
Neurocomputing 393 (2020) 165–174

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

1.2 Watt Classification of 3D Voxel Based Point-clouds using a CNN on

a Neural Compute Stick

Xiaofan Xu

a , ∗, Sam Caulfield

a , Joao Amaro

b , Gabriel Falcao

b , David Moloney

a

a Movidius Division, Intel Ireland Limited, Ireland
b Dept. of Electrical and Computer Engineering, Instituto de Telecomunicações, University of Coimbra, Portugal

a r t i c l e i n f o

Article history:

Received 17 November 2017

Revised 19 September 2018

Accepted 28 October 2018

Available online 24 July 2019

Keywords:

3D Convolutional Neural Network

3D object classification

Embedded systems

Low-power

a b s t r a c t

With the recent surge in popularity of Convolutional Neural Networks (CNNs), motivated by their signif-

icant performance in many classification and related tasks, a new challenge now needs to be addressed:

how to accommodate CNNs in mobile devices, such as drones, smartphones, and similar low-power de-

vices? In order to tackle this challenge we exploit the Vision Processing Unit (VPU) that combines dedi-

cated CNN hardware blocks and very low power requirement. The lack of readily available training data

and memory requirements are two of the factors hindering the training and accuracy performance of 3D

CNNs. In this paper, we propose a method for generating synthetic 3D point-clouds from realistic CAD

scene models to enrich the training process for volumetric CNNs. Furthermore, an efficient 3D volumet-

ric object representation Volumetric Accelerator format (VOLA) is employed. VOLA is a sexaquaternary

(power-of-four subdivision) tree-based representation which allows for significant memory saving for vol-

umetric data. Multiple CNN models were trained and pruning techniques for the weights were applied

to the trained 3D Volumetric Network in order to remove almost 70% of the parameters and outper-

form the existing state-of-the-art networks. The top performing and efficient model was ported to the

Movidius TM Neural Compute Stick (NCS). After deployment on the NCS, it takes 11 ms (∼ 90 frames per

second) to perform inference on each input volume, with a reported power requirement of 1.2 W, which

leads to 75.75 inferences per second per Watt.

© 2019 Elsevier B.V. All rights reserved.

1

o

v

n

i

s

l

R

n

a

b

u

e

c

u

p

q

c

g

p

t

w

i

v

t

l

w

3

h

0

. Introduction

Recently, computer vision has made great advancements in 2D

bject recognition [1–4] . This is due to ImageNet [5] , which pro-

ides millions of images for training these networks and achieve

early human level performance. However, having an understand-

ng of the 3D environment is an important aspect for computer vi-

ion researchers as well. Similar to the 2D object recognition prob-

ems, 3D data is an essential requirement for training 3D models.

eal-time Simultaneous Localization and Mapping (SLAM) tech-

iques and different products readily available in the market such

s the Microsoft Kinect or Intel RealSense have increased the num-

er of 3D datasets available to researchers [6–10] . In this paper, we

se the 3D geometric data created by ourselves combined with the

xisting objects from ModelNet [10] and real-world scene in point-

loud format for 3D classification task.
∗ Corresponding author.

E-mail address: xu.xiaofan@intel.com (X. Xu).

a

p

3

e

i

ttps://doi.org/10.1016/j.neucom.2018.10.114

925-2312/© 2019 Elsevier B.V. All rights reserved.
Performing object recognition on 3D point-cloud occluded vol-

mes depicting real-world scenes containing ubiquitous objects

resents multiple challenges, including the significant memory re-

uirements for these volumetric representations. Therefore, we

onverted the point clouds to a 3D sexaquaternary-based voxelized

rid, to both minimize the memory footprint and to be able to

resent the data to the network in an efficient manner.

CNNs have achieved great performance in 2D object recogni-

ion challenges, naturally we extend 2D convolutions to 3D for our

ork. However, the computation requirement for 3D convolution

s very complex in the volumetric domain. The sparsity in the 3D

olumetric data can still introduce many unnecessary weights in

he hidden layers. This can easily cause overfitting issues and will

ead to millions of parameters in the end. Therefore, in our work

e developed and implemented some sparsity techniques to the

D convolutional network in order to reduce the parameters and

llow the 3D network to achieve better generalization on 3D vision

roblems. Also we further reduce the size of our network from

D to 2D projection similar to [11] and evaluate between differ-

nt techniques. Furthermore, we discovered that most of the ex-

sting 3D networks cannot perform real-time recognition on any

https://doi.org/10.1016/j.neucom.2018.10.114
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.10.114&domain=pdf
mailto:xu.xiaofan@intel.com
https://doi.org/10.1016/j.neucom.2018.10.114

166 X. Xu, S. Caulfield and J. Amaro et al. / Neurocomputing 393 (2020) 165–174

n

c

p

P

e

d

b

N

a

m

w

u

a

o

p

l

o

d

t

d

e

c

a

t

m

i

p

w

i

t

p

t

i

c

a

a

3

3

t

p

s

embedded systems due to the size and speed of these networks

and there is a lack of platforms capable of delivering inference at

high FPS and at very low power per inference. In this work, we

wish to make the move to real-time recognition of objects in mo-

bile, power-constrained or autonomous systems (e.g., cars, drones,

robots, etc.). We need to address a change of paradigm capable

of coping high computational power with low-power supply re-

quirements and low-energy consumption levels. Therefore, we use

a recent released Movidius TM Neural Compute Stick [12] , which can

perform CNNs in real-time at very low power.

The main contributions of this paper are as follows:

• A method for the synthetic generation of realistic 2.5D point-

clouds with occlusion of the back-face of the objects. Taking

the CAD models offered by the ModelNet10 dataset [10] and

placing them randomly in a set of realistic room CAD models,

we are able to generate realistic point-clouds. The 2.5D point-

clouds are then converted to a 3D sexaquaternary-based vox-

elized grid, to both minimize the memory footprint, and to be

able to present the data to the network in an efficient manner;

• Multiple CNN models are developed, supported by our modified

ModelNet10 dataset, and a new sparsity technique is applied to

the 3D network. Furthermore, the light weight model is ported

to a very low-power and low cost Movidius TM Neural Compute

stick [12] based on Myriad 2 VPU [13] .

2. Related work

Convolutional Neural Networks (CNNs) have been shown to be

powerful classification tools for multiple real-world computer vi-

sion tasks, such as scene segmentation and labelling [14] , medical

imaging diagnosis [15,16] and object detection in autonomous driv-

ing [17] , in many cases approaching near-human performance. The

recent popular CNNs [3,18,19] are focusing on efficiency as well as

accuracy. With 2D networks running low-power and less memory,

deep learning on 3D data also need to move towards the trend.

