other
devices (28nm, 14nm, and 12nm - see Table 2). Accordingly,
it is safe to assume that the operating frequency of the RTU
would scale to the range observed in the reference setups if
implemented in similar technologies. Naturally, such a per-
formance increase would allow the RTU to attain further lev-
els of acceleration when compared to the reference setups.

6.5 Energy Efficiency

The observed performance gains have a significant impact
in the total energy consumption of the proposed RTU, as
shown in Fig. 15A. In this graph, it can be observed that
the RTU consumes a much lower amount of energy when
compared to the reference platforms. As an example, the
RTU-P64 consumes 2.5x less energy (on average) than the
NEON-DP setup. This is a direct result of the applied data
streaming mechanics, together with the spatial and tem-
poral execution models of the RTU. When operating the
RTU with an 8-bit Posit precision, it is capable of attaining
further reductions, as high as 7.46x.

To gather all the observed results in a single metric, an
additional energy efficiency study was performed. In this
case, it was used an energy-delay product (EDP) metric
(see Fig. 15B), calculated by multiplying the total energy
consumption by the average execution time, in all bench-
marks. By keeping in mind that lower values represent a
higher efficiency, the measured results not only reflect the
lower energy consumption of the RTU but also highlight
the efficiency of its combined execution model. Accord-
ingly, it is possible to observe an overall performance-
energy efficiency improvement of 87x (on average), when
comparing the proposed RTU with all the considered ref-
erence setups.

6.6 Comparison with Dedicated FPGA‑Based
Accelerators

To consolidate the presented discussion about the advan-
tages of the proposed RTU, it was also compared with dedi-
cated FPGA implementations for each of the considered
benchmarked applications. The evaluation presented below

Table 2 Reference SIMD-enabled platforms.

Intel ARM Nvidia
i7-8700K Cortex-A9 GV100

Technology 14 nm 28 nm 12 nm
Freq. (MHz) 3700 667 1200
TDP (W) 95 1.9 250
Est. Power/Core 15.8 0.8 3.125
SIMD Tech. AVX2 Neon GPU SM
DP Vector-width 8 2 8 / SM Block
SP Vector-width 16 4 16 / SM Block
HP Vector-width - - 32 / SM Block
Tensor Cores - - 2 / SM Block
L1 Data Cache 32kB 32kB 128kB

Table 3 Considered evaluation benchmarks.

Benchmark Description Characteristics

VDOT Vector Dot-Product FMA, Parallel Reduction,
Linear Streaming

OUTER Matrix Outer Product Massively-Parallel, Bandwidth
Saturation, Linear Streaming

gEMM General Matrix-Mult. Tensor-optimized FMA,
(C=� AB + �C) Tiled Streaming

cONV2D 2D Convolution Resource Underuse, Reduction
3x3 Filter Sliding Window Streaming

cOVAR Covariance Kernel Multi-phase, Division
Linear+Tiled Streaming

SgD Mini-Batch Stochastic Multi-phase, Reduction
Gradient Descent Data Reuse, Linear Streaming

1379Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

provides an additional level of validation of the RTU, by
directly comparing it to a representative set of dedicated
architectures, placing it among the domain of reconfigur-
able and embedded accelerators. To do so, each benchmark
from Table 3 was individually designed and implemented
with the Spatial DSL framework [17]. The adoption of this
DSL allows extracting the inherent characteristics of each
benchmark (see Table 3), automatically mapping them to
high-level constructs, and subsequently compiling the design
to an FPGA target. This results in a set of dedicated accelera-
tors optimized for the platform.

