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Abstract
The introduction of 5G’s millimeter wave transmissions brings a new paradigm to wireless
communications. Whereas physical obstacles were mostly associated with signal attenua-
tion, their presence now adds complex, non-linear phenomena, including reflections and
scattering. The result is a multipath propagation environment, shaped by the obstacles
encountered, indicating a strong presence of hidden spatial information within the received
signal. To untangle said information into a mobile device position, this paper proposes the
usage of neural networks over beamformed fingerprints, enabling a single-anchor position-
ing approach. Depending on the mobile device target application, positioning can also be
enhanced with tracking techniques, which leverage short-term historical data. The main
contributions of this paper are to discuss and evaluate typical neural network architectures
suitable to the beamformed fingerprint positioning problem, including convolutional neu-
ral networks, hierarchy-based techniques, and sequence learning approaches. Using short
sequences with temporal convolutional networks, simulation results show that stable average
estimation errors of down to 1.78 m are obtained on realistic outdoor scenarios, containing
mostly non-line-of-sight positions. These results establish a new state-of-the-art accuracy
value for non-line-of-sight millimeter wave outdoor positioning, making the proposed meth-
ods very competitive and promising alternatives in the field.
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1 Introduction

The advent of 5G is expected to bring new wireless communication capabilities, yet at a
cost of additional challenges. One of 5G’s highlights is the introduction of millimeter wave
(mmWave) communications, unlocking a significant block of untapped bandwidth [1]. How-
ever, with mmWaves, the propagation properties change dramatically: the resulting radiation
not only has severe excess path loss properties, but also reflects on most visible obstacles
[2]. As a consequence, any sort of mmWave communication between two points that are not
on direct line-of-sight (LOS) of each other is only possible through an indirect propagation
path, such as a reflection. To counteract the aforementioned attributes, beamforming (BF) is
usually employed in systems containing multiple-input and multiple-output (MIMO) anten-
nas, enabling a steerable and directive radiation pattern, which can then be used to facilitate
non-line-of-sight (NLOS) communications.

The recent focus on mmWave communications led to the proposal of new positioning
systems [3]. The accuracy achievable in certain conditions is remarkable, having sub-meter
precision in indoor [4] and ultra-dense LOS outdoor scenarios [5]. Nevertheless, in order to
be a viable outdoor mmWave localization system, it must also be able to accurately locate
devices in NLOS positions, where the communication link establishment can be far from
trivial to begin with. Indeed, having NLOS positioning capabilities is a critical require-
ment in urban scenarios. This requirement, allied to multiple, often overlapping non-linear
propagation phenomena such as reflections and diffractions, poses serious challenges to the
traditional geometry-based positioning methods. In fact, the recent mmWave experimental
work in [6] demonstrates that geometry-based methods cannot be directly applied to accu-
rately locate NLOS targets, whose received mmWave radiation is exclusively a result of the
aforementioned non-linear propagation phenomena.

The alternative class of positioning techniques, known as fingerprint positioning [3],
approaches the problem with a data-centric perspective, as opposed to the model-centric
view of the geometry-based methods. A fingerprint positioning method consists in obtaining
a database of a certain measurable attribute for multiple positions in the considered area,
enabling the creation of a local model through machine learning (ML) techniques. The pre-
dictionmodel is built from data, and thus it can learn the existing non-linearities as long as the
ML technique used to train it has the capacity to model them. The main challenge with fin-
gerprint methods is selecting the correct measurable attribute—a model can only get as good
as the data used to train it, and thus information-poor data cannot enable accurate predictions.
For instance, the fingerprint method for 4G networks proposed in [7] has a median prediction
error of 75 m, even thought it was trained with deep learning (DL) methods. As such, this
paper’s main focus is the analysis of the information available in the context of mmWave
propagation, and how to transform it into a practical positioning system using typical DL
methods and prior knowledge on the problem.

In our previous work in [8], the properties of mmWave transmissions were leveraged to
create an information-rich fingerprint, which we coined beamformed fingerprint (BFF).With
the availability of high-quality fingerprint data, DL methods were proposed to infer accurate
position estimates, given their recent state-of-the-art results obtained when dealing with non-
linear pattern recognition problems. The contributions of this paper are summarized below:

– The use of sequence-based DL architectures is proposed when sequences of BFFs are
available, effectively enabling the system to track a mobile device;

– State-of-the-art performance for the NLOS mmWave outdoor positioning problem is
achieved, using temporal convolutional networks (TCN). The obtained average estima-
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tion error is as low as 1.78 m, even in the presence of heterogeneous movement types
and NLOS positions. The obtained results are also very stable: when evaluating the root-
mean-square-error (RMSE), it is 5.41× smaller than our previous work in [9], and 9.62×
smaller than the best non-BFF approach for mmWave NLOS positioning [10];

– The dataset used to evaluate the sequence-based DL architectures will be permanently
made public, being the first mmWave-based dataset usable for tracking experiments.

The remainingof the paper is organized as follows.The state-of-the-art regardingmmWave
outdoor positioning systems is discussed in Sect. 2. In Sect. 3 the beamformed fingerprint
localization system originally proposed in [8] is discussed, with a detailed analysis of the gen-
erated data. Section 4 walks through the previously proposed architectures, covering CNNs
and their hierarchical expansion, while Sect. 5 focuses on the newly proposed BFF-based
tracking methods. Finally, Sect. 6 evaluates the accuracy for the considered DL architectures,
with the conclusions being drawn in Sect. 7.

2 Millimeter Wave Outdoor Positioning Systems

Millimeter wave positioning systems can achieve remarkable accuracies due to the available
signal bandwidth, which increases the temporal resolution of the received signal. In LOS
scenarios, where geometry-based methods can be easily applied, both theory [5] and practice
[6] have demonstrated errors close to 1 m, which is superior to other civilian-grade posi-
tioning methods [11,12]. However, as mentioned in the previous section and demonstrated
in [6], producing accurate estimates for NLOS positions is a challenging task. The works
developed in [10,13–15] address the aforementioned concern, attempting to locate devices
in both LOS and NLOS outdoor positions. In [13], multiple access points are used to create a
location fingerprint database of received powers and angles-of-arrival (AoA), while in [14],
the authors use multiple BF transmissions and an iterative algorithm to estimate the position
and orientation of the device. The same parameters are obtained in [15], through the estima-
tion of the AoA, time of arrival (ToA), and angle of departure (AoD), making simultaneous
use of LOS and NLOS transmissions. However, the methods referred so far have difficulties
complying with typical outdoor situations: [13] assumes that each device is always in range
of multiple static transceivers, while the other two methods still struggle with NLOS loca-
tions, requiring multiple transmission paths reflecting in at least three different surfaces [14]
or preferring to not disclose the performance results for those locations [15].

