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Abstract
The increased adoption of DNN applications drove the emergence of dedicated tensor computing units to accelerate multi-
dimensional matrix multiplication operations. Although they deploy highly efficient computing architectures, they often lack 
support for more general-purpose application domains. Such a limitation occurs both due to their consolidated computation 
scheme (restricted to matrix multiplication) and due to their frequent adoption of low-precision/custom floating-point formats 
(unsuited for general application domains). In contrast, this paper proposes a new Reconfigurable Tensor Unit (RTU) which 
deploys an array of variable-precision Vector Multiply-Accumulate (VMA) units. Furthermore, each VMA unit leverages 
the new Posit floating-point format and supports the full range of standardized posit precisions in a single SIMD unit, with 
variable vector-element width. Moreover, the proposed RTU explores the Posit format features for fused operations, together 
with spatial and time-multiplexing reconfiguration mechanisms to fuse and combine multiple VMAs to map high-level and 
complex operations. The proposed RTU is also supported by an automatic data streaming infrastructure and a pipelined 
data transfer scheme, allowing it to accelerate the computation of most data-parallel patterns commonly present in vectoriz-
able applications. The proposed RTU showed to outperform state-of-the-art tensor and SIMD units present in off-the-shelf 
platforms, and with dedicated FPGA-based accelerators, in turn resulting in significant energy-efficiency improvements.

Keywords Tensor Computation · Posit Number System · Variable-Precision SIMD · Spatial · Temporal Reconfiguration · 
Data Stream Computing

1 Introduction

The current computing demands for processing throughput 
and energy efficiency have been pushing the industrial and 
academic research focus to domain-specific and reconfig-
urable architectures [1, 2]. Furthermore, new algorithmic 

advances allied with the ever-increasing amount of data 
availability, pushed the computational capacity of off-the-
shelf processing platforms to their limit and led to classical 
design paradigms to be revisited, to cope with the current  
computing and energy efficiency demands in several 
application domains. In particular, the growing adoption 
of Deep Neural Networks (DNNs) drove the research on 
dedicated hardware to boost the performance of tensor 
(n-dimensional matrices) multiplication [3–8]. Such calcu- 
lations are essential to both the training and the inference 
phases of neural network applications. Accordingly, tensor 
computing units are usually designed as arrays of Fused 
Multiply-Accumulate (FMA) elements, supported by dedi-
cated data communication schemes (e.g., data streaming) to  
maximize throughput.

From the number representation perspective, tensor units 
are also often based on custom floating-point formats with 
reduced precision, as an alternative to the IEEE-754 stand-
ard. This may not only provide straightforward computing 
accelerations [7, 9, 10], but also significant reductions in 
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chip area, allowing to release silicon area for additional 
computing and storage resources. As a result, less memory 
storage is required per operand and higher computing band-
widths can be achieved, while reaching lower power and 
energy consumptions. Hence, major computing market play-
ers, such as Intel [10], Google [9], NVIDIA [7], Xilinx [4], 
and Microsoft [3], have already proposed or adopted such 
alternative formats in their off-the-shelf platforms and 
accelerators.

Despite their success in DNN applications, these tensor 
units present quite consolidated architectures that often con-
strain their usage on operations other than tensor multiplica-
tion. For example, the tensor cores equiping recent NVIDIA 
Graphics Processing Units (GPUs)  [7] are restricted to 
multiply-accumulate operations, with strict rules on the 
shape of input tensors [11]. Moreover, tensor units often 
adopt very-low precision floating-point formats  [9],  
imposing accuracy losses in higher-precision applications, 
or are limited to the IEEE-754 format [7], hence not sup-
porting lower precision arithmetic.

To that end, the Posit number system  [12] has been  
gaining a growing attention as a possible alternative (or 
complement) to the IEEE-754 standard, by consistently 
attaining similar accuracies to IEEE-754, with significant 
fewer bits [13, 14]. Posits offer an intrinsic trade-off between 
a wider dynamic range and an increased decimal precision, 
effectively allowing a higher decimal accuracy, while lower-
ing the operand precision. Additionally, the posit format is  
particularly suited for fused operations (such as multiply-
accumulate), since it avoids overflow and accuracy losses 
by i) adopting an exact accumulator structure (named 
quire) and ii) not requiring re-normalization of intermedi-
ate results [15].

From the hardware perspective, while some existing 
tensor-based accelerators present reconfiguration capabili-
ties [16], they are mostly used to adapt the accelerator to the 
shape of the network. However, there is also an opportunity 
to further exploit the resources of a tensor unit, in order  
to deploy higher-level and more complex operations. This 
can be done by introducing spatial and time-multiplexing 
reconfiguration mechanisms at the level of the tensor unit, 
as it is typically deployed in Coarse-Grain Reconfigurable 
Architectures (CGRAs) and Field-Programmable Gate 
Arrays (FPGAs) at an accelerator level  [17–19]. These 
mechanisms would allow the reconfiguration of the tensor 
unit to combine multiple FMA blocks and map operations 
with diverse complexity, by switching between several con-
figurations to accommodate the deployment of multiple 
execution phases in a single hardware structure.

Although such a solution broadens the range of supported 
application domains, the increase in operation complexity 
does not change the data-parallel and control-free nature of 
the supported computations (mostly still matrix-based). As 

such, data streaming [16, 18–20] remains the most suited 
approach to support the data communication infrastructure 
of a reconfigurable tensor unit. Besides their natural support 
for spatial computing schemes [18], stream-based execution 
models allow a complete detachment between data indexa-
tion and computation, allowing independent data acquisi-
tion. This removes memory address calculation from the 
critical path, in turn accelerating execution.

Accordingly, this paper proposes a new Reconfigurable 
Tensor Unit (RTU) architecture that deploys a data-stream 
computing model in a 2D array of Posit-based Processing 
Elements (PEs). The proposed RTU introduces the following 
contributions and features:

– A new Vector Multiply-Accumulate (VMA) unit 
(included in each PE) that deploys a variable-precision 
Single-Instruction Multiple-Data (SIMD) computing 
scheme with a fully vectorized datapath. It also exploits 
the Posit format to increase data and computing through-
put, by lowering the width of the vector elements when-
ever possible.

– A combined spatial and time-multiplexing reconfigura-
tion mechanism, allowing each PE to instantly recon-
figure to switch between different vector precisions and 
interconnection schemes with neighbour PEs. Addition-
ally, a novel PE fusing technique is proposed, leveraging 
Posit fused operations to combine multiple VMAs and 
deploy more complex operations.

– An efficient data streaming infrastructure, capable of 
autonomously generating the most common data pat-
terns susceptible to streaming. It is also combined with 
a banked memory organization, maximizing the exploita-
tion of data-locality and data reutilization.

The proposed RTU was fully implemented in RTL and 
synthesized with a 45nm technology. The obtained results 
show that the combination of the RTU data streaming and 
the reconfigurable execution models, paired with its Posit-
enabled variable-precision SIMD capabilities, allow to effi-
ciently execute a broader range of applications than those 
supported by standard tensor units. In particular, it was capa-
ble of attaining SIMD speedups up to 346x, 14x, and 31x 
when compared with SIMD/tensor units equiping an ARM 
Cortex-A9, an Intel i7-8700K and an NVIDIA GV100, 
respectively. The RTU is also capable of outperforming 
specialized FPGA-based accelerators, deployed on a Xilinx 
ZC702 FPGA device, by as much as 372x. The obtained per-
formance gains also resulted in significant energy efficiency 
improvements over all platforms.