Accordingly, all the adopted benchmarks were success-
fully implemented by targeting a Xilinx ZC702 FPGA, by
considering an operating frequency of 200 MHz (refer to
Table 5 for implementation details regarding resource uti-
lization and power consumption), and compared with the
proposed RTU ASIC implementation (running at 800 MHz).
Similarly to the initial study, the dataset of each benchmark
was carefully dimensioned to keep off-chip DRAM accesses
to the minimum and by aiming to extract the maximum pos-
sible amount of parallelism in the computation kernels, with-
out violating the resource availability constraints imposed
by the FPGA device (see Table 5). For this study, the FPGA
implementations only adopt a 32-bit floating-point format.
This is because the adopted compilation tool instantiates
data access ports with the same width as the bit precision
of the data operands. As such, the number of required data
accesses per application is always the same, independently
of the data precision. Nonetheless, as it was done in the
previous study, the four RTU setups (RTU-P64, RTU-P32,
RTU-P32, RTU-P8) were still considered to demonstrate the
data vectorization capabilities that can be exploited in the
RTU, by reducing data precision (once again assuming that
it is allowed by the characteristics of the dataset).

6.6.1 Evaluation of Measured Performance

Fig. 16 presents the measured performance speedup when
comparing the RTU setups to the FPGA implementa-
tions. The obtained results further validate the benefits
introduced by the proposed RTU, even when compared to
dedicated architectures. In particular, when considering the
most parallel vdot, outer, and gemm benchmarks, the
obtained results further highlight the spatial computation
capabilities of the RTU’s PE array. In fact, even without
considering VMA vectorization, the RTU is capable of
achieving a performance speedup of 9x/11x/19x for the
vdot/outer/gemm benchmarks, when comparing the
RTU-P64 setup with the corresponding FPGA implementa-
tions. Furthermore, when exploiting the characteristics of
the Posit format to fully reduce precision and maximize data
vectorization, it is possible to obtain performance speedups Ta

bl
e

4
 C

lo
ck

 c
yc

le
 c

ou
nt

 (n
or

m
al

iz
ed

 to
 N
E
O
N
-
D
P

).

(*
)S

M
-H

P
be

nc
hm

ar
ks

 m
ap

pe
d

to
 T

en
so

r C
or

es
 w

he
n

su
pp

or
te

d

Be
nc

h.
 N
E
O
N
-
D
P

 N
E
O
N
-
S
P

 A
V
X
-
D
P

 A
V
X
-
S
P

 S
M
-
D
P

 S
M
-
S
P

 S
M
-
H
P

 S
M
-
H
P

(*
)

 R
T
U
-
P
6
4

 R
T
U
-
P
3
2

 R
T
U
-
P
1
6

R
TU

-P
8

V
D

O
T

1.
00

1.
25

0.
96

1.
29

1.
87

2.
11

2.
33

-
16

.8
7

32
.7

5
61

.0
1

10
6.

05
O

U
TE

R
1.

00
1.

31
4.

86
6.

05
6.

51
7.

66
8.

48
-

57
.0

1
11

1.
07

21
1.

18
38

4.
46

g
EM

M
1.

00
1.

07
5.

09
5.

34
5.

07
5.

52
10

.0
9

56
.6

6
53

.0
2

10
5.

69
20

9.
80

41
3.

02
cO

N
V

2D
1.

00
1.

09
4.

50
5.

08
11

.2
3

12
.1

3
16

.5
3

15
.7

2
63

.7
6

84
.9

5
16

8.
91

16
4.

11
cO

VA
R

1.
00

1.
27

2.
82

3.
14

3.
37

3.
80

5.
62

-
30

.9
9

61
.6

2
12

1.
84

23
8.

06
Sg

D
1.

00
1.

15
4.

09
4.

26
2.

92
3.

50
4.

36
-

41
.4

4
60

.1
5

74
.5

9
81

.0
7

1380 Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

as high as 59x/73x/151x for the vdot/outer/gemm bench-
marks, when considering the RTU-P8 setup.

Furthermore, the reconfiguration mechanisms introduced
by the RTU provide a level of efficiency over the obtained
FPGA implementations. In particular, the VMA fusing capa-
bility to deploy in-situ parallel reduction trees is clearly visible
when considering the conv benchmark. While the RTU is
capable of reconfiguring itself to operate over data moving
through the PE array, the parallel reduction trees required to
deploy the convolution operation in the FPGA are highly lim-
ited by the available data bandwidth, in turn, decreasing the
performance of the design. This results in an observable aver-
age speedup of 144x in the RTU for the conv benchmark.