The method proposed in [10] overcomes the aforementioned restrictions by creating a
fingerprint database of uplink pilots transmitted to a single massive MIMO base station (BS)
that contains multiple antennas distributed over a limited area. Using a Gaussian process
regression to resolve the position, this work achieves a RMSE of 34 m. For comparison,
consider long term evolution’s (LTE) observed-time-difference-of-arrival (OTDOA) and the
ubiquitous Global Navigation Satellite System (GNSS), the two stand-alone methods for
outdoor positioning with the highest accuracy currently deployed for civilian use [3]. The
former has a theoretical average error of about 10 m [12], assuming optimal conditions and
expensive detection mechanisms (as discussed in [16], the real accuracy is often significantly
lower). Typical State-of-the-art GNSS receivers, on the other hand, are capable of obtaining
better accuracies, averaging 3 m in continuous measurement scenarios [11], with significant
penalties for sporadic measurements due to the extensive use of Kalman Filters [17]. There-
fore, as summarized in Table 1, there is a significant performance gap between state-of-the-art
mmWave systems and the existing outdoor positioning solutions, when in NLOS conditions.
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Table 1 An overview of the state-of-the-art for mmWave outdoor positioning, and how it compares to the best
civilian-grade outdoor positioning methods using other signal frequencies

Method Type mmWaves? NLOS predictions? Achievable error

[5] Geometry Yes No < 1 m

[6] Geometry Yes No 1.86 m

[13] Fingerprint Yes No 1.32 m

[14] Geometry Yes No < 1 m

[15] Geometry Yes No < 1 m

[10] Fingerprint Yes Yes 34 m

This work Fingerprint Yes Yes 1.78 m

GNSS Geometry No Yes < 3 m [11]

OTDOA Geometry No Yes > 10 m [12]

This paper discusses a new system that, making use of deep learning techniques, closes that
gap.

For the 5G BSs, which are expected to be positioned in elevated positions of urban sce-
narios, the majority of the obstacles will be buildings, and thus static for a significant amount
of time. Successive measurements of the received power delay profile (PDP) at a given posi-
tion are expected to remain comparable until a meaningful change in the surrounding space
occurs. If a BS transmits a signal employing a sequence of directive BF patterns, so as to
cover all possible transmission angles (and thus maximizing the covered space), then the
receiver is able to gather multiple distinct PDPs. Due to the non-linear propagation phenom-
ena in the presence of obstacles, that set of PDPs is expected to have noticeable discontinuities
throughout the target localization space, which provide significant spatial information. In [8],
we proposed the use of the set of PDPs to produce the aforementioned BFF as a foundation
for an accurate mmWave outdoor positioning method. The BFF positioning method has an
additional attractive aspect: contrarily to most accurate positioning methods (including the
method suggested in [10], GNSS, and OTDOA), it requires a single-anchor [3,18].

The information held in a BFF is a result of non-linear interactions and, therefore, requires
a method that is able sift through non-linear relationships. Given the requirements of the
problem and the recent state-of-the-art results obtained when dealing with non-linear rela-
tionships, DL techniques become a powerful candidate to untangle the BFF. However, as this
paper aims to show, prior information on the problem can be leveraged to adapt the problem
into multiple DL architectures, each with its own requirements and drawbacks. In [8], we
proposed the use of convolutional neural networks (CNN) [19] to exploit the data structure
within a BFF. In [9] we improved the previous system with a hierarchical structure, taking
advantage of the BFFs’ expected similarity along adjacent positions, at the cost of additional
processing power. In this paper, the physical restrictions of short sequences of positions is
explored with the aid of sequence learning, further enhancing the BFF positioning system.

3 Beamformed Fingerprints

The transmittedmmWave radiation, subject to reflections, diffractions, and other phenomena,
is shaped by the encountered obstacles. As result, a transmitted signal might have more than
one propagation path between the BS and the receiver, each with an unique power attenua-
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Fig. 1 Overall scheme of the assessed system, as proposed in [8]. Themobile device samples the received PDPs
from radiation transmitted through a fixed set of beamforming patterns, resulting in a unique beamformed
fingerprint that can then be translated into its position

tion and delay. From an information theory point of view, each new path carries additional
information from the surrounding space, and thus can strengthen the predictive power of the
system. Based on this principle, a BFF can carry enough information to accurately locate a
listening mobile device. Throughout this section, both fingerprint acquisition process and its
data contents will be thoroughly analyzed.

3.1 Beamformed Fingerprint Data Acquisition

A critical component of any learnable dataset is its consistency, as it then allows the system
to extract helpful information from a trained mathematical model. To ensure so, the input
data must be gathered using an immutable methodology. Therefore, both transmission and
receiving procedures must remain constant in order to obtain valid fingerprints. To comply
with such requirements, the system depicted in Fig. 1 was originally suggested in [8]. It
operates in four distinct phases, as labeled in the diagram, whose details are further described
below. In phase A, a BS will broadcast radiation using a constant set of BF patterns, while
phase B focuses on measuring the resulting PDPs at the target device. After all the required
measurements are obtained and transmitted back to the BS, phase C infers the device’s
position, which will be relayed back in phase D.

The transmitter BF’s directivity, one of the key aspects that will dictate the resolu-
tion of the information embedded in the BFF, is defined in phase A. The directivity
determines how narrow the beam of transmitted radiation is. Therefore, increasing the
directivity of a given transmission translates into a PDP containing information with
higher specificity, focused on a particular sub-set of possible propagation paths. Fur-
thermore, by focusing the radiation, the number of paths with enough energy to be
detected by the receiver increases. Unfortunately, there is an associated trade-off: to
fully cover all possible angles of transmission, higher BF directivities correspond to a
higher number of PDP measurements required per position fix. Throughout this paper,
the exact mechanism to measure the timing of the non-zero samples within a PDP (i.e.
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a path) is abstracted, considering that it can be done through various real implementa-
tions.1

Let us consider a fixed codebook CT x containing BT x BF patterns. Before a position
estimate becomes possible, the BS must transmit the signal with the BT x BF patterns, which
are expected to be transmitted in sequence. Assuming a BS with NS antennas, the frequency-
domain received signal for the i th transmitter BF at a mobile device with NR antennas, r ∈ C

(C being the set of complex numbers), can be written as

r = wTHf i s + wT z, (1)

where the superscript T denotes amatrix transpose,w ∈ C
NR×1 corresponds to the (optional)

beamforming at the receiver, H ∈ C
NR×NS is the channel matrix, fi ∈ C

NS×1 denotes the
currently selected transmitter beamforming, s ∈ C is the signal to be detected, and z ∈ C

NR×1

represents noise. Since the transmitter beamforming is codebook-based, it is important to state
that fi ∈ CT x (CT x = {f1, . . . , fBT x }).

In phase B, the process of obtaining the BFF from the transmitted signals must result in
consistent data, regardless of the listening device. To ensure so, the second key information
resolution dictating aspect, the sampling rate of the PDP, must be constant and enforced
throughout the system. To understand how close the sampling rate is related to the resolution
of the embedded information, consider a single propagation path between the BS and the
receiver. As discussed in [23], the maximum theoretical spatial resolution for a single time-
based measurement is given by

dth = T × c, (2)

where dth is the theoretical resolution of the distance in meters, T is the sampling period in
seconds (1/T is the sampling rate in Hz), and c is the speed of light in meters per second.
In fact, the good LOS results in [5,6] can be partially explained through this relationship,
since they use a high bandwidth signal. In the context of the BFF, the maximum resolution
of the hidden information provided by the measured delay of each path is also inversely
proportional to the selected sampling rate. Nevertheless, similarly to the directivity in phase
A, the sampling rate has associated trade-offs: using a higher sampling rate requires the
allocation of additional radio spectrum resources, raises the minimum energy requirement
for each path’s detection due to thermal noise, and also places tougher hardware requirements
for the mobile devices.