The remainder of the manuscript is organized as follows. 
Section 2 provides some background information regarding 
the Posit format and discusses the most relevant works in 
the areas of reconfigurable accelerators and data streaming. 
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In Sect. 3, it is presented an overview of the proposed RTU 
architecture and execution model. Sections 4 and 5 describe 
the architecture of each PE and the data streaming mecha-
nism, respectively. Section 6 presents experimental results 
and performance comparisons. The manuscript is con-
cluded in Sect. 7, by addressing the main contributions and 
achievements.

2  Background and Related Work

2.1  Posit Number System and Implementations

The posit number system was proposed in 2017 [12], being 
the third iteration of unum, a numbering format defined to 
represent real values in computer arithmetic as an alterna-
tive to the IEEE-754 standard. The posit format was intro-
duced by relaxing some mathematical properties from 
the previous iterations and by making its utilization more 
hardware-friendly.

A posit number [12] is defined as posit<n,es>, where n is 
the total number of bits (precision) and es is the maximum 
exponent size, and it is represented as:

Similarly to the IEEE-754, the structure of the posit format 
(also depicted in Fig. 1) includes a sign bit field, an expo-
nent field, and a fraction (or mantissa) field. The posit also 
comprises a variable-sized regime field (with the bit for-
mat rrr...r ) that encodes a signed value k. Together with the 
exponent field, the regime (k) represents the working range 
of the represented value (or scale factor). The numerical 
value of k is determined by the run length (m) of 1s or 0s in 
the regime bits, such that:

As a result, the exponent and fraction contents are unknown 
until the regime is decoded (see Fig. 1). In fact, depending 

(1)

sign
⏞⏞⏞

s

regime
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

r0 r1 ⋯ rm+1

exponent
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

e0 e1 ⋯ ees−1

fraction
⏞⏞⏞⏞⏞

f0 f1 f2 ⋯
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

posit(n bits)

(2)k =

{

m − 1 , if r0 = 1

−m , otherwise

on the run length, they can be partly (or fully) left out of the 
binary encoding. Accordingly, the posit value is given by:

The posit format also provides two binary representations 
that are reserved to encode the zero value (000...0) and 
Not-a-Real (100...0). The latter comprises all mathemati-
cal exceptions. In the posit format, there are no subnormal 
numbers [12]. Despite the arbitrary format of the precision 
and exponent parameters of a posit, there are 4 standard-
ized configurations ( n = 64∕32∕16∕8 , es = 3∕2∕1∕0 ) 
that correspond to the most commonly adopted preci-
sions and dynamic ranges used in IEEE-754 floating-point 
arithmetic [15].

Finally, for fused operations (such as fused multiply-
accumulate), the posit format makes use of a quire [15]. This 
quire is a fixed-point 2’s complement value, of length n2∕2 , 
with enough precision to avoid overflow and cancellations. 
Accordingly, for the standard 64/32/16/8-bit posit precisions, 
the quire maintains a length of 2048/512/128/32 bits.

Some hardware implementations have already been pro-
posed to support the adoption of the posit format. Jaiswal 
et al. [21] proposed one of the first parameterized algo-
rithmic computational flows for posit addition/subtraction  
arithmetic and modeled its architecture implementation. 
Forget et al. [22] introduced a template library to imple- 
ment operators for custom size posits and their associ-
ated quire. Following these initial approaches, Chaurasiya 
et al. [14] proposed a parameterized pre-synthesis posit unit 
generator for adders and multipliers of any bit-width. They 
observed that the area and energy consumption of the opera-
tors are comparable to their IEEE-754 compliant counter-
parts, and that they can provide comparable accuracies to 
the IEEE-754 standard for FIR filter implementations. More 
recently, Charmichael et al. [13] applied the posit format 
to DNNs. They proposed the Deep Positron with ≤8-bit 
posit precisions for the inference phase. By implementing a 
precision-adaptable FPGA soft-core for the exact multiply-
and-accumulate (MAC) operation, they demonstrated that 
the 8-bit posit precision achieves an accuracy comparable to 
those obtained with a 32-bit IEEE-754 floating-point imple-
mentation. Zhang et al. [23] proposed the first Application-
Specific Integrated Circuit (ASIC) implementation of a 
posit-based accelerator, by introducing a posit MAC unit 
generator for deep learning applications. They presented 
a 5-stage pipeline design capable of meeting the speed  
requirements of modern processors.

2.2  Data Streaming Schemes

Data streaming follows the general principle that regular 
applications are characterized by complex memory access 

(3)(−1)s × 2
exp+k2es × 1.fraction

Fig. 1  IEEE-754 standard (left) and Posit (right) formats.
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patterns that can be represented by an n-dimensional aff-
ine function [24]. The memory address (y) is calculated by 
considering an initial offset, and pairs (one per dimension) 
of increment variables xk and stridek multiplication factors:

Such a representation allows indexing a significant amount 
of regular access patterns. Nonetheless, several approaches 
have been proposed that rely on dedicated ISAs [18, 25] and 
descriptor-based mechanisms [20, 26] to represent patterns 
with higher complexity (by combining multiple functions). As  
an example, Hussain et al. [26] proposed a 3D regular data-
fetching mechanism with support for scatter-gather and tiled 
accesses. To ease the description of regular data-patterns, the 
Hotstream framework [25] adopts an assembly-like program-
mable approach. Similarly, Nowatzki et al. [18] proposed a 
stream-dataflow ISA capable of generating streams with 2D 
affine patterns. By taking a step further from the description 
of low-dimentionality patterns, Neves et al. [20] proposed a 
dynamic descriptor specification to encode arbitrarily com- 
plex (regular) data-patterns.

2.3  Domain‑Specific Accelerators

An outstanding emergence of Domain-Specific Architectures 
(DSAs) as been observed in recent years. In particular, the 
high computational requirements of DNN applications drove 
the development of new and sophisticated tensor-based 
architectures. Being Google’s Tensor Processing Unit [9] 
one of the current flagships in this class of processors, it is 
solely focused on accelerating DNNs. While still focused on 
tensor multiplication, NVIDIA’s tensor cores [7] provide an 
slightly increased level of usability through their integration 
in general-purpose GPUs. Other accelerators have also been 
proposed to tackle this application domain. As an example, 
Chen et al. [16] proposed an accelerator capable of reconfig-
uring itself to support different DNN filter shapes.

To provide a more general-purpose support, new recon-
figurable accelerators have also been proposed in recent 
years [18, 19]. In particular, CGRAs have been deployed 
by combining spatial and temporal computation schemes to 
achieve energy-efficient acceleration. They are designed to 
take advantage of highly parallel computing resources and 
data transfer channels (spatial computation), combined with 
time-multiplexing resources to perform multiple operations 
with different levels of complexity (temporal computation). 
As an example, Prabhakar et al. [19] proposed the Plasticine, 
designed to efficiently execute parallel patterns, through a 
2D array of reconfigurable units. Nowatzki et al. [18] pro-
posed a stream-dataflow CGRA capable of reconfiguring its 
datapath and memory streams.

(4)y(X) = offset +

n
∑

k=1

xk×stridek , xk∈{0,⋯ , dimk}

To ease the deployment of such accelerators, there has 
also been a growing interest in Domain-Specific Languages 
(DSLs) that allow the mapping of high-level programming 
structures to reconfigurable hardware accelerators. One 
example is Spatial [17], which allows the description of 
hardware in Scala, by using highly optimized and param-
eterized templates and provides a set of low-level abstrac-
tions for control and memory access. This framework uses 
a design space exploration algorithm to explore large design 
spaces, including coarse-grain pipelining and parallelization 
factors, to select optimal design implementations for FPGAs 
and CGRAs.