On the other hand, the time-multiplexing benefits to deal
with multi-phase applications and the adaptability of the
RTU to deploy complex operations are once again high-
lighted by the covar and sgd benchmarks. Even though
the FPGA designs are deployed with specialized architec-
tures, the efficiency of the implementation is still limited by
the amount, placement, and specialization of the resources
available in the device. As already mentioned, these RTU
capabilities allow instant specialization to deploy high-
latency arithmetic, which benefits applications such as the
covar benchmark that requires floating-point division

operations. In fact, while the FPGA design has to map these
operations to DSPs and redirect data to particular regions of
the device, the RTU is capable of performing these opera-
tions within the PE array by combining multiple units.

Moreover, the RTU is also particularly suited to deal with
multi-phase applications, such as sgd and covar. In com-
bination with the data reutilization capabilities of the under-
lying data streaming infrastructure, this allows the RTU to
instantly reconfigure itself to deploy different computing
kernels while keeping intermediate data close to the com-
puting resources. Such capabilities, when combined with the
spatial computation offered by the RTU, result in average
speedups of 177x and 81x for covar and sgd, when com-
pared to the corresponding FPGA implementations.

Notwithstanding, it is important to note that the FPGA fabric
is also reconfigurable and the same time-multiplexing function-
alities could also be deployed by exploiting its partial reconfigu-
ration capabilities. However, the Spatial DSL framework [17]
does not support this functionality. Nonetheless, while the RTU
is capable of reconfiguring itself in a single clock cycle, the par-
tial reconfiguration procedure of an FPGA fabric takes several
milliseconds and requires a non-negligible amount of additional
control structures and hardware resources.

Fig. 14 Performance comparison results, including execution time speedup, normalized to NEON-DP.

Fig. 15 Energy consumption
results, including (A) average
energy savings normalized to
NEON-DP, and (B) overall
energy efficiency (in the form of
an EDP metric).

1381Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

6.6.2 FPGA Performance Limitations and Speedup
Normalization

To better contextualize the performance results of both the
proposed RTU and the FPGA-based accelerators that were
considered in the presented comparison, it is important to
remark some of the underlying limitations of the FPGA plat-
form. In particular, it would be expected that a dedicated
accelerator computing architecture would be able to deliver
a higher performance than a more general-purpose architec-
ture, such as the proposed RTU. However, even though the
accelerators generated by the Spatial DSL framework [17]
are highly optimized, their performance is heavily limited by
their maximum operating frequency and the data bandwidth
that is made available to the FPGA fabric. In particular,
the generated architectures can only run with a maximum
frequency of up to 200 MHz in the adopted Xilinx ZC702
FPGA, whereas the RTU runs at 4x higher frequency (800
MHz). Additionally, the adopted Xilinx ZC702 FPGA has
a maximum available bandwidth for data loading of 3.2
GB/s [31]. Conversely, the RTU is capable of streaming data
to the PE array at a maximum rate of 72 GB/s (4× 3 64-bit
read channels @ 800 MHz). This results in a 22.5x data
transfer bandwidth increase over the FPGA designs.

Accordingly, to take this factor into account, the previ-
ously presented performance speedup results were normal-
ized both to the operating frequency and to the available data
bandwidth for each platform, as it is shown in the graphs
presented in Figs. 17 and 18, respectively.

As it would be expected, the obtained results show a
smaller performance gap between the RTU and the FPGA
implementations. In particular, when considering the
speedup normalized to the operating frequency, it is pos-
sible to observe that the performance gap between the RTU
and the FPGA implementations is reduced by a factor of 4x,
while maintaining a proportional relation (see Fig. 17) to
the performance values discussed in Sect. 6.6.1. This results
in an average performance gain of 9.1x/14.7x/26.6x/39.8x
for the RTU-P64/RTU-P32/RTU-P32/RTU-P8 setup, when
compared to the FPGA implementations.

Conversely, when considering the speedup normalized to
the available data bandwidth (see Fig. 18), the performance
gap becomes ever closer, allowing to further highlight the ben-
efits of the proposed RTU. In particular, when considering the
vdot,outer, and gemm benchmarks, it can be observed that
the RTU-P64 setup would be slightly outperformed by the cor-
responding FPGA implementations. However, it should be
noted that the RTU is still capable of fully exploiting the VMA
vectorization, attaining a performance speedup as high as
2.6x/3.26x/6.73x when comparing the RTU-P8 setup with the
corresponding FPGA implementations for vdot/outer/gemm.