If the system is expecting beamforming at the receiver, a fixed gainmust also be established
for all receivers. In that case, the receivers would have to define their own BF codebook,
CRx , containing BRx elements (CRx = {w1, . . . ,wBRx }). The codebooks would have to be
designed so as to search over all AoAs with similar gain, so as to avoid a scenario akin to
the orientation unaware situation described in [18], where the device orientation becomes an
extra variable. To avoid it, the device would have to sample each transmitter BF BRx times,
storing the maximum measured value for each sample within a PDP. The acquired data from
the i th transmitter BF, xi , can thus be written as

xi [n] = max
j=1,...,BRx

r j (nT ), n = 0, 1, . . . , N − 1, (3)

where r j is the time-domain sampled signal using the receiver beamforming w j , and N
is the number of samples to be considered per PDP. It should be noted that the obtained

1 Typical approaches rely on pseudo-random sequences [20], round-trip delays [21], and/or cross-correlations
[22] (e.g. in [6], the PDPs were gathered through a correlation method).
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Fig. 2 Noiseless beamformed fingerprints examples from the experimental simulations, containing the PDP
for each beamformed transmission on the vertical axis

fingerprint data (X) has a negligible dependency on the mobile device orientation if the
receiver BF codebook does cover all AoAs, since it considers the maximum value among all
used receiver BFs.

After the required fingerprint data X is obtained, the previously trained DL method can
finally infer the device position in phase C.With a DLmethod, the system learns to cope with
the non-linearities introduced by reflections and other propagation artifacts. Interestingly,
the work in [6], released shortly after the original proposal of the BFFs [8], pointed out ML
methods as a possible solution to cope with the non-linearities, which disabled any viable
NLOS experimental results.

It should also be noted that each BS will have their own dataset and, therefore, their own
model. The system performance is determined mainly by the data obtained in phase B and
the DL architecture used in this phase, which are further analyzed in the following sections.

During phase D, the device receives the position estimate from the BS. Phase C could be
performed at the mobile device, avoiding the data upload to the BS (and phase D altogether).
However, the device would have to download millions of weights from each BS, and thus
herein we consider the predictions are computed at the BS (as depicted in Fig. 1). Moving
the inference to the BS also allows the system to centralize the users’ position information,
enabling further applications (e.g. optimized traffic management and positioning-aided BF
selection [24]).

3.2 Beamformed Fingerprint Data Analysis

One of the aspects that dictate the potential spatial information embedded within a beam-
formed fingerprint is the selected sampling period (T ). In fact, high quality data can be
obtained with sampling frequencies exceeding 10 MHz (i.e., T < 100 ns). In such con-
ditions, the radiation arriving from the multiple propagation paths is detected in clusters,
containing voids that are large enough to be reliably detected [25]. The ability to distin-
guish these voids provides a meaningful shape to the resulting data, enhancing the learning
capabilities of the system.
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The multipath propagation inherent to these frequencies suggest us to gather a substantial
number of samples per transmitter BF (N ), so as to include even the longest paths and thus
maximize the received information. However, by doing so, the resulting data will be sparse,
as it is observable in the examples plotted in Fig. 2. In fact, due to this sparseness, the relative
position of the acquired non-zero samples in the data contains the majority of the extractable
information, as shown in [8]. Therefore, we commend a binary detection of the signal’s
existence when acquiring the data, instead of measuring the signals’ power, further reducing
the hardware requirements for the BFF positioning system. The use of binary PDPs also
reduces the amount of data to be transmitted back to the BS before the position inference
takes place in phase C.

When examining the sampled data, it is interesting to notice a visual pattern that arises
when the sequence of transmitted BF indices correspond to a continuous sweep over the
azimuth (as in the simulations that resulted in Fig. 2). Plotted as a 2D image, where the
axes correspond to time and the BF index, and the color represents the detected power (or
the signal existence), the formed image will likely have short lines along the BF direction.
In other words, this means that physically adjacent BF patterns will likely end up having
similar clusters whenmeasured from the same location, and thus carrying partially redundant
information. As a result, increasing the number of transmitted BF patterns without increasing
their directivity has diminishing returns on the position inference accuracy. On the other hand,
increasing the BF patterns directivity, which can be seen as increasing the spatial resolution
of the captured information, should have a positive impact in the resulting accuracy.

Finally, we would like to highlight the flexibility of the BFF positioning method regarding
its radiation sources.While most accurate positioningmethods require three or more separate
transmitters [3], the BFFs can be obtained from a single BS, enabling positioning estimates
whenever there is mmWave coverage [18].

4 Beamformed Fingerprint Positioning

The problem discussed in the previous section can be seen as the supervised learning of the
training set T , whose samples are obtained from a fixed distributionDX×Y . The input space
X = R

(N×BT x ) corresponds to the set of possible BFFs, whereas the target space Y = R
d

is the set of all possible positions, where d is the dimension of the position space (2 or
3 for bidimensional or three-dimensional positions, respectively). The purpose of the BFF
positioning system is then to train a mapping function f : X �→ Y using T , so as to be able
to generalize to new, unseen samples.

The simplestDLarchitecture applicable to theBFFpositioning problem iswhat is typically
called a deep neural network (DNN). The DNN is a circuit analogous to a biological brain,
comprised of a number of basic elements called neurons that are stacked in multiple layers,
denoted as fully connected layers. The vector containing the output of the i th layer of neurons
ni can be written as

ni = a (Ui ni−1 + bi ) , (4)

where Ui depicts the connection between neurons (also known as weight matrix), bi is the
firing thresholds vector (also known as bias), and a is an activation function, a non-linear
subdifferentiable function. The first layer (n0), also known as input layer, is fed in with the
input data X, which is a BFF in the context of this paper.
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Due to the nonlinear activation functions, a DNN is a good candidate to learn the non-
linear phenomena commonly encountered in ammWave transmission, such as reflections and
diffractions. To map the input fingerprint data to the target label, the network is trained using
a gradient-based algorithm compatible with batches, which update the neurons’ learnable
parameters (b andU in Eq. (4)). This supervised training is guided by a loss functionL, which
can be seen as a measurement of the average similarity between the network predictions and
the true labels. For the proposed system, the neural network is trained to perform a regression
in the output layer, minimizing the mean square error (MSE) between that layer’s output ŷ
and the data’s labeled position y, i.e.,

ŷ∗ = argminŷ E
{(
ŷ − y

)T (
ŷ − y

)}
, (5)

where ŷ∗, which is the output of the neural network’s last layer, denotes the estimated position
given the input data X. The usage of this loss function can be interpreted as a minimization
of the euclidean distance between the labeled position and its estimate. After being trained
with T , the learnable parameters (b and U) are locked, and the network is able to provide
estimates for new, unseen data.