The concept of 3D networks has been used in many areas

such as hand gesture recognition [20] and human action recogni-

tion [21] . The authors in [10] (3D Shapenets) created the publicly

available ModelNet 3D dataset, which contains 151,128 CAD mod-

els, distributed over 660 categories. Like most of the CNN work on

3D data, we choose 10 categories from the dataset, and compute

the corresponding 2.5D point-cloud. In [10] work, the authors use

3D voxel grid as input to the CNN with 3D kernels for CNN. This

work was the first to apply CNN on 3D representation. Similar to

their approach, VoxNet [22] also used the voxelized 3D input to

the CNN. The advantage of these approaches is that they can take

in 3D data in different format including LiDAR, point-clouds or CAD

models. Following the success of these approaches, we pursued the

same direction.

However, due to complexity and the high amount of parame-

ters necessary for performing 3D convolution, a multi-view CNN

(MVCNN) [23] was developed. The authors use multiple rendered

views of 3D data, passed the input as 2D images. The CNN was

trained and process the views jointly. MVCNN was pre-trained

on ImageNet [5] , and achieve satisfied accuracy on the ModelNet

dataset. The issue for this approach is that it requires a separate

pipeline for generating the render images before training the CNN.

The authors in [11] solved this issue using ‘X-ray scanning’ process

insider the CNN model which means the input for the model is

still a 3D voxel grid. Instead of the render images, in [11] work,

the network can take 3D cubes and aggregate information to 2D

planes. In our work, we further improved their algorithm with a

smaller amount of parameters.

Apart from the above methods, there are a lot of new ideas

coming out recently in the literature to work with 3D object recog-
ition. PointNet [24] is the first work to directly use the point-

loud coordinates (i.e., only use the (x , y , z) coordinate as the

oints channels) as input to the network. [25] further improves

ointNet with points local neighbourhood, they proposed 2 op-

rations focus on local 3D geometric structures and local high-

imensional features. Furthermore, [26] proposed a new approach

y using encoder-decoder structure based on Recurrent Neural

etworks (RNNs) with attention for learning the 3D global features

nd achieves promising accuracy on ModelNet dataset. However,

ost of these methods do not consider the heaviness caused by

eights in the network. Moreover, 3D data is sparse in nature, by

sing normal convolutional layers causes lots of redundant weights

ppearing in the kernels.

Although large datasets training and validation in clusters

r servers are important [27–29] , but in the low power end

eople have increase concern about efficiency for CNNs, works

ike [30,31] focused on quantization and sparsity for 2D CNNs in

rder for these models to fit onto embedding systems or mobile

evices. Network optimization (i.e., network pruning or quantiza-

ion) is a technique to reduce the model size by compressing the

ense model into sparse or low-bit architecture with minimal or

ven no accuracy drop. To be more specific, Guo et al. [32] shows

ompress parameters by a factor of 17.7 × on AlexNet resulting no

ccuracy drop. For 3D CNN networks, OctNet [33] took the advan-

age of using sparse data and developed an efficient way for imple-

enting convolutional layer. However, exclude the implementation

n OctNet, quantization and sparsification have not been fully ex-

lored in the 3D CNNs. In our work, we focus on sparsification and

e use similar approach as [34] by finding redundant connections

n the network first, and use the remaining connections in the fine-

uning stage to recover the accuracy. To be more specific, we have

erformed network sparsification which can remove almost 70% of

he weights in the original 3D CNN. Moreover, our sparse network

s able to run with any standard frameworks without any modifi-

ation. This means our pruned model can be easily transfer onto

ny embedded systems with sparse matrix multiplication support

nd achieve instant speed-up compare to the original 3D CNN.

. Sexaquaternary tree based dataset

.1. Volumetric data structure

This work uses an adapted version of the octree to represent

he 3D data. The hierarchical grid-based data structure is a bit-

er-voxel sexaquaternary (64-ary) tree show in Fig. 1 . It provides

everal benefits:

• Compatibility with the output of the Blensor algorithm [35] :

the output of Blensor is a point-cloud where the points repre-

sent an approximation of the surfaces in the scene. The points

can be easily converted into a voxel data structure using “bin-

ning”. The voxel data structure is a regular 3D grid of homogo-

neous axis-aligned cubes. Each cube has an (x, y, z) position

where x, y and z are natural numbers only. Using

p ′ = (p − t) × s (1)

where p ′ is the transformed point, p, t is the position of the

minimum point in the cloud and s is the ratio between the

point-cloud bounds and the voxel volume bounds, points from

the point-cloud can be transformed into “voxel space”, i.e. a po-

sition in the voxel volume;

• Fast dataset noise reduction using simple grid-based nearest

neighbour elimination: the above technique implicitly performs

a noise reduction step around surfaces by “binning” clusters of

points into the same voxel. This can simplify the dataset con-

siderably by reducing the number of points while still retaining

the general surfaces;

X. Xu, S. Caulfield and J. Amaro et al. / Neurocomputing 393 (2020) 165–174 167

Fig. 1. Each voxel at level N spatially encodes 64 voxels at level N +1.

Fig. 2. A simple example of a quadtree encoding pixels (the 2D equivalent of a

voxel). This same technique is employed in 3D with higher-order trees.

r

s

s

u

g

d

e

d

t

r

o

s

a

Fig. 3. Full level (256 × 256 × 256 occupancy grid on the right) vs. low level

(32 × 32 × 32 occupancy grid on the left) of details for a chair taken from Mod-

elNet10 [10] with background in voxelized point-cloud format.

r

b

c

t

m

e

p

fi

l

l

t

c

t

c

p

i

r

a

v

v

w

l

3

B

u

d

t

c

a

d

e

r

t

g

I

s

p

f

1 http://www.intel.com/content/www/us/en/architecture- and- technology/

realsense-overview.html .
• Fast voxel data compression using implicit level-of-detail (LOD):

the voxel sexaquaternary tree automatically populates itself at

log (4, N) levels, where N is the side length of the volume in

voxels. Each level in the sexaquaternary tree is a subsampled

version of the next level (as exemplified in Fig. 2), and as a

result is smaller in memory and faster to access because there

is less logic required to access data in higher levels of the tree.

Using the voxel sexaquaternary tree representation, smaller rep-

esentations of the data were generated while maintaining object

hape, relative scale, and curtailing detail uniformly which can be

een in Fig. 3 . The tree representation of the data is generated

sing a simple one-pass algorithm that processes the point-cloud

enerated by KFusion. The algorithm discretises the point-cloud

ata set into axis-aligned, isomorphic three-dimensional bins (vox-

ls) that may contain multiple points, reducing the size of the

ataset while maintaining dataset quality to a given level of de-

ail. The voxel sexaquaternary tree implicitly constructs lower LOD

epresentations of the scene geometry. An important consequence

f this feature of the data structure is that it facilitates multi-

cale classification. These lower LOD representations are encoded

s higher levels in the data structure. The low-LOD representation
educes the size of the data by several orders of magnitude (in

ase-4 in the case of the sexaquaternary tree). This allows signifi-

ant memory savings for volumetric data. A key advantage of this

ree implementation over the octree is that the levels of detail are

ore readily useful. In an octree, the first level contains eight vox-

ls, and the resolution of each successive level is twice that of the

revious level. In the tree used in this work, the resolution of the

rst level is 64 voxels which increases by a factor of 64 at each

evel. The purpose of this is to avoid having multiple redundant

ow-resolution levels of detail because the first few levels in an oc-

ree may be too low-detail to be useful in some applications. We

all this voxelized representation VOLA (Volumetric Accelerator) in

his paper. Furthermore, VOLA uses a one bit per voxel format to

ompress the volume contents. The intended use case for one bit

er voxel representation is representing occupancy, i.e., indicating

f a voxel is either completely solid or completely empty.