3  Proposed Reconfigurable Tensor Unit

The proposed Reconfigurable Tensor Unit (RTU) architec-
ture (depicted in Fig. 2) is composed of a dense process-
ing structure, comprising a 2D array of reconfigurable PEs 
(described in Sect. 4), each implementing a 64-bit posit Vec-
tor Multiply-Accumulate (VMA) unit (see Fig. 3). Its execu-
tion model is based on a data streaming operation, supported 
by autonomous stream generators connected to a banked 
scratchpad/buffering memory structure (see Sect. 5). The 
proposed unit is programmed i) by providing the sequence 
of configurations for each individual PE (locally managed 
by dedicated low-footprint controllers); and ii) by defining 
a memory access pattern descriptor for each data stream 
generator. Although the definition of pattern descriptions is 
out of the scope of this paper, this information can be eas-
ily obtained by modern compilation tools [27] or derived 
from existing DSLs, making the proposed RTU suitable for 
deployment both in CPUs (as a functional unit) or in dedi-
cated accelerators.

3.1  RTU Reconfiguration and Execution Models

The proposed RTU takes a step further from existing ten-
sor units by adopting a combination of data-streaming with 
spatial and temporal computation mechanisms, deployed by 
a high-throughput reconfigurable processing architecture.

3.1.1  Stream‑Based Computation

The RTU execution model was devised by observing that 
the most common data patterns and computation schemes 
present in matrix-based applications are susceptible to data 
streaming. This is mainly because those applications typi-
cally present data-parallel and control-free computing char-
acteristics, allied with compile-time deterministic memory 
accesses. While the first allow a straightforward exploita-
tion of spatial computing schemes (e.g., vectorization), the 
latter effectively allows an explicit detachment of memory 
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address calculation and computation. Such characteristics 
provide the opportunity to explore a two-fold acceleration, 
by deploying a stream-based execution model.

3.1.2  Time‑Multiplexing Reconfiguration

When mapping computing kernels other than tensor mul-
tiplication, it is possible that part of the RTU resources 
become underutilized and susceptible to be turned 
off. This can occur when the computing scheme is too 

computationally intensive and does not present enough data 
parallelism, or when the required data throughput saturates 
the available bandwidth. To maximize the resource utiliza-
tion, the proposed RTU adopts a time-multiplexing recon-
figuration scheme. This allows each individual PE to modify 
its own configuration (at runtime), enabling a simultaneous 
mapping and switching of multiple operations with different 
levels of complexity, in distinct areas of the PE array. As an 
example, a reconfigurable execution scenario is shown in 
Fig. 4 to obtain the average of a matrix columns.

Fig. 2  Proposed RTU block diagram, depicting the PE array and data streaming structures.

Fig. 3  Overview of the PE module, its components and functionality.

1369Journal of Signal Processing Systems (2021) 93:1365–1385
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3.1.3  Posit‑based Fused Arithmetic and SIMD

The proposed RTU adopts the Posit floating-point format 
in each PE’s VMA. This design choice allows the deploy-
ment of a floating-point format that supports standardized 
precisions ranging from 8 to 64 bits, contrasting with the 
IEEE-754 (which does not support precisions lower than 16 
bits) and with custom very-low precisions (that are unsuited 
for general-purpose computation). Furthermore, since the 
Posit format does not require intermediate normalization 
and rounding in fused operations [15], it is possible to fuse 
multiple VMAs - at the quire level (see Fig. 3) - to map more 
complex operations (such as reduction trees - illustrated in 
Fig. 5). However, the main benefit of the Posit format is its 
capability of attaining similar accuracy with half the pre-
cision (or even lower) of the IEEE-754 standard [13, 14, 
28]. Although such a scenario is usually dependent on the 
dataset’s dynamic range, it still provides an opportunity to 
increase the SIMD vectorization, allowing a decrease in the 
effective memory bandwidth requirement per data element 
and, in turn, increasing the unit’s throughput.

3.2  Data Communication Schemes

To support the proposed reconfiguration and execution 
models, the RTU’s PE array implements a number of 
data-parallel communication mechanisms, including i) 
data streaming; ii) 2D pipelined execution; and iii) VMA 
fusing.

– Data Streaming: Data stream acquisition and storage is 
assured by an autonomous data streaming infrastructure 

(see Sect. 5), by deploying a dedicated pattern genera-
tor for each input operand of the PEs located in the first 
column of the array, and for each PE output in the last 
column (see Fig. 2). Each pattern generator leverages a 
descriptor-based approach to generate the most common 
data patterns present in regular applications.

– 2D Pipelined Execution: Intercommunication between 
adjacent PEs is supported by a 2D pipelined register 
transfer grid (implemented by the R modules in Fig. 2). 
This is done by placing a pipeline register bank attached 
to each PE (see Fig. 3 and Sect. 4), allowing data for-
warding to three adjacent PEs (right, bottom, and bottom-
right), as it is depicted in Fig. 4.

– VMA Fusing: By leveraging the Posit fused-operations, 
each VMA is capable of forwarding its quire to one of the 
three adjacent PEs. This allows the configuration of more 
complex fused operations than the y = a × b + c format, 
as well as high-level constructs such as parallel reduc-
tions (through the mapping of a reduction tree within the 
PE array - see Fig. 5).

The combination of the pipelined execution and VMA fusing 
also allows the mapping of several FMA-based arithmetic 
operations typically deployed in Digital Signal Processors 
(DSPs), such as non-restoring division and square-root (see 
Sect. 4). This is done by including a small pre-processing 
module (PRE - see Fig. 3) at the input of each VMA (see 
Sect. 4).

Finally, all internal communication schemes are defined 
through the individual configuration of each PE. In particu-
lar, data is flown across the array by adopting a configuration 
in each data-recipient PE that selects the correct data input.

Fig. 4  Example configuration 
of the RTU illustrating the com-
putation of the column average 
of a matrix. In the example, the 
left half of the RTU is accu-
mulating the column vectors, 
while the right half PE array is 
initially configured to perform a 
division pre-computation and it 
is later reconfigured to calculate 
the final average result for each 
column.
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4  Variable‑Precision Processing Element

As it was referred before, each PE of the RTU is composed 
of a variable-precision Vector Multiply-Accumulate (VMA) 
unit (see Figs. 2 and 6). Its architecture comprises a pipe-
lined 64-bit posit SIMD datapath, supporting vector arith-
metic for 1 ×64, 2 ×32, 4 ×16, and 8 ×8-bit posit vectors. This 
is achieved by reconfiguring the datapath, allowing it to sup-
port different vector configurations using the same hardware 
resources as it would need for a 64-bit scalar operation. Each 
PE is also paired with i) a set of pipeline registers, to support 
the RTU’s pipelined execution scheme; and ii) a dedicated 
controller module that manages the configuration of the PE.

To reduce the hardware footprint and latency of each 
PE, it was decided to move the required posit decoding and 
encoding logic to the data streaming infrastructure of the 
RTU (see Sect. 5), due to their high hardware complexity. As 
such, each streamed posit operand is decoded before enter-
ing the PE array and the output results are encoded only after 
leaving the array. Accordingly, each PE accepts and outputs 
data already decoded in sign, exponent and fraction vectors. 
As a side benefit, it allows operating over other floating-
point storage formats, simply by changing the decoding and 
encoding logic on the streaming infrastructure. The follow-
ing sections detail each PE component.

4.1  Variable‑Precision VMA unit

The VMA architecture (depicted in Fig. 6) implements a 
4-stage pipeline FMA compute unit with three input vector 
operands (Va,Vb and Vc ). It is composed of the following 
modules: i) 1-stage floating-point multiply (M); ii) 1-stage 
quire arithmetic unit (Q); and iii) 2-stage fraction and expo-
nent extraction (EF). Each unit accepts 3 input decoded posit 

vectors and outputs 1 result vector. It supports: i) common 
vector addition, subtraction, and multiplication operations; 
ii) fused multiply-add and multiply-accumulate operations; 
and iii) a vector-to-scalar reduction operation. To implement 
the VMA fusing within the RTU, each unit also accepts and 
forwards the quire values from/to other VMAs in adjacent 
PEs.