When considering the conv2d, covar, and sgd bench-
marks, the benefits that are introduced by the combination
of the RTU’s reconfiguration mechanisms and its supporting
data streaming infrastructure become evident once again.
In particular, the RTU shows a performance speedup of
3.39x/2.16x/2.33x for conv2d/covar/sgd, when compar-
ing the RTU-P64 setup with the FPGA implementations.

Fig. 16 Performance compari-
son results against the FPGA
setups running at 200 MHz.

Table 5 Reference
implementation details for the
Xilinx ZC702 FPGA (@ 200
MHz).

Bench. LUT Registers BRAM DSP Total Power

VDOT 25753 (48%) 36761 (35%) 4 (3%) 192 (87%) 2.32 W
OUTER 23100 (43%) 26770 (25%) 35.5 (25%) 19 (9%) 2.17 W
gEMM 27017 (51%) 34150 (32%) 8 (6%) 68 (31%) 2.14 W
cONV2D 34242 (64%) 27790 (26%) 2.5 (2%) 62 (28%) 1.95 W
cOVAR 39042 (73%) 48511 (46%) 16 (11%) 45 (20%) 2.27 W
SgD 17568 (33%) 20447 (19%) 32 (23%) 52 (24%) 2.06 W

1382 Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

Besides the architectural versatility and adaptability, this is
a direct result of the RTU’s data streaming infrastructure
that not only allows optimizing data movement and reu-
tilization within the design, but it also transparently han-
dles data movement behind computation. Naturally, when
considering the maximum possible vectorization, RTU-
P8 setup is capable of achieving performance speedups of
8.73x/16.56x/4.56x for conv2d/covar/sgd, when com-
pared with the corresponding FPGA implementations.

6.6.3 Energy Efficiency Evaluation

Finally, the impact of the RTU’s advantages is also evi-
dent by in terms of total energy consumption observed in
both setups, as shown in Fig. 19A. In this graph, it can be
observed that despite the lower average power consumption
of 2.15 W (see Table 5) imposed by the FPGA implementa-
tions (vs. 12 W in the RTU), the RTU consumes 160x less
energy (on average), as a direct result of improved perfor-
mance. This is further highlighted by the calculated EDP
metric (see Fig. 19B), showing an overall performance-
energy efficiency improvement ranging from 3 to 5 orders
of magnitude higher, when comparing the proposed RTU
with the FPGA implementations.

6.7 Discussion on Alternative PE Array Topologies

Although the evaluated RTU prototype was implemented by
assuming a 4 × 4 PE array, other different array topologies
could equally be considered.

In particular, the communication interfaces of the PE
architecture were especially designed to ease the deploy-
ment of different array topologies. In fact, the considered
PEs were made as modular as possible, making it only nec-
essary to connect additional rows and/or columns of PEs to
increase the size of the array. This can be achieved without
requiring any modifications to the PE architecture.

Naturally, when such different topologies are exploited,
different outcomes are expected to arise from increasing the
width and depth of the array. One the one hand, by widening
the array, it is naturally possible to exploit higher levels of
spatial parallelism. On the other hand, by deepening the array,
it is possible to deploy larger and more compute-intensive ker-
nels, by providing a much larger pool of computing resources.
As such, the amount of exploited parallelism and computing
complexity can be adjusted by defining the width and depth
of the array. Such compromise is only limited by the balance
between the available data bandwidth and the available chip
area for the RTU.

Fig. 17 Performance compari-
son results against the FPGA
setups, normalized by the
operating frequency.

Fig. 18 Performance compari-
son results against the FPGA
setups, normalized by the avail-
able memory bandwidth.