A DNN, as any DL architecture, can only has as much predictive power as the training set
T enables it to. In order to be effective when evaluating unseen data, the network should be
able to generalize the information assessed while training, especially if the data is expected
to be noisy. To do so, the network should be exposed to a sizable training set and possibly
trained with regularization techniques (e.g. dropout [26]), forcing it to focus on the general
attributes of the data, instead of memorizing the training set (also know as overfitting). A
successful DL-based system must then be able to easily gather massive amounts of labeled
data, which is not always possible. Fortunately, the BFF system, as well as any other outdoor
fingerprint positioning method, can use the GNSS as a last resort to accurately2 label the
captured input data. The same cannot be said for indoor positioning systems, which struggle
to manually label the gathered data (as mentioned in [28]).

4.1 Enabling Convolutional Neural Networks

Consider now the two indexing dimensions of the BFF data samples, the time-domain sam-
ple number and the transmitter BF index. If the sequence of BF indices corresponds to a
continuous sweep over the azimuth, as described in Sect. 3.2, it is possible to extract infor-
mation not only from the individual data points, but also from their sequence along those
two dimensions. Therefore, even though the two dimensions have disparate meanings, the
nature of the problem makes CNNs a good candidate for the problem at hand, as illustrated
in Fig. 3.

The convolutional layer is introduced with CNNs, where the neural network can learn
the most effective set of short filters to apply on the received data, and thus also extracting
information from its sequence within a sample. A convolutional layer can learn more than
one feature from the previous layer’s output, and thus subsequent layers are often seen as
higher-order abstractions. For the i th convolutional layer of neuronsN, which is now amatrix,
the output of the f th feature can be written as

2 Even though typical civilian GNSS receivers have an average accuracy of 3 m, the proliferation of systems
similar to Japan’sQuasi-Zenith Satellite Systemwill enable sub-meter accuracies in particular areas.Moreover,
there are known DL techniques to deal with noisy labels, such as in [27].
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Fig. 3 Even though the two dimensions within a BFF have disparate meanings, the data sequences along both
dimensions carry significant information (as elucidated in Sect. 3.2). Therefore, by using a CNN, the system
can efficiently tap that source of information

N f
i = a

( F̃∑

f̃ =1

(
U f , f̃
i N f̃

i−1

)
+ 1 × b f

i

)
, (6)

where F̃ is the number of features in the previous layer, 1 is a bi-dimensional matrix of ones,

the bias b f
l is now a single scalar, and each U f , f̃

i , now denoting a bi-dimensional filter, is a
doubly block circulant matrix (which is a special case of a Toeplitz matrix). In this case, the
input layer (N0) is fed in with the BFF dataX, which can be seen as a layer containing a single

feature. Due to its new structure, if U f , f̃
i is built from a L1 by L2 bidimensional filter, it

will only contain L1× L2 learnable parameters. Although there is a different learnable filter
for each pair of features on two subsequent convolutional layers, the number of learnable
parameters in a convolutional layer is significantly lower than in a fully connected layer, for
equally performing neural networks [19]. The enhanced performance per learnable parameter
arises due to the filter bank structure of the convolutional layer, which enables the network
to recognize the same patterns in different parts of the input data, effectively enforcing
generalization.

Since each feature is a filtered copy of the previous layer’s output, the total amount of
data transported by each succeeding layer quickly becomes overwhelming. To cope with
such data increase, and to improve the invariance against minor shifts, convolutional layers
are usually followed by pooling layers, where the data is downsampled. In a typical CNN
architecture, the network starts with the convolutional layers, whose output is then flattened
for the subsequent fully connected layers.

4.2 Hierarchical Convolutional Neural Networks

Theoutdoor positioningproblemmaps a set of input data to a continuous spaceY , the position.
Due to the physical laws that determine electromagnetic propagation, the same transmitted
signal is expected to be highly correlated when measured in two adjacent positions. In fact, if
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Fig. 4 Overview of the hierarchical architecture proposed in [9]. Considering a solution space that can be
divided into K highly correlated sub-regions, the hierarchical architecture first employs a CNN classifier that
selects the most suitable sub-region ŝ. That sub-region’s dedicated CNN regressor is then used to obtain the
estimate, ŷ. To enhance the regressor’s precision, it is also fed with the output layer of the classifier, which can
be seen as a coarse estimate. Please note that each sub-model has its own set of learned weights, as indicated
by the different colors

it was not for the non-linear phenomena introduced with mmWave frequencies, the received
BFFs would have mostly smooth changes throughout the considered space. The non-linear
phenomena introduces discontinuities to the BFF data, if assessed throughout a continuous
route, segmenting the output space into multiple potential sub-regions, each with specific
patterns in the input data. Given that clear segmentation, in [9] we proposed a hierarchy-
based system to further refine the single BFF learning mechanism, as depicted in Fig. 4. This
implementation of the hierarchy concept was based on the work in [29], where the prediction
outcome of a coarse model may trigger specialized fine-grain models, which help to handle
harder input data.

As explained above, each BS’s covered space can be seen as a set of K sub-regions S
(S = {s1, . . . , sK }, ⋃K

k=1sk = Y). If each sub-region contains a dedicated CNN, each with
a structure as defined in the previous sub-section, those K CNNs can specialize on their
own data partition. As adjacent positions are very likely to be highly correlated, and thus
contain similar data patterns, each dedicated CNN will have fewer patterns to learn, thus
facilitating the learning process. The sub-regions can be seen as coarse positions and, as
result, identifying the sub-region s of a new data sample is easier than pinpointing its exact
position. Therefore, a CNN classifier is used to predict the most likely ŝ, indicating which
dedicated CNN should be used to estimate the device location. As mentioned, the predicted
ŝ can be seen as a coarse position estimate and, therefore, the selected regressor is also fed
with the output layer of the CNN classifier, so as to enhance its precision.

Contrarily to image-based problems, where there are multiple lower level local features
such as lines, curves, and colors to be learned and shared, the data in a BFF not only is
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sparse, but also changes dramatically throughout the space. As such, in opposition to the
architecture proposed in [29], which shares the first layers between all the involved models,
the architecture described in this sub-section does not force learning the same basic patterns
in the first layers. By not sharing those weights, not only each specialized regressor can
completely focus its resources towards its sub-region, but also the global training procedure
can be simplified from a three-pass learning algorithm [29], to a single pair of steps: first the
coarse classifier is trained, then the specialized regressors can be trained in parallel. To train
the classifier, the cross-entropy between prediction and ground truth is minimized, such as

p(ŝ) = argminp(ŝk ), k=1,...,K E
{

−
∑
k

p(sk |X) log(p(ŝk))
}
, (7)

where p(ŝ) denotes the output vector of the classifier neural network, containing the predicted
probabilities p(ŝ = sk) for a certain input dataX. It should be noted that the above formulation
allows S to contain overlapped sub-regions, as p(sk |X), the true probability of being in sk
given the input data X, can be 1 for multiple k. After obtaining the classifier’s output, the
most suitable dedicated CNN ŝ is selected by determining

ŝ = argmaxk=1,...,K p(ŝ = sk), (8)

which in turn will provide the position estimate ŷ.
As S grows, a trade-off is expected: the specialized CNNs have a smaller space to cover,

and thus a smaller number of patterns to learn, while the CNN classifier has to select its
answer fromawider range of solutions. Since the dedicatedCNNsmap their predictions to the
complete space, they might be able to recover from previous classification errors, as long as it
is a recurrent (and thus learnable)mistake.On the other hand, non-recurrentmisclassifications
have a significant penalty on the system, especially when training, where a misclassified
sample is tied to the training set for ŝ (with ŝ �= sk). This can be seen as simultaneously
adding noise to the training set for ŝ, while depriving sk of meaningful samples, which can
be particularly adverse when each sub-region has a small training set. The results in [29]
also reflect the aforementioned trade-off, with hierarchical models outperforming traditional
CNNs unless there are too many data partitions.