4.1.1  Vector Data Formats

To support the variable-precision hardware that imple-
ments the VMA, 64-bit posit vectors (see Fig. 7A) are 
decoded (during streaming) into three unified vector 
formats that gather the posit sign, exponent and fraction 
components, for each supported vector element precision 
(see Fig. 7B). Hence, each operand of the VMA corre-
sponds to a 104-bit vector format, comprising an 8-bit 
sign vector, a 32-bit exponent vector, and a 64-bit fraction 
vector. The same scheme is used for the quire vector, by 
adopting a 2048-bit vector format that gathers the quire 
for each vector precision (see Fig. 7C). In the adopted 
formats, bits that are unnecessary to represent vector ele-
ment values are set to ’0’.

4.1.2  Floating‑Point Multiplier

The first VMA stage (see Fig. 6) performs the multiplica-
tion of the Va and Vb vectors (and propagates Vc to the next 
stage). To provide the aimed variable-precision functional-
ity, exponent vectors are added with a specialized carry-
lookahead adder (described in Fig.  8). This module is 
capable of breaking its carry-chain (through single-bit mul-
tiplexers) to perform the addition of either 1 ×32-, 2 ×16-, 4 ×
8-, or 8 ×4-bit vectors. Similarly, the fraction components are 

Fig. 5  Example configuration of 
the RTU illustrating a dot-prod-
uct operation with a parallel 
reduction. The example shows 
the reduction tree implemented 
via VMA fusing.
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multiplied with the aid of a dedicated module implementing 
a vectorized radix-4 Booth multiplier (see Fig. 9), generating 
64 partial products in carry-save format, generated by 64 
radix-4 booth encoders. These partial results are gathered 
and added through a carry-save accumulator tree, resulting 
in a 128-bit carry-save value. The multiplier is configured 
to the supported vector configurations by activating and 
deactivating specific encoders, as depicted in Figs. 9B1-B4. 
Finally, the resulting sign vector is calculated by performing 
a bitwise XOR to the input sign vectors. Due to the adopted 
fraction vector format, all configurations can be multiplied 
the same way since every element has a padding of at least 
2 bits, protecting each element from overflowing to its left 
neighbour.

4.1.3  Quire Arithmetic Unit

The second stage of the VMA unit (see Fig. 6) implements 
an arithmetic unit for the quire vector. In the first step, it 
obtains the two’s complement of the fraction vectors com-
puted by the M stage and from the Vc operand. This is done 
by complementing each vector element and incrementing 
the value depending on the corresponding sign bit with a 
carry-save adder. Next, both fraction vectors are converted 
to the quire fixed-point format, by sign-extending the frac-
tion vector elements and shifting them according to the cor-
responding exponent value. This is done with a specialized 
left barrel shifter that performs partial shifts within a 2048-
bit word and unifies them by OR’ing the results between 

Fig. 7  Vector data formats for 
(A) posit vectors, (B) VMA 
input/output vectors, and (C) 
quire vectors. Grey areas repre-
sent unused bits (set to ’0’).

Fig. 6  Vector Multiply-Accu-
mulate (VMA) unit architecture.
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shifting levels, depending on the considered precision (see 
Fig. 10A). At this point, two operands for the quire arith-
metic unit are selected from i) the product quire; ii) the Vc 
quire; iii) a forwarded quire value (from an adjacent PE); 
or iv) a registered quire value (for accumulation). Upon 
selecting the two operands, they are sent to a 4:2 carry-save 
adder/subtractor module and the output is accumulated with 
a chain of 64 32-bit carry-select adders.

4.1.4  Fraction and Exponent Extraction

The final two stages of the VMA (see Fig. 6) are respon-
sible for re-normalizing the quire and extracting the sign, 
exponent, and fraction vectors. Accordingly, the quire vector 
is first converted to unsigned (via two’s complement with 
another carry-select module) and the sign vector is obtained. 
Next, the unsigned quire is sent to a vectorized leading-zero 
counter, which obtains partial counts for each vector element 

and generates a final zero-count vector (depicted in Fig. 11). 
The final stage of the VMA takes the unsigned quire vec-
tor and the computed zero-count vector (which corresponds 
to the exponent vector) and generates a normalized frac-
tion vector with the aid of a vectorized right barrel shifter, 
that also performs rounding by OR’ing shifted-out bits (see 
Fig. 10B).

4.1.5  Quire Forwarding and Vector‑to‑Scalar Reduction

The quire vector values registered in the Q stage are also 
forwarded to adjacent PEs, in order to support the RTU’s 
VMA fusing scheme. Moreover, to support vector-to-scalar 
reduction operations, the VMA offers an optional module 
that is capable of splitting a quire vector in half and gener-
ating two quire vector values to be fed back to the Q stage 
(see Fig. 6). By successfully performing this operation, it is 
possible to reduce a vector to a single scalar value (of the 
same precision).

Fig. 8  Vectorized carry-lookahead adder architecture for 64-bit vectors. It is built with 3 levels of 4-bit carry-lookahead structures with a specialized 
modification allowing each of them to be split in half, by breaking the carry chain (with a multiplixer) and redirecting the carry propagation and genera-
tion logic to an alternative 2-bit carry-lookahead structure. The introduced modification allows the 64-bit adder to be instantly reconfigured for each sup-
ported vector configuration (i.e., 1x64-bit, 2x32-bit, 4x16-bit, and 8x8-bit).
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4.1.6  Input Pre‑Processing for Non‑Restoring Arithmetic

The execution model of the proposed RTU allows the map-
ping of several FMA-based algorithms typically deployed 
in DSPs. Some examples of these algorithms comprise the 
Newton–Raphson and/or Goldschmidt algorithms [29] for 
non-restoring division (and square-root). These algorithms 
perform a predefined number of FMA iterations to find the 
reciprocal of the divisor, and then multiplying it by the divi-
dend [29]. To do so, it is first necessary to scale the divi-
sor to the [0.5; 1] numerical interval and apply the same 
scaling factor to the dividend. This is done by a dedicated 
pre-processing module (PRE - see Fig. 2B) placed at the 
input of the PE, to scale the input value and generate the 
corresponding scaling factor.

4.1.7  Pipeline Registers

Each VMA unit is paired with a local 8 ×106-bit register file 
with a dual functionality. These 106-bit registers can be used 
both for local vector storage (e.g., for intermediate results or 
constant storage) or as pipeline registers (for data forwarding 
between adjacent PEs). Dedicated input and output masks 
are used to select which registers are used to accept input 
data and which are forwarded to adjacent PEs.

4.2  Configuration Controller

Each PE is managed by a dedicated configuration control-
ler (see Fig. 2B). It deploys a low-profile sequencer module, 
composed of a counter and a local configuration memory. To 

Fig. 9  Vectorized radix-4 Booth multiplier architecture for 64-bit vectors. The block diagram shows (A) the partial product generation scheme 
with radix-4 booth encoders and (B) the encoder activations for each supported vector configuration, i.e., 1x64-bit (B1), 2x32-bit (B2), 4x16-bit 
(B3), and 8x8-bit (B4).
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configure the PE, the controller makes use of a 64-bit control 
word that generates all the necessary control signals (depicted 
in Fig. 2B) for: i) register control, pipeline masks, operand 
storage and input selection; ii) pre-processing module activa-
tion; iii) vector configuration; iv) VMA stage activation; v) 
quire operation and operand selection; and vi) quire splitting 
logic activation. Accordingly, the sequencer operates by first 
reading a configuration word from the local configuration 

memory, which comprises a tuple formed by the control word 
and a count value. Then, it uses the control word to assign 
the control signals and configure the PE. Depending on the 
executed operation, after a number of clock cycles (defined 
by the tuple count value), the controller obtains a new con-
figuration word and re-configures the PE accordingly. Finally, 
each controller also keeps an interface to the load sequences 
of configurations to the local memory1.