1383Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

7 Conclusions

This paper proposed a new RTU architecture that leverages
the new Posit floating-point format to deploy a 2D comput-
ing array of variable-precision SIMD units. The proposed
unit was designed by recognizing the opportunity to explore
the resources of existing tensor units for more general-
purpose computing contexts. To do so, the proposed RTU
deploys a combined data streaming, spatial and temporal
execution model, to deploy a reconfigurable compute unit
that is capable of fusing multiple PEs to map high-level
operations, by exploiting time-multiplexing reconfigura-
tion mechanisms. The obtained results for a 45nm ASIC
implementation show that the proposed RTU provides an
increased performance not only over existing state-of-the-art
tensor and SIMD units present in off-the-shelf platforms, but
also over dedicated FPGA-based accelerators, resulting in
significant energy efficiency gains.

References

 1. Dean, J., Patterson, D., & Young, C. (2018). A new golden age
in computer architecture: Empowering the machine-learning
revolution. IEEE Micro, 38(2), 21–29.

 2. Hennessy, J. L., & Patterson, D. A. (2019). A new golden age for
computer architecture. Communications of the ACM, 62(2), 48–60.

 3. Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M., Caulfield,
A., Massengill, T., Liu, M., Lo, D., Alkalay, S., Haselman, M.,
et al. (2018). Serving dnns in real time at datacenter scale with
project brainwave. IEEE Micro, 38(2), 8–20.

 4. Delaye, E., Sirasao, A., Dudha, C., & Das, S. (2017). Deep learn-
ing challenges and solutions with xilinx fpgas. In 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD),
IEEE, pp. 908–913.

 5. Fowers, J., Ovtcharov, K., Papamichael, M., Massengill, T., Liu,
M., Lo, D., Alkalay, S., Haselman, M., Adams, L., Ghandi, M.,
et al. (2018). A configurable cloud-scale dnn processor for real-
time ai. In 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), IEEE, pp. 1–14.

 6. Jouppi, N. P., Young, C., Patil, N., & Patterson, D. (2018). A
domain-specific architecture for deep neural networks. Commu-
nications of the ACM, 61(9), 50–59.

 7. NVIDIA. (2017). Nvidia tesla v100 GPU architecture. White
paper.

 8. Reagen, B., Whatmough, P., Adolf, R., Rama, S., Lee, H.,
Lee, S. K., Hernández-Lobato, J. M., Wei, G.-Y., & Brooks,
D. (2016). Minerva: Enabling low-power, highly-accurate deep

neural network accelerators. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA),
IEEE, pp. 267–278.

 9. Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G.,
Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al.
(2017). In-datacenter performance analysis of a tensor processing
unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, pp. 1–12.

 10. Köster, U., Webb, T., Wang, X., Nassar, M., Bansal, A. K.,
Constable, W., Elibol, O., Gray, S., Hall, S., Hornof, L., et al.
(2017). Flexpoint: An adaptive numerical format for efficient
training of deep neural networks. In Advances in neural infor-
mation processing systems, pp. 1742–1752.

 11. Markidis, S., Der Chien, S. W., Laure, E., Peng, I. B., & Vetter,
J. S. (2018). Nvidia tensor core programmability, performance
& precision. In 2018 IEEE International Parallel and Distrib-
uted Processing Symposium Workshops (IPDPSW), IEEE,
pp. 522–531.

 12. Gustafson, J. L., & Yonemoto, I. T. (2017). Beating floating point
at its own game: Posit arithmetic. Supercomputing Frontiers and
Innovations, 4(2), 71–86.

 13. Carmichael, Z., Langroudi, H. F., Khazanov, C., Lillie, J.,
Gustafson, J. L., & Kudithipudi, D. (2019). Deep positron: A
deep neural network using the posit number system. In 2019
Design, Automation & Test in Europe Conference & Exhibition
(DATE), IEEE, pp. 1421–1426.

 14. Chaurasiya, R., Gustafson, J., Shrestha, R., Neudorfer,
J., Nambiar, S., Niyogi, K., Merchant, F., & Leupers, R.
(2018). Parameterized posit arithmetic hardware generator. In
2018 IEEE 36th International Conference on Computer Design
(ICCD), IEEE, pp. 334–341.