Once the point-cloud has been converted into the voxel rep-

esentation, the sparse voxel sexaquaternary tree can be exported

s a sequence of ones and zeros representing the voxel occupancy

alues in the volume. We reshape the single sequence into a 3D

olume that contains bit values and pass it as an input to the net-

ork. This binary format can save computational cost in the initial

ayer of the network.

.2. Voxel Based Point-cloud

The dataset is generated inside Blender using a plug-in called

lensor [35] . We load the objects into Blender and using a sim-

lated Kinect Sensor in Blensor simulate the point-clouds. In or-

er to generate the voxelized objects for the CNN, we converted

he point-clouds into VOLA format to achieve binary inputs which

ontain only ones and zeros.

Our dataset contains objects with background in point-clouds

nd voxelized formats which make it differ from the existing

atasets. The dataset is captured using Time of Flight (TOF) cam-

ra which contains sensors to sense the time that it takes light to

eturn from any surrounding objects in order to measure the dis-

ance between a sensor and an object. The reason for adding back-

round into our objects is because when using TOF camera such as

ntel RealSense 1 or Kinect to capture the point-clouds in real world

cenarios, we found that the background scene would always ap-

ear in the simulated data. The 3D objects in our dataset are taken

rom ModelNet10 [10] and 3D models for the rooms which are

http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html

168 X. Xu, S. Caulfield and J. Amaro et al. / Neurocomputing 393 (2020) 165–174

Fig. 4. ModelNet10 [10] objects placed in different rooms with distinct formats:

(a) Point-clouds contain objects with background, which are captured in Blender

using Kinect sensor as TOF camera; (b) Point-clouds are converted into voxelized

representations using VOLA, where each voxel is represented as 1 and the empty

space is represented as 0.

Fig. 5. Examples of 3D scenes [36] which are used in our dataset as a background

for the objects: (a) living room scene; (b) bedroom scene.

t

n

d

w

f

r

T

f

t

p

c

w

p

4

i

m

o

i

t

4

l

a

Y

t

c

p

q

T

r

p

W

a

T

W

c

s

t

i

p

t

T

a

a

1

l

c

1

g

f

s

o
used for the background scenes are taken from [36] . Fig. 5 shows

some sample rooms which were used for our dataset. We created

the dataset by placing objects randomly inside different 3D rooms

taken from [36] . The whole process takes place inside Blender. The

TOF camera in Blender automatically faces towards the object and

acquires the point-cloud using the Kinect sensor from Blensor. The

acquired point-clouds from the Kinect sensor inside Blender are

shown in Fig. 4 (a). We then converted the point-cloud into vox-

elized VOLA format shown in Fig. 4 (b). In this case a fixed occu-

pancy grid of size 64 × 64 × 64 is used in order to maintain the

useful information from the point-clouds. The total number of 3D

voxelized point-clouds for training and testing are 3991 and 908

respectively, which is the ModelNet10 distribution.

4. Convolutional Neural Networks on volumetric data

4.1. Overview

The successful results achieved using CNNs on 3D ob-

jects [22,33,37–40] and etc. encourage us in that direction. CNNs

can explicitly encode spatial structures of the inputs, i.e. planes

and corners of the 3D objects associated with different orientations

and positions. In addition, CNNs have the ability to stack multiple

layers in order to conduct a hierarchy including complex features

regarding 3D regions and finally lead to a global label for the 3D

input. Furthermore, a trained CNN model can be easily deployed to

a hardware platform to perform inference with only a feed-forward

pass which is very efficient for classification purposes.

In this work, we introduce 2 different CNNs, which both take

in inputs as explained in Section 3 . Both networks can achieve

state-of-the-art results on 3D volumetric data. The first network is

inspired by Maturana and Scherer [22] and further pruning tech-

nique was applied on this network as well. This network learns
he 3D information from the volumetric data as it uses 3D ker-

els which can store features including orientations, positions and

epth information of the 3D volumetric data. The second network

e developed is a light weighted network which is very suitable

or embedded devices and we have ported this network onto Neu-

al Compute Stick [12] which we explain in detail in later sections.

his network takes in 3D volumetric data, which makes it different

rom the exiting work [23] . Instead of rendering different views of

he 3D input in computer graphics, it projects the 3D shape to 2D

lanes by convolving its 3D volume using 2D kernels and classifi-

ation is transformed on these 2D plans. This process is end-to-end

ith standard layers in CNN and achieves similar accuracy com-

are to the 3D Volumetric Network on the proposed dataset.

.2. Network 1: 3D Volumetric Network

The 3D Volumetric Network uses 3D kernels to extract features

n 3D space. Different from the exiting networks, our network is

uch simpler and performs better on a more complex dataset. In

rder to cope with overfitting issues on the training data shown

n [10] , we also introduce a pruning technique that can increase

he model capabilities on the test data and make it more robust.

.2.1. 3D Volumetric Network layers

In order to conduct the proposed network, we use the following

ayers.

Input layer . This layer is the first layer for both networks which

ccepts an occupancy grid of fixed size X × Y × Z . In our work, X =
 = Z = 64 . With the VOLA representation explained in Section 3 ,

he input value for our data is either 0 or 1, which means multipli-

ations are trivial, i.e., multiply by 0 produces 0 and multiply by 1

ropagates the weight to the output, so no multiplications are re-

uired. There is no further pre-processing requirement for the data.

his means our input data contains only 1 bit per voxel in order to

epresent the 3D volume.

3D Convolutional layer . This is the most important layer in the

roposed 3D CNN. For a single 3D convolution kernel with weights

 ∈ R

L ×M×N convolving with a 3D tensor T in , the output tensor T out

t position (i, j, k) is given as

out
i, j,k =

L −1 ∑

l=0

M−1 ∑

m =0

N−1 ∑

n =0

W l,m,n T
in

i + l, j+ m,k + n (2)

e call the output 3D tensor in our work feature block, which

ontains the result of 3D convolutions being performed. A spatial

tride s is also applied to the convolution.

A Rectified Linear Unit (ReLU) activation function is followed af-

er each convolution which performs nonlinearities in networks to

ncrease the model’s capabilities and prevents a vanishing gradient

roblem during back propagation of the network. The ReLU activa-

ion function is given as:

out = ReLU(T in) = max (T in , 0) (3)

Fully connected layer . This layer can produce n output neurons

nd the output of each neuron is a learned linear combination of

ll the output neurons from the previous layer. In our work n is

0. Different from the convolutional layer, this layer is not spatially

ocated. This layer is used for both networks as well.