Fig. 10  Overview of the vector-
ized barrel shifter architecture. 
The block diagram illustrates the 
(A) multi-level architecture of the 
left barrel shifter, showing how 
partial results can be extracted 
between each level to obtain 
shifted value for each supported 
vector configuration. It also dem-
onstrates the unification of partial 
results via a bitwise OR opera-
tion and their propagation to a 
subsequent level. Finally, subfig-
ure (B) shows the required modi-
fications to introduce carry-out 
rounding on reversed right barrel 
shifter architecture.

Fig. 11  Vectorized leading zero counter architecture, illustrating (A) a basic n-bit module and (B) an implementation of a 64-bit vectorized lead-
ing zero counter.

1 Although it is out of the scope of this work, to deploy a VMA (or 
the RTU) either as a CPU functional unit or as a dedicated accel-
erator, it is only required to connect each controller to a centralized 
mechanism to facilitate its programming.
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5  Data Streaming Mechanism

The proposed RTU deploys an autonomous data streaming 
infrastructure, composed of: i) a set of stream generators and 
storage controllers; and ii) a set of banked SRAM modules. 
Each stream generator/storage controller is composed of a 
set of descriptor-based pattern generation units, paired with 
Posit vector decoding/encoding logic (see Fig. 12).

Accordingly, the RTU’s stream-based computation mod-
els are supported by a dedicated pattern generation unit per 
input (output) attached to each PE located in the left (right) 
column of the array. Moreover, a 3-bank SRAM memory 
module is deployed per row of the PE array, ensuring maxi-
mum data locality exploitation and parallelism (see Figs. 2 
and 12A). These serve both as scratchpad memories (local 
to the RTU) and stream buffers, allowing streams to flow 
in and out of the PE array and promoting data reutilization.

5.1  Pattern Generation Units

Each data streaming pattern generation unit (see Fig. 12B) 
adopts a descriptor format based on the affine function 

defined in Eq. 4. The descriptor format is capable of describ-
ing both linear and tiled accesses, by generating incremental 
stride factors (stride and count control modules 
- see Fig. 12B), and adding them to a base address offset 
(address generation module - see Fig. 12B and C). 
Combinations of multiple descriptors allow the generation 
of patterns with higher levels of complexity (such as sliding 
window or banded patterns). To do so, the set of descriptors 
that are used to generate a given pattern are stored in a local 
descriptor memory and iterated over in the aimed sequence.

5.2  Posit Decoding and Encoding

Each pattern generation unit is also paired with a Posit 
decode or encode module to perform the translation from 
in-memory Posit vectors to the input vector unified format, 
and vice-versa. Each module is fully vectorized and per-
forms the translation according to the schemes described 
in [12–14, 21].

The decode module (see Fig. 13A) translates an input 
posit vector (Vposit ) to the corresponding vectors for the sign 
(signposit ), exponent (expposit ), and fraction (fracposit ) values. 

Fig. 12  Overview of the 
proposed RTU’s data streaming 
infrastructure.

Fig. 13  Overview of the posit 
vector (A) decoding and (B) 
encoding modules.

1376 Journal of Signal Processing Systems (2021) 93:1365–1385



1 3

For each posit vector, it starts by taking the 2’s complement 
according to the sign bit of the posit, with the help of a vec-
torized carry-lookahead adder (as described in Sect. 4.1.2 
and depicted in Fig. 8). Then, the regimes are decoded by 
first inverting each vector element according to the first bit 
of the regime. This step allows the run-length of the regime 
to be obtained without the need for a leading one counter. 
Instead, it is done solely with the aid of a vectorized leading 
zero counter (depicted in Fig. 11). The zero count is then 
simultaneously used i) to calculate the regime value, accord-
ing to Eq. 2; and ii) to shift out the regime bits from the 
each vector element from Vposit with a vectorized left barrel 
shifter (as described in Sect. 4.1.3 and depicted in Fig. 10A). 
The resulting shifted vector contains the exponent and frac-
tion fields for each element, which are then split according to 
the posit precision. Finally, the regime is concatenated to the 
exponent value an a ’1’ bit is concatenated with the fraction 
to obtain the fraction vector.

Conversely, the encode module (see Fig. 13B) translates 
back the sign, exponent and fraction vectors to a posit vec-
tor format. It starts by concatenating the exponent (expposit ) 
and fraction (fracposit ) fields for each vector element, and by 
extracting out the regime values from the exponent value. 
The regime values are then used to concatenate a ’01’ or 
’10’ prefix to each vector element, according to their most-
significant bit (sign). Then, the regime are used to right-shift 
the vector elements, with the aid of a vectorized rounding 
barrel shifter (as described in Sect. 4.1.4 and depicted in 
Fig. 10B). Finally, the resulting vector elements are comple-
mented according to the sign bits (signposit ) with a vector-
ized carry-lookahead adder, which are then concatenated to 
the corresponding element, resulting in the final posit vector 
(Vposit).

6  Experimental Results

This section presents an evaluation of the proposed RTU 
in what concerns its performance and energy efficiency, by 
considering an ASIC implementation. The RTU is initially 
compared with alternative SIMD units deployed in off-the-
shelf platforms, with a set of representative benchmarks 
particularly suited for vectorization. The evaluation is con-
cluded with a case study comparing the RTU with dedicated 
architecture implementations deployed in an FPGA device.

6.1  Hardware Implementation

The proposed RTU architecture was fully synthesized for 
an ASIC implementation, by considering the Nangate 45nm 
PDK. Although other configurations could be considered, 
the RTU was implemented by assuming a 4 × 4 PE array 
to facilitate the comparison with alternative computing 

topologies, such as the NVIDIA tensor cores [7]. The sup-
porting data-streaming infrastructure comprises 4 banked 
scratchpad memories (one per row of the array), each com-
posed of three 8kB SRAM memories. Hardware resources 
and power estimation results were obtained with Cadence 
Genus 19.11 and the SRAM banks were generated with the 
OpenRAM [30] memory compiler.

The considered RTU configuration was successfully syn-
thesized with an operating frequency of 800 MHz. An area 
breakdown of each RTU component is presented in Table 1, 
amounting to a total area of 14.204 mm2 and an estimated 
peak power dissipation of about 11.7 W. As it could be 
expected, most of the area footprint is occupied by the PEs 
(782 �m2 ), with the array occupying 91% of the RTU’s area. 
This is mainly due to the VMA’s 2048-bit quire arithmetic 
logic required for the 64-bit precision. Nonetheless, this area 
was kept to a minimum by sharing all the resources required 
to implement all the supported vector precisions, by rely-
ing on the adopted data unified formats. On the other hand, 
it can be ascertained that the area overhead of the whole 
streaming infrastructure only amounts to a total of 9% of 
the RTU’s area, as a result of the low-profile architecture 
of the pattern generator units. Such a low footprint leaves 
room for the deployment of more complex and robust data 
communication schemes in future implementations.