The application of the hierarchical model is completely transparent to the mobile device,
as all changes occur in phase C of the method described in Sect. 3.1. Contrarily to the work
in [29], where the number of used fine-grain models has no upper bound, the discussed
hierarchy model has a stable execution time (one coarse classification and one fine-grained
regression), which is important for low-latency tasks such as positioning.

5 Beamformed Fingerprint Tracking

The previous section described DL architectures that are able to convert a single BFF into
a position estimate. They can be seen as versatile architectures, enabling position estimates
whenever there is mmWave coverage. However, many practical systems request localization
services during a significant amount of time, and their movement can be seen as an additional
source of information. Through the inspection of the sequence of positions, it is fairly easy
to categorize the movement type: pedestrians have a very limited speed, cars’ steering angle
is reduced, and so forth. Moreover, the system should be able to learn how to segment Y (e.g.
cars shouldn’t go over sidewalks, boats are limited to water), and thus push the estimates
into positions coherent with their movement types. Therefore, by having information regard-
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Fig. 5 Block diagram of the mth LSTM module, as described on equations (9)–(14). The activation functions
depicted on a white background contain the learnable weights

ing past positions and the expected trajectory, the system can infer the range of physically
plausible positions, and thus greatly enhance its position estimates.

In this section, the use of sequence-based DL architectures for the BFF positioning system
is proposed. This new set of architectures aim to learn the mapping function f : X M �→ Y ,
where M is the input sequence length (or the system’s memory size). Consequently, the
training set T is now obtained from the fixed distributionDXM×Y , where X M is now the set
of possible BFF sequences.

5.1 Long Short-TermMemory Networks

The default DL architecture to deal with sequences is the recurrent neural network (RNN). In
recent decades, multiple variants of RNNs were proposed, namely the long short-term mem-
ory (LSTM) networks [30], which were developed to help with the vanishing and exploding
gradient problems that often plagued vanilla RNNs’ training. LSTMs are known for their
good (and often state-of-the-art) results in multiple sequence-based tasks, including indoor
tracking using WiFi fingerprints [28]. Therefore, being a suitable candidate, this sub-section
discusses the application of LSTMs to learn from sequences of BFFs.

Unlike DNNs, RNN-based architectures have an internal state that allows them to retain
information as a sequence is being processed. This mechanism allows a model to process
sequences of arbitrary length, while keeping an understanding of the chain of events. It
also effectively shares the model’s trained weights as it traverses the sequence, which, as
mentioned in Sect. 4.1, aids the generalization process.

Each step of the sequential model can be abstracted within a LSTM module (containing
multipleLSTMunits), as depicted in Fig. 5. Thismodule abstraction is in fact the consequence
of unrolling the LSTM, as the weights are shared between modules. The output of the mth
LSTM module can be written as

hm = om � tanh (Cm) , (9)

where Cm is the cell state, om is the output gate, � denotes the Hadamard product, and
tanh(·) represents the hyperbolic tangent function. The output gate, containing a mixture of
the current input sample being assessed and the previous module’s output, selects which parts
of the cell state’s information are to be passed to the module output. More specifically, the
output gate is written as
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LSTM 
Module

ŷ

LSTM 
Module

LSTM 
Module Mh

Fig. 6 Representation of an LSTM model applied to the BFF data, with M = 3. Each LSTM module is as
depicted in Fig. 5, where the first module’s historical inputs (h0 and C0) are randomly initialized

om = σ
(
Uo

[
hm−1; xm

] + bo
)
, (10)

where σ (·) denotes the sigmoid function. Consistently with the previous sections’ notation,
U, b, and x represent weights, bias, and BFF data (as a vector), respectively.

The cell state is defined as

Cm = fm � Cm−1 + im � C̃m, (11)

in which fm represent the forget gate, and im the input gate. The forget gate controls which
information should the cell state discard, relative to its own past state, while the input gate
filters the information contained in C̃m , which will then be added to the cell state. These two
gates’ expressions are given as

fm = σ
(
U f

[
hm−1; xm

] + b f
)
and (12)

im = σ
(
Ui

[
hm−1; xm

] + bi
)
, (13)

while the candidate values to be added to the cell state, C̃m , are given as

C̃m = tahn
(
Uc

[
hm−1; xm

] + bc
)
. (14)

Throughout equations (9)–(14), there are two different activation functions: the sigmoid
and the hyperbolic tangent. The former, whose output ranges from 0 to 1, is used as an infor-
mation filter (gates), while the later, ranging from −1 to 1, adds the critical non-linearities,
while limiting the output range of the data that is passed between LSTMmodules. As shown
in Fig. 6, fully connected layers are usually placed after the last LSTM module, mapping its
last output vector hM to the desired output information (ŷ).

Compared to a traditional RNN, an LSTM adds the cell state which, as it can be seen
above, adds three sets of learnable weights. However, the addition of the cell state allows
the system to latch on to particular information parts, and thus improve the quality of the
system’s memory. In the particular case of outdoor positioning, it should help the system to
retain details such as the movement category and direction, even if the user temporarily stops
moving.

5.2 Temporal Convolutional Networks

Although LSTMs are an effective tool to learn from sequences, they are often notoriously
difficult to train [31]. Moreover, as discussed in [32], there are multiple sequence-based
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Fig. 7 Core of a TCN model with M = 7, excluding the output layer after the last residual block’s output (ỹ).
With each subsequent residual block, the receptive field increases exponentially, due to the dilation factor d.
The dashed lines depict the residual connections

problems for which CNNs provide the best solution (e.g. audio synthesis in [33], where
the convolution is applied over the time-domain). To harness the potential of the convolu-
tion operation, which is naturally suited to handle sequences, while being able to process
sequences of arbitrary length, the temporal convolutional networks (TCN) were proposed in
[32]. In its original paper, TCNs surpassed LSTMs in multiple tasks where LSTMs were the
state-of-the-art [32]. To the best of our knowledge, this paper is also the first to apply TCNs
in the context of positioning.

TCNs, when compared to a typical CNN, have three key differences. First and foremost,
any non-sequence-dimension (feature) size mismatch between two subsequent layers is dealt
through a 1D convolution [34]. This ensures that for each step in the input sequence, there is
a single corresponding step in each hidden layer (as observable in Fig. 7).