Softmax layer . This layer is usually used for multiclass classifi-

ation tasks. The sum of the output from softmax layer is always

, which means it squeezes the output between 1 and 0. This layer

ives a probability result which can highlight the maximum value

rom the previous layer’s output and minimize the value which is

ignificant below the maximum value. The representation for each

utput element T out
j

in the softmax is shown in Eq. (4) . In our

X. Xu, S. Caulfield and J. Amaro et al. / Neurocomputing 393 (2020) 165–174 169

Fig. 6. 3D CNN architecture layout for objects with background. The input is 64 × 64 × 64 with VOLA format with each voxel represented by 1 bit. The input passes through

3 convolutional layers and 1 fully connected layer. The kernels used for convolutional layers are 8 × 8 × 8 with stride 1 which gives output feature blocks with size 57 3 , 50 3

and 43 3 from Conv1, Conv2 and Conv3 respectively. The output from fully connected layer is 10 units.

w

c

T

4

h

e

n

6

l

o

a

f

f

L

fi

t

b

c

p

m

f

t

4

p

i

c

w

H

e

t

Table 1

Number of zeros in each layer of the 3D CNN after

compression.

Layers No. of parameters No. of zeros

Conv 1 8 × 1 × 8 × 8 × 8 2867

Conv 2 16 × 8 × 8 × 8 × 8 45,875

Conv 3 16 × 16 × 8 × 8 × 8 91,750

FC 10 × 1272112 8,904,784

v

3

w

a

t

k

s

s

o

t

F

m

i

t

i

4

o

c

r

p

i

m

a

l

a

w

S

o

o

o

t
ork, the range for j is between 0 and 9, as we have 10 different

ategories.

out
j = σ (T in j) =

e T
in
j

∑ N
n =1 e

T in n

(4)

.2.2. 3D Volumetric Network configuration

In order to train the network on our 3D objects with scene, we

ave developed a volumetric architecture which contains the lay-

rs explained in Section 4.2.1 . Fig. 6 represents the 3D Volumetric

etwork architecture for our dataset. The input to the network is

4 × 64 × 64 as described in Section 3 . There are 3 convolutional

ayers, 1 fully connected layer and a softmax layer to produce the

utput. We also add a regularization layer which is dropout layer

fter the third convolutional layer with drop rate of 0.5 in order

or the network to generalize better [41] . The 3D kernel we used

or the convolutional layers are 8 × 8 × 8 which means in Eq. (2) ,

 = M = N = 8 are used in our architecture. Based on Eq. (2) , the

rst convolutional layer produces 8 feature blocks with size 57 3 ,

he second and the third convolutional layers produce 16 feature

locks with size 50 3 and 43 3 respectively. After that we add 1 fully

onnected layer to produce 10 units and the final output gives the

robability for different classes based on the input. This 3D CNN

odel is designed and trained using Caffe [42] . The learning rate

or training the networks is 0.0 0 01, the weight decay is 0.0 0 05 and

he momentum is 0.9.

.2.3. 3D Volumetric Network Pruning

The complexity of our 3D CNN makes it containing millions of

arameters. This means the network can easily overfit on the train-

ng data. Therefore, we have added more regularization and in-

reased the robustness of the network by pruning the unnecessary

eights during training which requires the following steps.

• Sort all the existing weights from maximum to minimum;

• Choose a threshold to prune all the weights below this thresh-

old, i.e., set to zero;

• Retrain the network with the weights from the previous step.

No update would perform on the weights that are set to 0 dur-

ing the retraining, i.e., weights set to 0 will remain 0 during

training.

Similar works done by Zhou et al. [30] , Guo et al. [32] and

an et al. [34] show great results in 2D CNNs. In our work, we

xtended it to 3D CNNs. We analysed weights in the original

rained 3D CNN and have found that most of the weights are
ery small. The 3D kernels contain weights in the first layer of

D convolution is shown in Fig. 7 (a). Each circle contains the

eight value in the 3D kernel. Red, orange and yellow weights

re more important than green, cyan and blue ones. The bigger

he circle, the bigger the weight value. After observing the 3D

ernels, we decided to prune 70% of the weights in each layer as

hown in Table 1 . After retraining the model, it maintained the

ame accuracy after pruning, which shows that the zero weights

ccupied the most of the 3D kernels. We extracted the weights in

he same layer (Conv1) from the pruned trained model shown in

ig. 7 (b). The 3D weight kernels in the pruned model are much

ore sparse than the previous weight kernels before pruning. As

n 3D volume, input data contains a huge volume of empty space,

herefore weights associated with these spaces should not have

mportant values, as no feature can be learn from empty spaces.

.3. Networks 2: 3D-to-2D Projection Network

Recent successes in multi-view CNNs [23] project the 3D

bjects to 2D and then use well-developed 2D image’s CNNs for

lassification. However, the projection stage uses the external

endering pipelines from computer graphics. In [11] , the authors

roposed a 3D-to-2D projection using anisotropic probing which

s capable of capturing internal structures of objects through a

anner which is similar to ‘X-ray scanning’. The success of these

pproaches inspired us to introduce a much simpler and more

ightweight network containing only existing layers in 2D CNNs

s shown in Fig 8 . Note that our input to the network is still 3D,

hich uses the same input layer as the 3D Volumetric Network in

ection. 4.2.1 .

The nature of our dataset is a point-cloud format, thus 1 out

f the 3 dimensions does not store as much information as the

ther 2. We have found that 2D convolutional layers are capable

f capturing the internal and global structure of the input volume

hrough its end-to-end projection base on our data. This network

170 X. Xu, S. Caulfield and J. Amaro et al. / Neurocomputing 393 (2020) 165–174

Fig. 7. 3D kernels in the 1st convolution layer of the model. Red, orange and yellow weights are more important than green, cyan and blue weights. The bigger the circle,

the bigger the weight value. (a) 3D kernels before pruning; (b) 3D kernels after pruning.

Fig. 8. 3D-to-2D Projection Network architecture layout for objects with background. The input is 64 × 64 × 64 with VOLA format and each voxel represented as 1 bit. Input

passes through 3 convolutional layers followed by pooling layers with kernel size 2 × 2 and stride of 2. Fully connected layer is followed which is the last layer of the

network. The kernels used for convolutional layers are 5 × 5 with stride 1. The output from fully connected layer is 10 units for representing 10 different classes.

Table 2

Accuracy achieved for different existing CNN models and our models. The existing

CNN models are trained and tested on pure ModelNet10 objects where our net-

works are trained and tested on voxelized point-clouds containing ModelNet10 ob-

jects with background.

Dataset Network Acc

ModelNet10 PointNet [43] 77.6%

3D ShapeNet [10] 84%

OctNet [33] 90.1%

VoxNet [22] 92%

ModelNet10 + background (Ours) 3D-to-2D Projection Network 91.7%

3D Volumetric Network 93.5%

Pruned 3D Volumetric Network 94.1%

o

T

d

a

a

S

t

a

v

a

S

i

1

d

t

i

M

can learn the early features with much less parameters and the

features it learns cannot be achieved by standard rendering. The

simplicity of this model means it is very easy to deploy onto any

embedded device, in our case in a Neural Compute Stick intro-

duced in Section 6 .