 15. P. W, & Group. (2018). Posit standard documentation. Release,
3, 2.

 16. Chen, Y.-H., Krishna, T., Emer, J. S., & Sze, V. (2016). Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolu-
tional neural networks. IEEE journal of solid-state circuits, 52(1),
127–138.

 17. Koeplinger, D., Feldman, M., Prabhakar, R., Zhang, Y., Hadjis,
S., Fiszel, R., Zhao, T., Nardi, L., Pedram, A., Kozyrakis, C.,
et al. (2018). Spatial: A language and compiler for application
accelerators. In Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
pp. 296–311.

 18. Nowatzki, T., Gangadhar, V., Ardalani, N., & Sankaralingam,
K. (2017). Stream-dataflow acceleration. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture
(ISCA), IEEE, pp. 416–429.

 19. Prabhakar, R., Zhang, Y., Koeplinger, D., Feldman, M., Zhao,
T., Hadjis, S., Pedram, A., Kozyrakis, C., & Olukotun, K.
(2017). Plasticine: A reconfigurable architecture for parallel pat-
terns. In 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), IEEE, pp. 389–402.

Fig. 19 Energy consumption
evaluation, including (A) aver-
age energy savings normalized
to the FPGA setups, and (B)
overall energy efficiency (in the
form of an EDP metric).

1384 Journal of Signal Processing Systems (2021) 93:1365–1385

1 3

 20. Neves, N., Tomás, P., & Roma, N. (2017). Adaptive in-cache
streaming for efficient data management. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 25, 7, 2130–2143.

 21. Jaiswal, M. K., and So, H. K. (2018). Architecture generator for
type-3 unum posit adder/subtractor. In 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), IEEE, pp. 1–5.

 22. Forget, L., Uguen, Y., & De Dinechin, F. (2019). Hardware
cost evaluation of the posit number system. In Compas’2019
- Conférence d’informatique en Parallélisme, Architecture et
Système, pp. 1–7.

 23. Zhang, H., et al. (2019) Efficient posit multiply-accumulate unit
generator for deep learning applications. In 2019 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), IEEE, pp. 1–5.

 24. Ghosh, S., Martonosi, M., & Malik, S. (1997). Cache miss equa-
tions: An analytical representation of cache misses. In Proceed-
ings of the 11th international conference on Supercomputing,
pp. 317–324.

 25. Paiágua, S., Pratas, F., Tomás, P., Roma, N., & Chaves, R.
(2013). Hotstream: Efficient data streaming of complex patterns to
multiple accelerating kernels. In 2013 25th International Sympo-
sium on Computer Architecture and High Performance Computing
(SBAC-PAD), IEEE, pp. 17–24.

 26. Hussain, T., Palomar, O., Unsal, O., Cristal, A., Ayguadé, E., &
Valero, M. (2014). Advanced Pattern based Memory Controller
for FPGA based HPC applications. In 2014 International Con-
ference on High Performance Computing & Simulation (HPCS),
IEEE, pp. 287–294.

 27. Grosser, T., Zheng, H., Aloor, R., Simbürger, A., Größlinger, A.,
& Pouchet, L.-N. (2011). Polly-polyhedral optimization in llvm.
In Proceedings of the First International Workshop on Polyhedral
Compilation Techniques (IMPACT), 2011, 1.

 28. De Dinechin, F., Forget, L., Muller, J.-M., & Uguen, Y. (2019).
Posits: the good, the bad and the ugly. In Proceedings of the Con-
ference for Next Generation Arithmetic, 2019, 1–10.

 29. Viitanen, T., Jääskeläinen, P., Esko, O., & Takala, J. (2013). Sim-
plified floating-point division and square root. In 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing,
IEEE, pp. 2707–2711.

 30. Guthaus, M. R., Stine, J. E., Ataei, S., Chen, B., Wu, B., & Sarwar,
M. (2016). Openram: An open-source memory compiler. In 2016
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), IEEE, pp. 1–6.