If the convolution is to be applied directly over the sequence dimension, its size can quickly
become unbearable. As such, the second feature of a TCN is the introduction of dilated
convolutions, which enable an exponentially large receptive field. The dilated convolution
operation F on element m of the sequence x, using a filter f , is defined as

F[m] = (
x ∗d f

)[m] =
L∑

l=1

f [l] · x[m − d · l], (15)
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Table 2 Ray-tracing simulation parameters

Parameter name Value

Carrier frequency 28 GHz

Transmit power 45 dBm

Tx. antenna gain 24.5 dBi (horn antenna)

HPBW 10.9◦
Transmitter downtilt 10◦
Codebook size 32 (155◦ arc with 5◦ between entries)

Receiver grid size 160801 (400 × 400 m, 1 m between Rx,

1 m above the ground)

Samples per Tx. BF 82 (4.1µs @ 20 MHz)

Assumed Rx. Gain 10 dBi (as in [36])

Detection threshold −100 dBm

Added noise σ = [2, 10] dB (Log-Normal)

where L is the length of the dilated convolution, and d is the dilation factor. Since d is set to
grow exponentially with the depth of the network, each subsequent layer can be interpreted
as a zoom out in the sequence data, enabling the network to perceive larger sequences with
few learnable parameters. If the TCN’s receptive field is larger than the input sequence, the
input sequence can be zero-padded.

Finally, the last key element of a TCN is the use of the residual block [35].With the TCN’s
residual block, the network has access to the original input data every two dilated convolution
layers, which is critical to stabilize large networks. More formally, if x is the input of a given
residual block, its output ỹ defined as

ỹ = a
(
F(x) + x

)
, (16)

where a is an activation function, andF represents a series of transformations corresponding
to the two dilated convolutions within the residual block (with 1D convolutions being used
to match x to F(x), if needed). By stacking these residual blocks, a TCN is built. The output
of the last residual block, ỹ, must then go through the output layer, so as to extract the desired
prediction (ŷ).

6 Simulations and Experimental Results

6.1 Evaluation Apparatus

To evaluate the proposed system accuracy, a dataset using mmWave ray-tracing simulations
in the New York University (NYU) area is used, containing BFF data from 160801 differ-
ent bidimensional positions. The propagation specifications in Table 2 were inherited from
the experimental measurements in [25] and, in [24], it was shown that these ray-tracing
simulations (presented in Fig. 8) matched the aforementioned experimental measurements.

While the used ray-tracing software (Wireless InSite 3.0.0.1 [37])was unable to control BF
patterns, a physically rotating horn antenna was used, producing similar directive radiation
patterns. For each of the 32 elements in CT x , the received power data was sampled at 20
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Transmi�er
Legend:

Fig. 8 Ray-tracing simulation in the NewYork University area, using the parameters in Table 2 with a transmit
power of 30 dBm. The results shown correspond to themaximum received power for all possible transmit BFs,
in a 400 × 400 m area. In [24], it was shown that this simulation matched the experimental measurements in
[25]

MHz over a spawn of 4.1 µs, which contained over 99% of the path data. Regarding BF at
the receiver, a 10 dBi gain was considered (akin to [36]). In the following simulations, noise
is added to the obtained ray-tracing data following a log-normal distribution (also known as
slow fading). The noise was introduced before applying a detection threshold of −100 dBm,
which was selected due to the thermal noise for the considered bandwidth (−101 dBm). In all
the shown simulations, the data is binarized after adding the noise and applying the detection
threshold.

The resulting data was labeled with the corresponding bidimensional position, in a 400×
400 m2 area centered at the base station. When the area is split for the hierarchical model,
only powers of 4 partitions are considered, where each physical dimension is subsequently
bisected (e.g. when 64 partitions are considered, each dimension is bisected 8 times, resulting
in partitions with 50 × 50 m2).

To generate the sequences for the LSTMs and the TCNs, three types of synthetic sequences
were randomly generated: static, pedestrian-like, and vehicle-like sequences. While static
sequences remain in the same position for the complete duration, the other two types do not.
The pedestrian-like sequences were generated with a low average speed (5 km/h), but could
quickly stop or change their direction. On the other hand, the vehicle-like sequences were
generated with higher average speed (30 km/h) and acceleration, but with restricted steering
angle. Mimicking typical civilian GNSS receivers, all the sequences contain one sample per
second (i.e. sampled at 1 Hz), regardless of their length, resulting in paths as depicted in
Fig. 9. To be representative of a real scenario, where most users are moving, there is a ratio
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Fig. 9 Examples of the generated sequences, sampled at 1 position per second during 13 seconds. The
pedestrian-like sequences have a low average speed and can frequently change their direction, while the
vehicle-like sequences display the opposite behavior. The dark area corresponds to the positions present in the
BFF dataset

of 8:1 moving to static paths (the moving paths are evenly distributed between pedestrian-
and vehicle-like paths).

For each training epoch, a new noisy training set is generated, consisting of the original
ray-tracing dataset entries with added random noise. For the non-tracking system, since it is
expected to be used to predict physical positions for which it already has training samples,
the test and validation sets are also generated from noisy samples of the ray-tracing data.
However, when sequences are considered, the training, validation, and test paths are drawn
from independent sets of trajectories, avoiding memorization. Finally, since reproducibility
is a hallmark of science, the simulation code and the used data are available here.3

6.2 Simulation Results and Discussion

Throughout this subsection the results will be split in two groups, single BFF positioning and
BFF tracking, corresponding to the architectures discussed in Sects. 4 and 5, respectively. For
both cases, three levels of noise (σ ) are considered: 2, 6, and 10 dB (matching low, medium,
andhighnoise levels).All displayedhyperparameterswere selected through empirical testing.

6.2.1 Single BFF Positioning

The hyperparameters used in the CNNs for the single BFF positioning task are shown in
Table 3. Their selection had a caveat: when a hierarchical model is considered, the clas-
sification and the K regression CNNs share the same configuration and hyperparameters,
except for the input of the first fully connected layer and the output layer (as displayed in

3 https://github.com/gante/mmWave-localization-learning.
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Table 3 CNN and Hierarchical
CNN hyperparameters

Parameter Name Value

Convolutional layers 1 layer (8 features with 3 × 3 filters)

Pooling layers 2 × 1 max-pooling

Hidden layers 12 (256 neurons each)

Regression output Linear with 2 neurons (2D position)

Classification output Softmax with K classes

(Hierarchical CNN’s 1st model)

Epochs Up to 1000 (early stopping [38] after 50
non-improving epochs)

Batch size 64

Optimizer ADAM [39]

Learning rate 10−4

Learning rate decay 0.995

Dropout 0.01

Fig. 10 Average and 95th percentile prediction errors for multiple number of partitions and noise levels (σ ).
While it is a tool to extract additional accuracy, an excessive number of partitions has adverse consequences

Fig. 4). While potentially sub-optimal, the single hyperparameter set is shared between the
two stages of the model so as to alleviate the search complexity.