4.3.1. 3D-To-2D Projection Network configuration

In contrast to the traditional 3D networks [10,22,23] our 3D-to-

2D Projection network uses 3 convolutional layers with kernel size

5 × 5, which can aggregate long-range interactions. For the first 2

convolutional layers, each of them is followed by a max-pooling

layer and a nonlinearity linear layer ReLU. The max-pooling lay-

ers with kernel size 2 × 2 are used to output the most significant

feature inside each kernel. The third convolution layer is directly

connected to the fully connected layer to produce 10 units as ex-

plained in Section 4.2.1 followed by a softmax layer gives the prob-

ability for the different classes based on the input. This model is

trained using the same configuration as the 3D Volumetric Net-

work, but it takes more iterations to converge in order to achieve

similar accuracy.

5. Experimental results

5.1. Performance based on accuracy evaluation

The networks proposed in Section. 4 are trained on 3991 3D

voxelized point-clouds and tested on 908 3D voxelized point-

clouds in this section and further tested on occluded point-clouds

for all the classes in Section. 5.3 without any fine-tuning. The in-

put occupancy grid is 64 3 with VOLA format both for training and

testing. To be more specific, the input contains only 1 bit per voxel

and no further pre-processing operation is applied to the input.

In order to evaluate our network’s performance, we compare

our method with the state-of-the-art shape classification networks
n the ModelNet10 dataset. The overall comparison is shown in

able 2 . However, our dataset is more complex than ModelNet10

ataset as it contains both objects and a background scene.

3D Volumetric Network . We tested the network before pruning

nd after pruning using the same test data. The average accuracy

fter pruning the network is slightly higher than before pruning.

imilar performance is shown in [30] on 2D CNNs. After quan-

izing and pruning the weights, most of the existing 2D CNNs

chieve slightly better accuracy. The pruning technique can pre-

ent the network from overfitting as it added more regularization

nd pruned unnecessary weights in the network as explained in

ection 4.2.3 . The confusion matrix for the network before prun-

ng is shown in Table 3 . Bathtub performs the best which achieves

00% and dresser has the lowest accuracy at 73%. The confusion for

resser is mostly between the desk as they are very similar in na-

ure. Overall, the 3D Volumetric Networks (before and after prun-

ng) achieve higher accuracy than all the existing 3D networks on

odelNet10.

X. Xu, S. Caulfield and J. Amaro et al. / Neurocomputing 393 (2020) 165–174 171

Table 3

Confusion matrix for trained 3D Volumetric Network on ModelNet10 objects with background. Darker background means

higher percentage.

Table 4

Confusion matrix for trained 3D-to-2D Projection Network on ModelNet10 objects with background. Darker background

means higher percentage.

Table 5

Number of parameters in the existing networks. The “M” stands for million.

Dataset Input size Network #params

ModelNet10 + background (Ours) 64 × 64 × 64 3D Volumetric Network 12 M

64 × 64 × 64 Pruned 3D Volumetric Network 9 M

64 × 64 × 64 3D-to-2D Projection Network 0.05 M

ModelNet10 32 × 32 × 32 VoxNet [22] 1 M

ModelNet40 30 × 30 × 30 Subvolume [11] 16.6 M

224 × 224 × 3 MVCNN [23] 6 M

of pts PointNet [24] 3.5 M

o

t

e

i

a

r

5

w

r

u

o

V

3

s

p

a

e

i

o

u

s

c

e

5

V

c

t

d
3D-to-2D Projection Network . This light weight network achieves

verall accuracy of 91.7% on 3D test data. It is slightly lower than

he 3D Volumetric Networks introduced earlier but higher than the

xisting networks except VoxNet. The confusion matrix is shown

n Table 4 . Bathtub achieves 100% while dresser, desk and toilet

re performing poorly. Note that this network stores much less pa-

ameters compared to the other networks.

.2. Performance based on time and space

The networks in this work are compared to the existing net-

orks on 3D data with memory requirement. Table 5 summa-

izes the number of parameters in the networks. While Subvol-

me [11] , PointNet [24] and MVCNN [23] achieves high accuracy

n their datasets, our 3D-to-2D Projection Network and Pruned 3D

olumetric Network offers a much smaller memory requirement.

D-to-2D Projection Network is 70 × smaller than PointNet, 332 ×
maller than Subvolume and 1200 × smaller than MVCNN. The
runed 3D Volumetric network is 1.8 × smaller than Subvolume

nd 6.7 × smaller than MVCNN. Although VoxNet has less param-

ters compared to the 3D Volumetric Networks that we proposed

n this work, our input data is 8 × bigger than VoxNet inputs and

ur 3D-to-2D Projection Network is still 20 × smaller.

Our 3D-to-2D Projection Network can perform 0.5 ms / inference

sing a Titan X GPU on Caffe, and 13 ms /in ference on Intel i7. This

hows great potential for the network to run in real-time appli-

ations. The amount of parameters it requires makes it incredibly

asy to deploy onto any embedded device.

.3. 3D Volumetric Network on occluded point-clouds

Furthermore, we have analysed the ability of our trained 3D

olumetric Network for handling different occlusions in the point-

louds without any fine tuning or retraining involved. This can test

he robustness of our trained 3D Volumetric Network. We use 3

irections to occlude the object with background in a 3D volume

172 X. Xu, S. Caulfield and J. Amaro et al. / Neurocomputing 393 (2020) 165–174

Fig. 9. Occlusion of the point-clouds in 3 directions inside the 3D volume. (a) Oc-

clude the point-clouds in x direction with grey volume as occupied volume. (b)

Occlude the point-clouds in y direction with grey volume as occupied volume. (c)

Occlude the point-clouds in z direction with grey volume as occupied volume.

Table 6

Accuracy achieved for our trained 3D Volu-

metric Network based on the voxelized point-

clouds with different percentage of occlusion

in x , y and z directions.

% of occlusion mean Acc

Baseline 0% 93.5%

x -direction 20% 91.1%

30% 86.8%

40% 74.5%

y -direction 20% 88.6%

30% 86.1%

40% 83.3%

z -direction 20% 91.3%

30% 85.4%

40% 81.1%

Fig. 10. Movidius TM Neural Compute Stick based on Myriad 2 VPU which can load

trained CNN architectures and perform inferences on it. This USB device is low-

power with only a 1.2 W requirement.

Table 7

Performance of 3D-to-2D Projection Network on different hardware platforms

with respect to classification time, power and energy consumption. (∗ higher is

better).

Platform Nvidia Titan X NCS Intel Core i7-5930K

@ 3.50 GHz

Time (ms) 0.5 11 13

Power (W) 250 1.2 95

Inference/time/power

(inference/sec/W) ∗
0.8 75.75 ∗ 0.81

t

F

b

S

d

f

6

t

t

a

t

t

3

6

o

(

o

n

t

t

s

p

f

f

d

M

t

f

b

S

a

i

t

i

h

6

d

i

o

i

m

p

h

of 64 3 . Fig. 9 demonstrates the methods. We have considered dif-

ferent percentage of occlusions associated with each direction, i.e.,

20%, 30% and 40%. The accuracies achieved for occluded voxelized

point-clouds using our 3D CNN are shown in Table 6 . It clearly

shows that our 3D CNN can easily handle occlusions up to 20% in

both x and z directions with slight loss in average accuracy com-

pared to the original point-clouds. Although for some objects the

occlusions make them difficult for recognition i.e. confusion among

desks, tables, dressers and chairs. Overall, our 3D CNN can cope up

to 40% of occlusion on the voxelized point-clouds.