 31. Svensson, B. J. (2016). Exploring opencl memory throughput on
the zynq. Technical Report.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Nuno Neves received the Ph.D.
degree (2019) in Electrical and
Computer Engineering from
Instituto Superior Técnico (IST),
Universidade de Lisboa (UL),
Portugal. He is currently a Junior
Researcher at Instituto de Teleco-
municações and at the High Per-
formance Computing Architec-
tures and Systems (HPCAS) of
Instituto de Engenharia de Siste-
mas e Computadores R&D
(INESC-ID). His main research
interests include reconfigurable
architectures, stream-based com-
puting, domain-specific accelera-

tors and languages, and compilers. He is a member of the IEEE Circuits
and Systems Society.

Pedro Tomás received the Ph.D.
in Electrical and Computer Engi-
neering (ECE) from Instituto
Superior Técnico(IST), Technical
University of Lisbon, Portugal, in
2009. He is an assistant professor
in the Department of ECE, IST,
and a senior researcher at Instituto
de Engenharia de Sistemas e
Computadores R&D (INESC-ID).
His research activities include
computer microarchitectures, spe-
cialized computational structures,
and high-performance computing.
He is a member of the IEEE Com-

puter Society and has contributed to more than 70 papers to interna-
tional peer-reviewed journals and conferences.

Nuno Roma received the Ph.D.
degree in electrical and computer
engineering from Instituto Supe-
rior Técnico (IST), Universidade
Técnica de Lisboa, Portugal, in
2008. Currently, he is an Associ-
ate Professor with the Department
of Electrical and Computer Engi-
neering of IST and he is a Senior
Researcher and Coordinator of
the High Performance Computing
Architectures and Systems
(HPCAS) research area of Insti-
tuto de Engenharia de Sistemas e
Computadores R&D (INESC-ID)
- a not for profit R&D institute

affiliated with IST. His research interests include computer architec-
tures, specialized and dedicated structures for digital signal processing,
energy-aware computing, parallel processing and high-performance
computing systems. He contributed to more than 120 manuscripts to
journals and international conferences and served as a Guest Editor of
Springer Journal of Real-Time Image Processing (JRTIP) and of EUR-
ASIP Journal on Embedded Systems (JES). He has also acted as the
organizing chair of several workshops and special sessions. He has a
consolidated experience on funded research projects leadership and he
is member of several research Networks of Excellence (NoE), including
HiPEAC (European Network of Excellence on High Performance and
Embedded Architecture and Compilation). Dr. Roma is a Senior Mem-
ber of both IEEE and ACM.

1385Journal of Signal Processing Systems (2021) 93:1365–1385

	A Reconfigurable Posit Tensor Unit with Variable-Precision Arithmetic and Automatic Data Streaming
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Posit Number System and Implementations
	2.2 Data Streaming Schemes
	2.3 Domain-Specific Accelerators

	3 Proposed Reconfigurable Tensor Unit
	3.1 RTU Reconfiguration and Execution Models
	3.1.1 Stream-Based Computation
	3.1.2 Time-Multiplexing Reconfiguration
	3.1.3 Posit-based Fused Arithmetic and SIMD

	3.2 Data Communication Schemes

	4 Variable-Precision Processing Element
	4.1 Variable-Precision VMA unit
	4.1.1 Vector Data Formats
	4.1.2 Floating-Point Multiplier
	4.1.3 Quire Arithmetic Unit
	4.1.4 Fraction and Exponent Extraction
	4.1.5 Quire Forwarding and Vector-to-Scalar Reduction
	4.1.6 Input Pre-Processing for Non-Restoring Arithmetic
	4.1.7 Pipeline Registers

	4.2 Configuration Controller

	5 Data Streaming Mechanism
	5.1 Pattern Generation Units
	5.2 Posit Decoding and Encoding

	6 Experimental Results
	6.1 Hardware Implementation
	6.2 Reference Setups and Workloads
	6.3 Architectural Evaluation
	6.4 Performance Evaluation
	6.5 Energy Efficiency
	6.6 Comparison with Dedicated FPGA-Based Accelerators
	6.6.1 Evaluation of Measured Performance
	6.6.2 FPGA Performance Limitations and Speedup Normalization
	6.6.3 Energy Efficiency Evaluation

	6.7 Discussion on Alternative PE Array Topologies

	7 Conclusions
	References