In Fig. 10, the number of data partitions (K ) for the hierarchical convolutional neural
network is assessed, where K = 1 is equivalent to a non-hierarchical model. It is interesting
to notice that the predictions for K > 64 yield roughly the same average error, at the
expense of an increased 95th percentile error. This means that although more specialized
regressors result in improved predictions for correctly classified samples, the higher number
of misclassified samples during the classification stage reverts those gains, as discussed in
Sect. 4.2. Considering a partion-less dataset (i.e., K = 1), the average error ranges from
4.57 m to 6.17 m, for low and high noise values, respectively, with a 95th percentile error
never exceeding 16.3 m. The best results were obtained when K = 64, with an average
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Fig. 11 Prediction error comparison of LSTMs and TCNs for multiple values of M , considering an average
noise value (σ = 6 dB). On the considered BFF tracking problem, TCNs outperformed LSTMs, especially
for shorter sequences

error ranging from 3.31 m to 5.13 m and a 95th percentile error never exceeding 14.3 m. It
is important to clarify that the selected partitions (subsequent bisections of the considered
area) are very likely to be sub-optimal. Nevertheless, they demonstrate the applicability of
hierarchical partitions to the considered problem, achieving performance gains with minimal
effort.

As pointed out in [9], the single BFF predictions have an RMSE of 19.7 m (for K = 64
and σ = 6 dB), which denotes superior performance in all aspects when compared to [10],
whose simulations obtained an RMSE of 34 m. Moreover, it is important to point out that
[10] considers a lower noise level, with σ = 5 dB (we used 6 dB in our experiments), and
its numerical simulations do not consider NLOS positions, as we do.

The single BFF positioning method has an inferior prediction accuracy when compared
to its tracking counterpart, as expected and further discussed in the following sub-section.
Nevertheless, it requires just a single BFF, which is fast to obtain (	 1 second), and thus
suffers no performance penalties when attempting quick and sporadic measurements. In fact,
when compared to sporadicmeasurements from civilianGNSS receivers, which have average
errors far exceeding 10 m (e.g. [40]), the single BFF positioning method can be seen as an
upgrade, when in the presence of mmWave BSs.

6.2.2 BFF Tracking

Throughout Sect. 5, two DL architectures suited to deal with the tracking problem were
presented: the LSTMs and the TCNs. The accuracy obtained with both architectures for
multiple sequence lengths (M) is plotted in Fig. 11, where it is clear that TCNs outperform
LSTMs in the context of BFF tracking. For LSTMs, the achievable accuracy gets better as
M increases, but with visible diminishing returns. TCNs, on the other hand, saturate their
performance with short sequences (M = 7), and obtain slightly worse performance with
longer sequences.
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Fig. 12 Performance of the TCN architecture by sequence type for multiple noise values, with M = 7. Due to
the higher number of moving paths seen during training, the system is better equipped to track moving targets

In Fig. 12, the performance of the TCN architecture for multiple noise values is presented,
considering the best performing sequence length (M = 7). As expected, higher noise values
correspond to higher estimation errors. At a low noise level (σ = 2 dB), the TCN can achieve
average and 95th percentile errors of 1.78 and 4.13 m, respectively, which corresponds to
an average error reduction of 46% (48% for the 95th percentile) when compared to the best
results for the single BFF positioning system. Also in Fig. 12, the error for the three types of
generated sequences is shown. Static sequences have slightlyworse accuracy, likely due to the
unbalanced sequence type distribution, and to the fact that pedestrian-like sequences are quite
similar to them. That performance difference also depends on the noise level: with σ = 2 dB
the static sequences’ error is ∼ 35% larger, compared to ∼ 15% with σ = 10 dB. Therefore,
a high noise value acts as a strong regularizer, forcing the model to generalize and resulting
in smaller error discrepancies. It is important to mention that these results were obtained
with randomly generated synthetic paths and, as such, no movement type segmentation nor
traffic rules were included in the data. A real-world dataset would very likely observe these
phenomena, which would enhance the predictor’s accuracy.

The positioning task often sees error spikes, which are undesirable. In the results described
for the single BFF positioningmethod, it is clear that there are significant spikes, as its RMSE
is significantly higher than its average error (19.7 m vs. 4.73 m, for K = 64 and σ = 6 dB).
From a statistical point of view, the use of sequences should attenuate that issue, as it is very
unlikely that the multiple BFFs gathered throughout several seconds all suffer from a noise
spike. By assessing Fig. 13, it is visible the positive impact of the tracking methods, with the
error peaking at 20 m. In fact, the RMSE for a sequence of 7 BFFs and a noise of 6 dB is
3.64 m–5.41× smaller than our previous results in [9], and 9.62× (practically an order of
magnitude) smaller than the results in [10].

Throughout Sect. 3.1, two features were pointed out as major influences of the BFF
positioning accuracy: the number of received paths, and the selected sampling frequency.
Considering the used frequency of 20 MHz, as well as the maximum theoretical spatial
resolution per path, given in Eq. (2), it is interesting to notice that the proposed system does
leverage the information from multiple paths, as its error is far below to the single-path limit
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Fig. 13 Cumulative histogram of the error obtained for the TCN architecture, assuming sequences of 7 BFFs
and a noise σ of 6 dB. Due to the use of multiple BFFs per position estimate, the model is better suited to deal
with occasional noise spikes in the samples, resulting in moderate error for the top percentiles

Fig. 14 Distribution of sequences and errors by the total number of detected paths (i.e., sum of non-zero
entries in the BFFs), assuming sequences of 7 BFFs and a noise σ of 6 dB. When few paths are detected, the
prediction error soars

of 15 m. In Fig. 14, the distribution of sequences and errors by the total number of detected
paths (i.e., the number non-zero entries for all BFFs in a sequence) is shown. Although there
are visible diminishing returns, the number of received paths has a positive impact on the
prediction error, as expected. Regarding the sampling frequency, we would like to point out
that the selected value is modest, and thus not a limitation for practical systems (e.g. LTE
mobile devices can also use bandwidths of 20 MHz). If more aggressive sampling rates are
selected, such as the 800 MHz used during the practical measurements in [6], the predictions
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Fig. 15 Average error per covered position for the TCN architecture, assuming sequences of 7 BFFs and a
noise σ of 6 dB. Given that the transmitter is at the center of the image (red triangle), it is possible to confirm
that being in a NLOS position is not a constraint for the proposed system

could potentially become more accurate. However, using higher sampling rates would have
its drawbacks: the mobile devices would spend considerably more energy throughout the
positioning process, and additional expensive radio spectrum bandwidth would be required.

The last set of accuracy results is shown in Fig. 15, where the average prediction error
was computed for each position. Comparing with Fig. 8, it is possible to see that the system
was able to return an accurate estimate whenever it had mmWave reception. Moreover, the
obtained error has no visible dependence on whether the position was in LOS or NLOS.
As such, the proposed BFF tracking system achieves state-of-the-art accuracy for NLOS
positioning with mmWave.