6. CNN on Neural Compute Stick

The trained 3D-to-2D Projection Network has been imported

to the Neural Compute Stick (NCS) [12] shown in Fig. 10 , which

can be used on low-cost robotics or drones and perform naviga-

tion based on the inference. This USB device can offload compute-

intensive Deep Neural Networks while still demanding low-cost

and low-power. The network performance on the NCS is shown in

Section 6.2 .

6.1. Intel® Movidius TM Neural Compute Stick

The NCS is a low-cost and low-power USB device based on

Myriad 2 VPU [13] . It supports loading networks designed and
rained on common deep-learning frameworks such as Tensor-

low [44] and Caffe [42] . Any AI programming can run at the edge

y using NCS. The NCS combined with Movidius Neural Compute

DK allows a deep learning developer to profile, tune, validate and

eploy CNNs on low power applications that require real-time in-

erence.

.2. Network inference on Neural Compute Stick

The 3D-to-2D Projection Network is trained and deployed on

he NCS. The input in this case is still 64 3 . The network archi-

ecture is exactly the same as explained in Section. 4.2.2 which

chieved 91.7% on the test data. We analyse the performance of

he network by looking at the inference time, as we wish to run

he 3D classification in real-time. The average run-time for the

D-to-2D Projection Network to perform over 10 0 0 inferences on

4 3 voxelized point-clouds using NCS powered by Myriad 2 VPU is

nly 11 ms with 12 Streaming Hybrid Architecture Vector Engines

SHAVEs). In order to compare the speed of the network running

n different platforms, i.e., CPU, GPU, we tested the network run-

ing on:

• VPU: Intel® Movidius TM Neural Compute Stick;

• CPU: Intel Core i7-5930K @ 3.50GHz, 32G RAM;

• GPU: Nvidia GeForce GTX Titan X.

The result shows that network running on NCS is faster than

he inference performed on Intel Core i7 and 22 times slower

han Nvidia Titan X, as shown in Table 7 . Moreover, inference per

econd per Watt is analysed using inference ÷time ÷power given the

ower for all 3 platforms shown in Table 7 . Power requirements

or NCS is analysed in Section. 6.3 . NCS powered by Myriad 2 per-

orms 75.75 inferences/Sec/Watt. The energy consumption results

isplayed in Table 7 show the Intel Core i7 is 93.5 × worse than

yriad 2, and the Nvidia Titan X is 95 × worse than Myriad 2.

With NCS, we can specify the number of SHAVEs for classifica-

ion purposes in order to achieve the optimal results. The run-time

or the network will vary depending on the number of SHAVEs

eing used. Due to memory allocation and data transfer, with 8

HAVEs this network achieves optimal run-time performance with

n average time of 10.33 ms to perform 1 classification. By look-

ng at the pre-layer profile statistics performance, nearly half of

he classification time is spent on the first convolutional layer. This

s because most of the calculations and most of the convolutions

appen in the first layer.

.3. Power requirements for network on NCS

The power usage for the trained network on NCS is measured

uring the inference stage. The setup is shown in Fig. 11 , and as

n [45] we use Raspberry Pi 3. NCS is attached to the Raspberry Pi

ver USB for offloading the model to perform inference. The power

s visualized by using INA219 power monitor IC from Texas Instru-

ents attached to the NCS’s USB connection directly. The average

owerachieved is 1 . 235 W for the network. The peak power usage

appens at the convolutional stage and is less than 2 W .

X. Xu, S. Caulfield and J. Amaro et al. / Neurocomputing 393 (2020) 165–174 173

Fig. 11. Setup used for evaluating the power needs of NCS during inference time.

7

f

v

d

b

i

o

d

i

w

a

s

3

l

b

l

c

D

A

a

U

R

[

[

[

[

[

[

[

[

[

[

. Conclusions

We presented two different network architectures in this work

or 3D volumetric object recognition. We introduced a realistic 3D

oxelized point-cloud dataset containing ModelNet10 objects in or-

er to train the 3D CNN. The voxelized dataset contains only 1

it per voxel using our VOLA algorithm, which saves computation

n the first layer of the network. We enable further improvement

f our 3D Volumetric Network by combining the technique intro-

uced in the low precision networks in order to prune the weights

n all the layers and reduce the computational cost. In addition,

e analysed the performance of our networks based on accuracy

nd memory requirements where they achieve state-of-the-art re-

ults. Furthermore, the 3D-to-2D Projection Network based on our

D voxelized point-clouds as input has been deployed onto a very

ow power NCS to perform inference. This means our network can

e easily deployed in robotics, drones, cars and a variety of other

ow-power embedded systems to perform real-time navigation and

lassification.

eclarations of interest

None.

cknowledgements

This work was partially supported by Fundação para a Ciência e

 Tecnologia (FCT) and Instituto de Telecomunicações under grants

ID/EEA/50 0 08/2019 and PTDC/EEI-HAC/30485/2017.

eferences

[1] C. Szegedy , W. Liu , Y. Jia , P. Sermanet , S. Reed , D. Anguelov , D. Erhan , V. Van-
houcke , A. Rabinovich , Going deeper with convolutions, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9 .
[2] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition, in:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2016, pp. 770–778 .
[3] F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer,

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 mb
model size, arXiv: 1602.07360 (2016).

[4] G. Huang , Z. Liu , L. Van Der Maaten , K.Q. Weinberger , Densely connected con-
volutional networks, in: Proceedings of the IEEE conference on computer vi-

sion and pattern recognition, 2017, pp. 4700–4708 .
[5] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet large scale vi-

sual recognition challenge, Int. J. Comput. Vis. (IJCV) 115 (3) (2015) 211–252,
doi: 10.1007/s11263-015-0816-y .

[6] N. Silberman , D. Hoiem , P. Kohli , R. Fergus , Indoor segmentation and support
inference from RGBD images, in: Proceedings of the Computer Vision–ECCV,

2012, pp. 746–760 .
[7] S. Song , S.P. Lichtenberg , J. Xiao , Sun RGB-D: a RGB-D scene understanding
benchmark suite, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2015, pp. 567–576 .
[8] J. Xiao , A . Owens , A . Torralba , SUN3D: a database of big spaces reconstructed

using SfM and object labels, in: Proceedings of the IEEE International Confer-
ence on Computer Vision, 2013, pp. 1625–1632 .

[9] A.X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, et al., Shapenet: an information-rich 3d model repos-

itory, arXiv: 1512.03012 (2015).