6.2  Reference Setups and Workloads

To evaluate the proposed RTU performance, it was 
compared with several off-the-shelf platforms featuring 
advanced SIMD units (see Table 2), including: i) an Intel 
i7-8700K out-of-order processor (with the AVX2 vector 
extension); ii) an ARM Cortex-A9 embedded processor 
(with the Neon vector extension); iii) a NVIDIA GV100 
GPU (equipped with tensor cores2 and native SIMD opera-
tion in each simultaneous multiprocessor (SM)). Several 
setups were devised for each platform, by considering 
floating-point double, single, and half (only in the GPU) 
precisions, resulting in 7 different setups: AVX-DP, AVX-
SP, NEON-DP, NEON-SP, SM-DP, SM-SP, and SM-HP. 
For the proposed RTU, different setups with 64-, 32-, 16-, 
and 8-bit Posit precisions were considered, corresponding 
to RTU-P64, RTU-P32, RTU-P32, RTU-P8, respectively.

A set of benchmarks (characterized in Table 3) was 
selected based on real-word applications, with the goal 
of evaluating different properties of the proposed RTU. 
They are divided into three categories: vdot and outer 

2 The adopted NVIDIA tensor core was used as a representative plat-
form in the domain of tensor accelerators not only due to its accessi-
bility, but also because it consists on a fair and valid comparison basis 
since its topology is close to that of the RTU base architecture.
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implement highly-parallel algebra operations; gemm and 
conv2d represent matrix-multiplication kernels usually 
targeted to tensor cores; covar and sgd represent multi-
phase applications composed of multiple kernels and with 
complex arithmetic.

The presented evaluation aims at solely comparing the 
proposed RTU architecture with the considered off-the-shelf 
SIMD units. To achieve a fair comparison, all applications 
were parameterized to target a single core of each platform 
(see Table 2), with data sets that fit in the first level of the 
cache hierarchy (to ensure that all these units operate with 
minimum latency and memory access delays). In the particu-
lar case of the GPU implementations, all benchmarks were 
dimensioned to target either a single SM block or its tensor 
cores (through the cuBLAS and cuDNN libraries) when-
ever possible (in the SM-HP setup). The execution times 
and clock cycles measurements for the RTU were obtained 
through cycle-accurate simulations in Cadence Incisive 
19.03. For the Intel i7 and ARM processors, the applications 
were timed and analyzed both in terms of clock cycle count 
and power by accessing their internal performance counters 
with the PAPI library. For the GPU, the corresponding meas-
urements were obtained with the NVIDIA profiling tools.

6.3  Architectural Evaluation

Table 4 presents the measured clock cycle count for each 
benchmark and setup, normalized to the NEON-DP setup (as 
it is the least performant in all benchmarks). The obtained 
clock cycle measurements clearly demonstrate the architec-
tural efficiency of the proposed RTU, showing average clock 
cycle gains of 44x/12x/9x (in 64-bit precision), 64x/19x/15x 
(in 32-bit precision), and 20x (in 16-bit precision) when 
compared to the NEON-DP/AVX-DP/SM-DP, NEON-
SP/AVX-SP/SM-SP, and SM-HP setups, respectively. Such 
gains are a result of the three-fold combination of: i) the par-
allel nature of the RTU PE array, allowing a two-level paral-
lelization both across the PEs and within the SIMD archi-
tecture of the VMAs; ii) the versatility introduced by the 
reconfiguration mechanisms, allowing an efficient resource 
utilization and code-free mapping of complex operations, 
which requires the utilization of different compute units in 
the reference setups; and iii) the supporting data streaming 
infrastructure, by detaching memory accesses from compu-
tation, reducing the execution critical path, and by autono-
mously and efficiently generating streams in parallel with 
computation.

6.4  Performance Evaluation

The architectural benefits of the proposed RTU are further 
highlighted when comparing its execution time to the other 

setups, as it can be observed in Fig. 14. When considering 
the vdot benchmark, for example, it is possible to ascertain 
the benefit of the VMA fusing characteristics to deploy a 
parallel reduction tree. In fact, while all reference setups 
perform this operation with successive shuffling instructions, 
the RTU is capable of reconfiguring unused PEs to perform 
the reduction in parallel with the dot-product partial accu-
mulations (see Fig. 5), in turn achieving 16x/3x/4x speedups 
over NEON-DP/AVX-DP/SM-DP. On the other hand, the 
spatial computation characteristics of the RTU become evi-
dent when considering the outer benchmark, where the 
combination of the PE array topology and the vectorization 
of the VMAs allows exploiting massively parallel computa-
tion. This results in a performance speedup as high as 346x, 
when comparing the most extreme RTU-P8 and NEON-DP 
setups.

Furthermore, thanks to its base tensor-like computing 
architecture, the RTU was also compared with the tensor 
cores present in the NVIDIA GPU (see green bars in Fig. 14 
- *SM-HP). However, the strict set of restrictions imposed 
by NVIDIA tensor cores for the type and shape of matrix 
multiplications [11] only made it possible to map the gemm 
and conv2d benchmarks, denoting the lack of flexibility 
presented by these types of units. Additionally, although the 
conv2d benchmark is also based on tensor multiplication, 
it adopts the most common 3x3 filter shape, which is not 
natively supported by the NVIDIA tensor cores. To allow its 
mapping, the NVIDIA tools need to add padding elements 
to the filter kernel (increasing the memory footprint) and 
to transform the operation to a common matrix multiplica-
tion (similar to gemm). Nevertheless, when comparing the 
execution of gemm and conv2d, the proposed RTU using 
a 16-bit posit precision format is capable of matching and 
outperforming the NVIDIA tensor cores by 1.8x and 5.3x, 
respectively.

The proposed RTU still introduces an increased level 
of processing efficiency over the other setups by applying 

Table 1  Area breakdown for the RTU and its components.

Component Area ( mm
2) Power (�)

PE 0.782 0.684
Stream Pattern Generator 0.019 0.024

Posit Decode 0.008 0.008
Posit Encode 0.009 0.010
SRAM Bank (8kB) 0.094 0.007

Streaming 12 PGs + Decode 0.324 0.397
Infrastructure 8 PGs + Encode 0.224 0.279

12 SRAM Banks 1.128 0.095
RTU 4x4 PE Array 12.528 10.936

Streaming Infr. 1.676 0.772
Total RTU 14.204 11.708
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time-multiplexing reconfiguration to maximize its resource 
utilization. This is especially emphasized when mapping 
full kernels with multiple phases and/or complex opera-
tions, as it is shown by the gains obtained in the covar 
and sgd benchmarks (see Fig. 14). In particular, covar 
takes advantage of the RTU support to map high-latency 
arithmetic functions (in this case, a division operation). This 
is done by reconfiguring unused resources in the PE array, 
allowing the operation to be performed in parallel with other 
computations. When such runtime array-wide reconfigura-
tion between kernel phases is combined with the data reuti-
lization offered by data streaming, the RTU achieves average 
speedups of 2.4x/7.8x and 1.9x/8.1x for covar and sgd, 
when compared to AVX/SM (with equivalent precisions). 
The streaming of patterns with high complexity (such as 
sliding windows) is also evidenced by the 2.5x/3.1x speed-
ups obtained for conv2d, when comparing the same setups.

By acknowledging that the Posit format allows reducing 
the precision at the minimal expense of the output accuracy 
(depending on the dataset) [12–14], it is possible to identify 

the maximum performance gains attainable by the RTU. 
Accordingly, by halving the vector precision, it is possible 
to attain average speedups of 89x/5x/13x, when compared 
to the NEON/AVX/SM setups. On the other hand, by fully 
reducing the precision to 8-bit Posit vectors, the RTU is 
capable of attaining gains as high as 372x/14x/40x, when 
compared to the NEON-DP/AVX-DP/SM-DP setups.