Having thoroughly discussed the accuracy achievable by the considered DL architectures,
it also important to compare their complexity (Table 4). To that end, Table 5 compares three
important attributes: the models’ size in terms of learnable parameters, the time required to
train them, and their inference throughput capacity. The reported results were averaged over
5 runs with an Nvidia GTX 780 Ti GPU, using Google’s TensorFlow framework [41] and
the hyperparameters considered throughout most of this subsection (σ = 6 dB, K = 64,
M = 7, and the hyperparameters reported in Tables 3 and 4). Observing the top half of the
table, it is noticeable that the hierarchical CNN uses far more learnable parameters than its
non-hierarchical counterpart, while also requiring roughly double computational time for
training and inference. The hierarchical CNN is therefore an expensive source of accuracy
gain, which should only be used if spare resources are available. When tracking is possible,
the choice between LSTMs and TCNs is more blurred: while TCNs have better accuracy and
training time, they also have more learnable parameters and a lower inference throughput. It
is also important to notice that TCNs only have a shorter training time because early stopping
is employed, and the performance on the validation set converges in fewer epochs.

123



J. Gante et al.

Table 4 LSTM and TCN Hyperparameters

Parameter Name Value for LSTMs Value for TCNs

LSTM units 512 –

TCN blocks – [2, 3] (depending on M)

TCN filter length – 3

TCN features – 512

MLP layers 2 (512 neurons each) 0

Regression output Linear with 2 neurons (2D position)

# of training sequences 320408

Sequence length (M) [4, 13]
Epochs Up to 100 (early stopping [38] after 5 non-improving epochs)

Batch size 64

Optimizer ADAM [39]

Learning rate 5 × 10−5 5 × 10−4

Learning rate decay 0.995

Table 5 Number of learnable parameters, training time, and inference throughput for the tested DL architec-
tures

DL architecture L. parameters Training time (mins) Inference throughput (predictions/s)

CNN 3.37 × 106 328 19.15 × 103

Hierarchical CNN 220 × 106 651 9.439 × 103

LSTM 7.15 × 106 453 4.249 × 103

TCN 7.67 × 106 432 3.849 × 103

6.3 Related Art

In Sect. 1, the fingerprint data was established as the critical aspect of a fingerprint positioning
method, and thus it is the main subject of this paper. However, as seen in the results, the used
ML method also plays an important role in the outcome. As such, this subsection lists recent
techniques that can potentially be used to improve the obtained results.

The idea of data segmentation was developed throughout Sect. 4.2 and validated in
Sect. 6.2.1.While an explicit hierarchical representation of the data is helpful, that representa-
tion also requires one additional stepwhen training the system, and the optimal representation
of the hierarchy might change over time. To handle this problem, the concept of manifold
regularization [27,42–46] can be used, where better representations are learnt from the data
while training the model, through rank minimization of the observed results in the hidden
layers. More specifically, if the output matrix for a set of inputs at a given layer is denoted
by N, the rank minimization problem can be written as

min
L,E

rank(L) + λ||E||l , s. t . N = L + E, (17)

where L is N’s low rank approximation, E is the approximation error, λ > 0 is an hyper-
parameter that controls the tolerance to approximation errors, and || · ||l indicates a certain
regularization strategy (e.g. Frobenius Norm). The rank minimization problem is known to
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be NP-hard, but fortunately the nuclear norm (|| · ||∗) can be used as a relaxation of the
problem, as minimizing it corresponds to the minimization of the rank’s convex envelope
[47]. Therefore, Eq. (17) can be rewritten as

min
L,E

||L||∗ + λ||E||l , s. t . N = L + E, (18)

where

||L||∗ = trace
(√

L∗L
)

. (19)

The exact implementation details to obtain the low-rank approximation L can vary, with
methods based on Laplacian matrices and Augmented Lagrangian Multipliers (ALM) being
used in the aforementioned references. Solving the manifold regularization problem through
ALM is mandatory for NNs trained with large datasets on GPUs, as it is compatible with
batch updates [48] (as opposed to solving the problem through Laplacian matrices, which
would result in matrices too large to fit in GPU memory). With manifold regularization, the
hierarchical representation of the data can be implicitly incorporated in the model, usually
resulting in improved results.

Manifold regularization is also tied to implementations of multimodal and multi-task
learning [43,49,50]. In practical scenarios, there will be multiple positions that are covered
by more than one BS—multimodal learning can help training a model from multiple data
sources, while multi-task learning would enable a single model for an area covered by several
BSs. Therefore, by being able to train a model with an unified loss function L that includes
manifold regularization, the system can potentially capture more information about the target
area, and thus yielding better predictions.

A different concept that might also result in improved models is attention [51–53], which
is typically applied to sequences. With the attention mechanism, a model can learn to focus
on subtle details of the data sequence, and more easily digest long data sequences from
heterogeneous patterns. To apply attention over a packed sequence of vectors X ∈ R

M×dx

(where dx is the length of each vector), three sets of learnable weights are needed: UQ, UK,
and UV, all dx by dk matrices (where dk is an hyperparameter). By multiplying X by those
weights, we obtain Q, K, and V, which stand for query, key, and value, respectively. The
output attention matrix, which will be used as an input to further NN layers, is then given by

Attention (Q,K,V) = softmax

(
QKT

√
dk

)
V. (20)

Each row of the attention output is a weighted sum of the of the rows in the value matrix,
where the weights are given by the softmax of a score (in this case, a scaled dot product)
between the keys and the considered query (row). Intuitively, we obtain how relevant is each
element in the sequence to predict a target at the sequence member under evaluation. The
attention mechanism can be expanded into multi-head attention [52], where each head can be
seen as a traditional attention element. The multi-head attention enables the model to focus
on multiple details over diverse sequence elements, and can be written as

MultiHead = concat (head1, . . . , headh)UO, (21)

where

headi = Attention (Qi ,Ki ,Vi ) , (22)

h is the number of heads, andUO is a learnable projectionmatrix, whose objective is to project
the output of all attention heads into the size of a single head’s output, so that the multi-head
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attention output size is invariant to the number of heads. Please note that each attention head
has its own set of query, key, and value weights, and thus they can learn to focus on different
details. In the context of this problem, the most straightforward application of the attention
mechanism is over tracking, i.e., over the sequence of BFFs. From a high-level perspective,
it should enable the model to distinguish subtle trajectory changes—e.g. if a ground vehicle
has moved to the right-most lane just before an intersection, it is likely that it will turn right
in that intersection.

7 Conclusion

The introduction of millimeter wave communications in the context of 5G will open up a
significant amount of bandwidth, resulting in massive theoretical improvements. However,
bringing those improvements to practice is no trivial task, as the physics dictating the radiation
propagation at these frequencies change dramatically. In the context of mmWave outdoor
positioning, this means that the typical geometrical approaches are no longer reliable for
NLOS positions.

The concept of beamformed fingerprints, which was introduced in a recent work of our
group, enabled the application of deep learning techniques so as to achieve accurate outdoor
positioning. This paper built upon that concept, and proposed the use of sequence-based
deep learning architectures so as to capture the information implicit in the movement of a
device. By doing so, the resulting predictions were not only more accurate, but also more
stable, showing smaller variance. The results obtained with temporal convolutional networks
show that the proposed system achieves state-of-the-art accuracy for NLOS millimeter wave
outdoor positions with an average error as low as 1.78 meters, while using a moderate
bandwidth, binary data samples, and a single anchor.
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