[10] Z. Wu , S. Song , A. Khosla , F. Yu , L. Zhang , X. Tang , J. Xiao , 3d shapenets: a deep
representation for volumetric shapes, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2015, pp. 1912–1920 .
[11] C.R. Qi , H. Su , M. Nießner , A. Dai , M. Yan , L.J. Guibas , Volumetric and mul-

ti-view CNNs for object classification on 3D data, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 5648–5656 .

[12] Intel®Movidius TM , Intel® movidius TM neural compute stick, 2017, (https://

developer.movidius.com).
[13] B. Barry , C. Brick , F. Connor , D. Donohoe , D. Moloney , R. Richmond ,

M. O’Riordan , V. Toma , Always-on vision processing unit for mobile applica-
tions, IEEE Micro 35 (2) (2015) 56–66 .

[14] A. Karpathy , L. Fei-Fei , Deep visual-semantic alignments for generating image
descriptions, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2015, pp. 3128–3137 .

[15] A. Prasoon , K. Petersen , C. Igel , F. Lauze , E. Dam , M. Nielsen , Deep feature
learning for knee cartilage segmentation using a triplanar convolutional neu-

ral network, in: Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, Springer, 2013, pp. 246–253 .

[16] H.R. Roth , L. Lu , A. Seff, K.M. Cherry , J. Hoffman , S. Wang , J. Liu , E. Turkbey ,
R.M. Summers , A new 2.5 d representation for lymph node detection using

random sets of deep convolutional neural network observations, in: Proceed-

ings of the International Conference on Medical Image Computing and Com-
puter-Assisted Intervention, Springer, 2014, pp. 520–527 .

[17] C. Chen , A. Seff, A. Kornhauser , J. Xiao , Deepdriving: learning affordance for
direct perception in autonomous driving, in: Proceedings of the IEEE Interna-

tional Conference on Computer Vision, 2015, pp. 2722–2730 .
[18] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, H. Adam, Mobilenets: efficient convolutional neural networks for mo-

bile vision applications, arXiv: 1704.04861 (2017).
[19] J. Maria , J. Amaro , G. Falcao , L.A. Alexandre , Stacked autoencoders using

low-power accelerated architectures for object recognition in autonomous sys-
tems, Neural Process. Lett. 43 (2) (2016) 445–458 .

20] P. Molchanov , S. Gupta , K. Kim , J. Kautz , Hand gesture recognition with 3d con-
volutional neural networks, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition Workshops, 2015, pp. 1–7 .

[21] S. Ji , W. Xu , M. Yang , K. Yu , 3D convolutional neural networks for human action
recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (1) (2013) 221–231 .

22] D. Maturana , S. Scherer , Voxnet: a 3D convolutional neural network for real–
time object recognition, in: Proceedings of the IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), IEEE, 2015, pp. 922–928 .
23] H. Su , S. Maji , E. Kalogerakis , E. Learned-Miller , Multi-view convolutional neu-

ral networks for 3D shape recognition, in: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2015, pp. 945–953 .

[24] C.R. Qi , H. Su , K. Mo , L.J. Guibas , Pointnet: Deep learning on point sets for

3d classification and segmentation, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 652–660 .

25] Y. Shen , C. Feng , Y. Yang , D. Tian , Mining point cloud local structures by ker-
nel correlation and graph pooling, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 4, 2018 .
26] Z. Han , M. Shang , Z. Liu , C.-M. Vong , Y.-S. Liu , M. Zwicker , J. Han , C.L.P. Chen ,

Seqviews2seqlabels: learning 3d global features via aggregating sequential

views by RNN with attention, IEEE Trans. Image Process. 28 (2) (2018)
658–672 .

[27] Y. You , Z. Zhang , C.-J. Hsieh , J. Demmel , K. Keutzer , Imagenet training in min-
utes, in: Proceedings of the 47th International Conference on Parallel Process-

ing, ACM, 2018, p. 1 .
28] M. Duan , K. Li , X. Liao , K. Li , A parallel multiclassification algorithm for big

data using an extreme learning machine, IEEE Trans. Neural Netw. Learn. Syst.

29 (6) (2017) 2337–2351 .
29] C. Liu , K. Li , K. Li , A game approach to multi-servers load balancing with load-

dependent server availability consideration, IEEE Trans. Cloud Comput. (2018) .
30] A . Zhou, A . Yao, Y. Guo, L. Xu, Y. Chen, Incremental network quantization: to-

wards lossless CNNs with low-precision weights, arXiv: 1702.03044 (2017).
[31] M. Rastegari , V. Ordonez , J. Redmon , A. Farhadi , Xnor-net: Imagenet classifica-

tion using binary convolutional neural networks, in: Proceedings of the Euro-

pean Conference on Computer Vision, Springer, 2016, pp. 525–542 .
32] Y. Guo , A. Yao , Y. Chen , Dynamic network surgery for efficient DNNs, in: Pro-

ceedings of the Advances In Neural Information Processing Systems, 2016,
pp. 1379–1387 .

[33] G. Riegler , A. Osman Ulusoy , A. Geiger , Octnet: Learning deep 3d representa-
tions at high resolutions, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 3577–3586 .

34] S. Han , J. Pool , J. Tran , W. Dally , Learning both weights and connections for ef-
ficient neural network, in: Proceedings of the Advances in Neural Information

Processing Systems, 2015, pp. 1135–1143 .
[35] M. Gschwandtner, R. Kwitt, A. Uhl, W. Pree, BlenSor: Blender Sensor Sim-

ulation Toolbox Advances in Visual Computing, in: Lecture Notes in Com-

https://doi.org/10.13039/501100001871
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0002
http://arxiv.org/abs/1602.07360
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0004a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0004a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0004a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0004a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0004a
https://doi.org/10.1007/s11263-015-0816-y
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0006
http://arxiv.org/abs/1512.03012
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0008
https://developer.movidius.com
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0010
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0010
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0010
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0013
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0018
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0018
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0018
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0018
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0018
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0119a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0119a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0119a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0119a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0119a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0023
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0023
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0023
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0023
http://arxiv.org/abs/1702.03044
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019b
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019b
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019b
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019b
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0026

174 X. Xu, S. Caulfield and J. Amaro et al. / Neurocomputing 393 (2020) 165–174

J

j

w

T

H

S

i

w

H

p

s

(

(

puter Science, Springer, Berlin / Heidelberg, 2011, pp. 199–208, doi: 10.1007/
978- 3- 642- 24031- 7 _ 20 .

[36] A. Handa , V. Patraucean , V. Badrinarayanan , S. Stent , R. Cipolla , Understand-
ing real world indoor scenes with synthetic data, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp. 4077–4085 .
[37] X. Xu , D. Corrigan , A. Dehghani , S. Caulfield , D. Moloney , 3D object recogni-

tion based on volumetric representation using convolutional neural networks,
in: Proceedings of the International Conference on Articulated Motion and De-

formable Objects, Springer, 2016, pp. 147–156 .