Finally, it is also important to note that the observed gains 
were obtained by considering a CMOS process technology 
(45nm) to implement the RTU that is much greater than 
the state-of-the-art process technologies used in the other 
devices (28nm, 14nm, and 12nm - see Table 2). Accordingly, 
it is safe to assume that the operating frequency of the RTU 
would scale to the range observed in the reference setups if 
implemented in similar technologies. Naturally, such a per-
formance increase would allow the RTU to attain further lev-
els of acceleration when compared to the reference setups.

6.5  Energy Efficiency

The observed performance gains have a significant impact 
in the total energy consumption of the proposed RTU, as 
shown in Fig. 15A. In this graph, it can be observed that 
the RTU consumes a much lower amount of energy when 
compared to the reference platforms. As an example, the 
RTU-P64 consumes 2.5x less energy (on average) than the 
NEON-DP setup. This is a direct result of the applied data 
streaming mechanics, together with the spatial and tem-
poral execution models of the RTU. When operating the 
RTU with an 8-bit Posit precision, it is capable of attaining 
further reductions, as high as 7.46x.

To gather all the observed results in a single metric, an 
additional energy efficiency study was performed. In this 
case, it was used an energy-delay product (EDP) metric 
(see Fig. 15B), calculated by multiplying the total energy 
consumption by the average execution time, in all bench-
marks. By keeping in mind that lower values represent a 
higher efficiency, the measured results not only reflect the 
lower energy consumption of the RTU but also highlight 
the efficiency of its combined execution model. Accord-
ingly, it is possible to observe an overall performance-
energy efficiency improvement of 87x (on average), when 
comparing the proposed RTU with all the considered ref-
erence setups.

6.6  Comparison with Dedicated FPGA‑Based 
Accelerators

To consolidate the presented discussion about the advan-
tages of the proposed RTU, it was also compared with dedi-
cated FPGA implementations for each of the considered 
benchmarked applications. The evaluation presented below 

Table 2  Reference SIMD-enabled platforms.

Intel ARM Nvidia
i7-8700K Cortex-A9 GV100

Technology 14 nm 28 nm 12 nm
Freq. (MHz) 3700 667 1200
TDP (W) 95 1.9 250
Est. Power/Core 15.8 0.8 3.125
SIMD Tech. AVX2 Neon GPU SM
DP Vector-width 8 2 8 / SM Block
SP Vector-width 16 4 16 / SM Block
HP Vector-width - - 32 / SM Block
Tensor Cores - - 2 / SM Block
L1 Data Cache 32kB 32kB 128kB

Table 3  Considered evaluation benchmarks.

Benchmark Description Characteristics

VDOT Vector Dot-Product FMA, Parallel Reduction,
Linear Streaming

OUTER Matrix Outer Product Massively-Parallel, Bandwidth
Saturation, Linear Streaming

gEMM General Matrix-Mult. Tensor-optimized FMA,
(C=� AB + �C) Tiled Streaming

cONV2D 2D Convolution Resource Underuse, Reduction
3x3 Filter Sliding Window Streaming

cOVAR Covariance Kernel Multi-phase, Division
Linear+Tiled Streaming

SgD Mini-Batch Stochastic Multi-phase, Reduction
Gradient Descent Data Reuse, Linear Streaming
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provides an additional level of validation of the RTU, by 
directly comparing it to a representative set of dedicated 
architectures, placing it among the domain of reconfigur-
able and embedded accelerators. To do so, each benchmark 
from Table 3 was individually designed and implemented 
with the Spatial DSL framework [17]. The adoption of this 
DSL allows extracting the inherent characteristics of each 
benchmark (see Table 3), automatically mapping them to 
high-level constructs, and subsequently compiling the design 
to an FPGA target. This results in a set of dedicated accelera-
tors optimized for the platform.

Accordingly, all the adopted benchmarks were success-
fully implemented by targeting a Xilinx ZC702 FPGA, by 
considering an operating frequency of 200 MHz (refer to 
Table 5 for implementation details regarding resource uti-
lization and power consumption), and compared with the 
proposed RTU ASIC implementation (running at 800 MHz). 
Similarly to the initial study, the dataset of each benchmark 
was carefully dimensioned to keep off-chip DRAM accesses 
to the minimum and by aiming to extract the maximum pos-
sible amount of parallelism in the computation kernels, with-
out violating the resource availability constraints imposed 
by the FPGA device (see Table 5). For this study, the FPGA 
implementations only adopt a 32-bit floating-point format. 
This is because the adopted compilation tool instantiates 
data access ports with the same width as the bit precision 
of the data operands. As such, the number of required data 
accesses per application is always the same, independently 
of the data precision. Nonetheless, as it was done in the 
previous study, the four RTU setups (RTU-P64, RTU-P32, 
RTU-P32, RTU-P8) were still considered to demonstrate the 
data vectorization capabilities that can be exploited in the 
RTU, by reducing data precision (once again assuming that 
it is allowed by the characteristics of the dataset).

6.6.1  Evaluation of Measured Performance

Fig. 16 presents the measured performance speedup when 
comparing the RTU  setups to the FPGA implementa-
tions. The obtained results further validate the benefits 
introduced by the proposed RTU, even when compared to 
dedicated architectures. In particular, when considering the 
most parallel vdot, outer, and gemm benchmarks, the 
obtained results further highlight the spatial computation 
capabilities of the RTU’s PE array. In fact, even without 
considering VMA vectorization, the RTU is capable of 
achieving a performance speedup of 9x/11x/19x for the 
vdot/outer/gemm benchmarks, when comparing the 
RTU-P64 setup with the corresponding FPGA implementa-
tions. Furthermore, when exploiting the characteristics of 
the Posit format to fully reduce precision and maximize data 
vectorization, it is possible to obtain performance speedups Ta
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as high as 59x/73x/151x for the vdot/outer/gemm bench-
marks, when considering the RTU-P8 setup.

Furthermore, the reconfiguration mechanisms introduced 
by the RTU provide a level of efficiency over the obtained 
FPGA implementations. In particular, the VMA fusing capa-
bility to deploy in-situ parallel reduction trees is clearly visible 
when considering the conv benchmark. While the RTU is 
capable of reconfiguring itself to operate over data moving 
through the PE array, the parallel reduction trees required to 
deploy the convolution operation in the FPGA are highly lim-
ited by the available data bandwidth, in turn, decreasing the 
performance of the design. This results in an observable aver-
age speedup of 144x in the RTU for the conv benchmark.

On the other hand, the time-multiplexing benefits to deal 
with multi-phase applications and the adaptability of the 
RTU to deploy complex operations are once again high-
lighted by the covar and sgd benchmarks. Even though 
the FPGA designs are deployed with specialized architec-
tures, the efficiency of the implementation is still limited by 
the amount, placement, and specialization of the resources 
available in the device. As already mentioned, these RTU 
capabilities allow instant specialization to deploy high-
latency arithmetic, which benefits applications such as the 
covar benchmark that requires floating-point division 

operations. In fact, while the FPGA design has to map these 
operations to DSPs and redirect data to particular regions of 
the device, the RTU is capable of performing these opera-
tions within the PE array by combining multiple units.

Moreover, the RTU is also particularly suited to deal with 
multi-phase applications, such as sgd and covar. In com-
bination with the data reutilization capabilities of the under-
lying data streaming infrastructure, this allows the RTU to 
instantly reconfigure itself to deploy different computing 
kernels while keeping intermediate data close to the com-
puting resources. Such capabilities, when combined with the 
spatial computation offered by the RTU, result in average 
speedups of 177x and 81x for covar and sgd, when com-
pared to the corresponding FPGA implementations.

Notwithstanding, it is important to note that the FPGA fabric 
is also reconfigurable and the same time-multiplexing function-
alities could also be deployed by exploiting its partial reconfigu-
ration capabilities. However, the Spatial DSL framework [17] 
does not support this functionality. Nonetheless, while the RTU 
is capable of reconfiguring itself in a single clock cycle, the par-
tial reconfiguration procedure of an FPGA fabric takes several 
milliseconds and requires a non-negligible amount of additional 
control structures and hardware resources.

Fig. 14  Performance comparison results, including execution time speedup, normalized to NEON-DP. 

Fig. 15  Energy consumption 
results, including (A) average 
energy savings normalized to 
NEON-DP, and (B) overall 
energy efficiency (in the form of 
an EDP metric).
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6.6.2  FPGA Performance Limitations and Speedup 
Normalization

To better contextualize the performance results of both the 
proposed RTU and the FPGA-based accelerators that were 
considered in the presented comparison, it is important to 
remark some of the underlying limitations of the FPGA plat-
form. In particular, it would be expected that a dedicated 
accelerator computing architecture would be able to deliver 
a higher performance than a more general-purpose architec-
ture, such as the proposed RTU. However, even though the 
accelerators generated by the Spatial DSL framework [17] 
are highly optimized, their performance is heavily limited by 
their maximum operating frequency and the data bandwidth 
that is made available to the FPGA fabric. In particular, 
the generated architectures can only run with a maximum 
frequency of up to 200 MHz in the adopted Xilinx ZC702 
FPGA, whereas the RTU runs at 4x higher frequency (800 
MHz). Additionally, the adopted Xilinx ZC702 FPGA has 
a maximum available bandwidth for data loading of 3.2 
GB/s [31]. Conversely, the RTU is capable of streaming data 
to the PE array at a maximum rate of 72 GB/s (4× 3 64-bit 
read channels @ 800 MHz). This results in a 22.5x data 
transfer bandwidth increase over the FPGA designs.

Accordingly, to take this factor into account, the previ-
ously presented performance speedup results were normal-
ized both to the operating frequency and to the available data 
bandwidth for each platform, as it is shown in the graphs 
presented in Figs. 17 and 18, respectively.

As it would be expected, the obtained results show a 
smaller performance gap between the RTU and the FPGA 
implementations. In particular, when considering the 
speedup normalized to the operating frequency, it is pos-
sible to observe that the performance gap between the RTU 
and the FPGA implementations is reduced by a factor of 4x, 
while maintaining a proportional relation (see Fig. 17) to 
the performance values discussed in Sect. 6.6.1. This results 
in an average performance gain of 9.1x/14.7x/26.6x/39.8x 
for the RTU-P64/RTU-P32/RTU-P32/RTU-P8 setup, when 
compared to the FPGA implementations.

Conversely, when considering the speedup normalized to 
the available data bandwidth (see Fig. 18), the performance 
gap becomes ever closer, allowing to further highlight the ben-
efits of the proposed RTU. In particular, when considering the 
vdot,outer, and gemm benchmarks, it can be observed that 
the RTU-P64 setup would be slightly outperformed by the cor-
responding FPGA implementations. However, it should be 
noted that the RTU is still capable of fully exploiting the VMA 
vectorization, attaining a performance speedup as high as 
2.6x/3.26x/6.73x when comparing the RTU-P8 setup with the 
corresponding FPGA implementations for vdot/outer/gemm.

When considering the conv2d, covar, and sgd bench-
marks, the benefits that are introduced by the combination 
of the RTU’s reconfiguration mechanisms and its supporting 
data streaming infrastructure become evident once again. 
In particular, the RTU shows a performance speedup of 
3.39x/2.16x/2.33x for conv2d/covar/sgd, when compar-
ing the RTU-P64 setup with the FPGA implementations. 

Fig. 16  Performance compari-
son results against the FPGA 
setups running at 200 MHz.

Table 5  Reference 
implementation details for the 
Xilinx ZC702 FPGA (@ 200 
MHz).

Bench.  LUT  Registers  BRAM  DSP  Total Power

VDOT 25753 (48%) 36761 (35%) 4 (3%) 192 (87%) 2.32 W
OUTER 23100 (43%) 26770 (25%) 35.5 (25%) 19 (9%) 2.17 W
gEMM 27017 (51%) 34150 (32%) 8 (6%) 68 (31%) 2.14 W
cONV2D 34242 (64%) 27790 (26%) 2.5 (2%) 62 (28%) 1.95 W
cOVAR 39042 (73%) 48511 (46%) 16 (11%) 45 (20%) 2.27 W
SgD 17568 (33%) 20447 (19%) 32 (23%) 52 (24%) 2.06 W
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Besides the architectural versatility and adaptability, this is 
a direct result of the RTU’s data streaming infrastructure 
that not only allows optimizing data movement and reu-
tilization within the design, but it also transparently han-
dles data movement behind computation. Naturally, when 
considering the maximum possible vectorization, RTU-
P8 setup is capable of achieving performance speedups of 
8.73x/16.56x/4.56x for conv2d/covar/sgd, when com-
pared with the corresponding FPGA implementations.

6.6.3  Energy Efficiency Evaluation

Finally, the impact of the RTU’s advantages is also evi-
dent by in terms of total energy consumption observed in 
both setups, as shown in Fig. 19A. In this graph, it can be 
observed that despite the lower average power consumption 
of 2.15 W (see Table 5) imposed by the FPGA implementa-
tions (vs. 12 W in the RTU), the RTU consumes 160x less 
energy (on average), as a direct result of improved perfor-
mance. This is further highlighted by the calculated EDP 
metric (see Fig. 19B), showing an overall performance-
energy efficiency improvement ranging from 3 to 5 orders 
of magnitude higher, when comparing the proposed RTU 
with the FPGA implementations.

6.7  Discussion on Alternative PE Array Topologies

Although the evaluated RTU prototype was implemented by 
assuming a 4 × 4 PE array, other different array topologies 
could equally be considered.

In particular, the communication interfaces of the PE 
architecture were especially designed to ease the deploy-
ment of different array topologies. In fact, the considered 
PEs were made as modular as possible, making it only nec-
essary to connect additional rows and/or columns of PEs to 
increase the size of the array. This can be achieved without 
requiring any modifications to the PE architecture.

Naturally, when such different topologies are exploited, 
different outcomes are expected to arise from increasing the 
width and depth of the array. One the one hand, by widening 
the array, it is naturally possible to exploit higher levels of 
spatial parallelism. On the other hand, by deepening the array, 
it is possible to deploy larger and more compute-intensive ker-
nels, by providing a much larger pool of computing resources. 
As such, the amount of exploited parallelism and computing 
complexity can be adjusted by defining the width and depth 
of the array. Such compromise is only limited by the balance 
between the available data bandwidth and the available chip 
area for the RTU.

Fig. 17  Performance compari-
son results against the FPGA 
setups, normalized by the 
operating frequency.

Fig. 18  Performance compari-
son results against the FPGA 
setups, normalized by the avail-
able memory bandwidth.
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7  Conclusions

This paper proposed a new RTU architecture that leverages 
the new Posit floating-point format to deploy a 2D comput-
ing array of variable-precision SIMD units. The proposed 
unit was designed by recognizing the opportunity to explore 
the resources of existing tensor units for more general-
purpose computing contexts. To do so, the proposed RTU 
deploys a combined data streaming, spatial and temporal 
execution model, to deploy a reconfigurable compute unit 
that is capable of fusing multiple PEs to map high-level 
operations, by exploiting time-multiplexing reconfigura-
tion mechanisms. The obtained results for a 45nm ASIC 
implementation show that the proposed RTU provides an 
increased performance not only over existing state-of-the-art 
tensor and SIMD units present in off-the-shelf platforms, but 
also over dedicated FPGA-based accelerators, resulting in 
significant energy efficiency gains.
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