[38] X. Xu , A. Dehghani , D. Corrigan , S. Caulfield , D. Moloney , Convolutional neu-
ral network for 3D object recognition using volumetric representation, in: Pro-

ceedings of the First International Workshop on Sensing Processing and Learn-
ing for Intelligent Machines (SPLINE), IEEE, 2016, pp. 1–5 .

[39] X. Xu , J. Amaro , G. Falco , D.M. Moloney , Classify 3D voxel based point-cloud
using convolutional neural network on a neural compute stick, in: Proceedings

of the IEEE Co-sponsored International Conference on Natural Computation,

Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 2017 .
[40] X. Xu , J. Amaro , S. Caulfield , A. Forembski , G. Falcao , D. Moloney , Convolutional

neural network on neural compute stick for voxelized point-clouds classifica-
tion, in: Proceedings of the 10th International Congress on Image and Signal

Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE, 2017,
pp. 1–7 .

[41] N. Srivastava , G. Hinton , A. Krizhevsky , I. Sutskever , R. Salakhutdinov , Dropout:

a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res.
15 (2014) 1929–1958 .

[42] Y. Jia , E. Shelhamer , J. Donahue , S. Karayev , J. Long , R. Girshick , S. Guadarrama ,
T. Darrell , Caffe: convolutional architecture for fast feature embedding, in: Pro-

ceedings of the 22nd ACM International Conference on Multimedia, ACM, 2014,
pp. 675–678 .

[43] A. Garcia-Garcia , F. Gomez-Donoso , J. Garcia-Rodriguez , S. Orts-Escolano ,

M. Cazorla , J. Azorin-Lopez , Pointnet: a 3D convolutional neural network for
real-time object class recognition, in: Proceedings of the International Joint

Conference on Neural Networks (IJCNN), IEEE, 2016, pp. 1578–1584 .
[44] M. Abadi , P. Barham , J. Chen , Z. Chen , A. Davis , J. Dean , M. Devin , S. Ghemawat ,

G. Irving , M. Isard , et al. , Tensorflow: a system for large-scale machine learn-
ing., in: Proceedings of the OSDI, 16, 2016, pp. 265–283 .

[45] D. Pena , A. Forembski , X. Xu , D. Moloney , Benchmarking of CNNs for low-cost,

low-power robotics applications, in: Proceedings of the RSS Workshop: New
Frontier for Deep Learning in Robotics, 2017 .

Xiaofan Xu is a research engineer at Intel specializing
in artificial intelligence and robotics. Previously, Xiaofan

worked in the CTO office at Movidius on various research
projects, including 3D volumetric object recognition using

convolutional neural networks and training neural net-

works using synthetic data. Xiaofan holds a master degree
in electronic engineering from Trinity College Dublin.

Sam Caulfield is a research engineer at Intel. His work

mainly involves software development on low-power and
memory-constrained devices. He graduated with a degree

in computer science from Trinity College Dublin.
João Amaro (S14) received his B.Sc. degree in electri-

cal and computer engineering from the Faculty of Sci-
ence and Technology of the University of Coimbra (FC-

TUC), Portugal, where he also concluded the M.Sc. de-

gree in computer architectures for ultrasound systems in
2013. During his B.Sc. and M.Sc. studies he was the recip-

ient of three FCTUC 3% top student awards. His research
interests span the development of new medical imag-

ing reconstruction paradigms, parallel computing archi-
tectures, high-level synthesis, and efficient code portabil-

ity. In 2015, João became a PhD student, researching ad-

vanced medical ultrasound imaging algorithms and het-
erogeneous computing architectures. In September 2016,

oão enrolled in a 3-month internship at Movidius, researching 3D volumetric ob-
ect recognition using CNNs.

Gabriel Falcao (S07M10SM14) graduated in electrical and
computer engineering from the University of Porto, where

he also concluded the M.Sc. degree in digital signal pro-

cessing. In 2010 he received the Ph.D. degree from the
University of Coimbra, where he became an Assistant Pro-

fessor. In 2011/2012 and again in 2017/18 Gabriel was a
Visiting Professor at EPFL, Switzerland. In 2013 he was

the recipient of a Google Faculty Research Award and
the Altera Europe-Wide University contest 2012–2013.

Presently, he is studying efficient parallelization strate-
gies, novel algorithms and architectures for dealing with

compute-intensive applications used in medical, imaging

and deep neural network imaging contexts, in parallel
ith continuous work in digital communications. He is a researcher at Instituto de

elecomunicaes, and a senior Member of the IEEE, signal Processing society, and the
iPEAC Network of Excellence.

David Moloney is a director of Machine vision at In-

tel Corp. and has worked in the semiconductor industry
since qualifying with a BEng from DCU in 1985. He has a

wealth of international experience having worked for Infi-
neon in Munich for 5 years and SGS- Thomson Microelec-

tronics (STM) in Milan for 4 years respectively. In 1994 he

returned from STM to lead the engineering team for the
first product development at Parthus Technologies (https:

//www.ceva-dsp.com/) where he was a key member of
the management team and where he spearheaded the de-

velopment of the Parthus Bluetooth technology. David left
Parthus in 2003 to work towards his PhD in Trinity Col-

lege Dublin and as an independent consultant for Frontier
ilicon and Dublin City University. He subsequently co-founded Movidius as CTO

n 2005 which went on to pioneer low-power embedded vision and neural net-

ork processing in edge devices before being acquired by Intel in November 2016.
e received a PhD from Trinity College Dublin in 2010 for his research into high

erformance computer architectures. His interests span SoC and embedded proces-
or design, deep-learning hardware, computer vision, robotics and navigation. David

co-)inventor of 36 issued patents and (co-)author of 32 conference/journal papers
Publication List https://scholar.google.com/citations?user=WU3g6y8AAAAJ&hl=en).

https://doi.org/10.1007/978-3-642-24031-7_20
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0019a
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0036
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0036
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0036
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0036
http://refhub.elsevier.com/S0925-2312(19)31054-9/sbref0036
https://www.ceva-dsp.com/)
https://scholar.google.com/citations?user=WU3g6y8AAAAJ&hl=en

	1.2 Watt Classification of 3D Voxel Based Point-clouds using a CNN on a Neural Compute Stick
	1 Introduction
	2 Related work
	3 Sexaquaternary tree based dataset
	3.1 Volumetric data structure
	3.2 Voxel Based Point-cloud

	4 Convolutional Neural Networks on volumetric data
	4.1 Overview
	4.2 Network 1: 3D Volumetric Network
	4.2.1 3D Volumetric Network layers
	4.2.2 3D Volumetric Network configuration
	4.2.3 3D Volumetric Network Pruning

	4.3 Networks 2: 3D-to-2D Projection Network
	4.3.1 3D-To-2D Projection Network configuration

	5 Experimental results
	5.1 Performance based on accuracy evaluation
	5.2 Performance based on time and space
	5.3 3D Volumetric Network on occluded point-clouds

	6 CNN on Neural Compute Stick
	6.1 Intel® MovidiusNeural Compute Stick
	6.2 Network inference on Neural Compute Stick
	6.3 Power requirements for network on NCS

	7 Conclusions
	Declarations of interest
	Acknowledgements
	References

