
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–II: EXPRESS BRIEFS, VOL. -, NO. -, MAY 2022 1

Unified Posit/IEEE-754 Vector MAC Unit for
Transprecision Computing

Luís Crespo, Pedro Tomás, Senior Member, IEEE,
Nuno Roma, Senior Member, IEEE, and Nuno Neves, Member, IEEE

Abstract—Transprecision computing targets energy-efficiency
with multiple floating-point modules with different precisions
to suit application requirements. Variable-precision architectures
aim at making a more efficient hardware resource utilization,
but they often rely on the IEEE-754 standard, without low-
precision arithmetic support. Alternatively, the Posit format is
particularly well-suited for low-precision arithmetic. However,
for higher precisions, hardware requirements become prohibitive.
Accordingly, this paper proposes a new unified Posit/IEEE-
754 Vector Multiply-Accumulate (VMAC) unit, comprising a
vectorized variable-precision datapath with shared support for
the Posit and IEEE-754 formats. A 28nm ASIC implementation
resulted in 50% less area and 2.9× less power consumption than
typical transprecision setups.

Index Terms—Floating-point arithmetic, Posit, IEEE-754,
Variable-Precision, SIMD

I. INTRODUCTION

TRANSPRECISION computing [1] has received a gradu-
ally increasing attention as a viable paradigm to cope with

ever increasing performance and energy efficiency demands
in modern computing systems. It is set on the principle that
different applications have different precision requirements
(e.g., while some physics simulations require higher than 64-
bit precisions [2], deep learning applications sustain lower
precisions with as little as 4 bits [3]), and that, as recent studies
have shown [4–10], by lowering floating-point (FP) precision it
is possible to gain straightforward acceleration and efficiency.

However, most transprecision hardware solutions [11] at-
tempt to support different precisions by instantiating multiple
arithmetic modules. This leads to an increased chip area
and a waste of resources [12]. To tackle this issue, recent
variable-precision arithmetic units [12–14] introduce dynamic
datapaths that can operate in different precisions with the same
hardware resources. To do so, they deploy a higher precision
arithmetic logic (e.g., 32-bit) and allow parts of the circuit
to be turned off to lower the operand precision (e.g., to 8-
bit or lower [3]). While this approach provides for significant
area reductions and enables straightforward Single-Instruction

This work was partially supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT) under projects UIDB/50021/2020
and PTDC/EEI-HAC/30485/2017, and by funds from the European Union
Horizon 2020 Research and Innovation programme under grant agreement
No. 101036168.

All authors are with INESC-ID and Instituto Superior
Técnico, Universidade de Lisboa, in Lisbon, Portugal (e-mail:
luis.miguel.crespo@tecnico.ulisboa.pt, pedro.tomas@inesc-id.pt,
nuno.roma@inesc-id.pt, nuno.neves@inesc-id.pt).

Multiple-Data (SIMD) capabilities [12], existing solutions are
often limited by their adoption of the IEEE-754 standard [13],
whose lowest supported precision is only 16 bits.

Alternatively, some recent solutions [12, 14] adopt the
Posit format [4], mainly since it allows parameterizable pre-
cision and dynamic range (exponent size). The Posit format
is also interesting for fused operations, since it adopts an
exact accumulator structure (quire) with enough precision to
avoid overflow and accuracy losses [15]. While Posit-based
implementations traditionally define and fix its parameters at
design-time [8, 9, 16–18], it has been shown that it is possible
to support runtime-configurable exponent sizes with minimal
hardware overheads [10]. This allows making use of the entire
representable dynamic range for a given posit precision by
specifying the exponent size of the input values. In turn, it
also provides the possibility to encode a larger dynamic range,
capable of supporting (within the same hardware) both values
with high decimal precisions and very large magnitude.

Nevertheless, while these features make posits well suited
for low-precision and transprecision computing, the overheads
associated with the quire becomes prohibitive when the preci-
sion increases [16, 17]. Hence, for a general-purpose context, it
is desirable to maintain compatibility with the standard IEEE-
754 format, as it still is the most established FP format.

This paper proposes a new Posit/IEEE-754 Vector Multiply-
Accumulate (VMAC) unit for transprecision computing. Be-
sides combining variable-precision arithmetic and SIMD ca-
pabilities, it takes a step further from existing solutions by
deploying a unified support for the IEEE-754 and Posit for-
mats. It introduces the following contributions and features:

• an efficient variable-precision FP multiply-accumulate
(MAC) 32-bit architecture for transprecision computing;

• a unified FP arithmetic architecture compatible with both
the IEEE-754 and the Posit formats with support for inter-
format operation and conversion, which is also compat-
ible with the existing RISC-V Vector (RVV) [19] and
recently proposed RISC-V Posit extensions [20, 21];

• a fully vectorized datapath to efficiently make use of the
released hardware resources in low-precision scenarios;

• SIMD decoding/encoding modules with shared support
for FP vectors encoded with i) posit formats with
configurable exponent size; ii) IEEE-754 standard and
low-precision non-standard formats; and iii) multiple
scalar/vector element precisions.

Finally, when implemented in a 28nm ASIC technology,

0000–0000/00$00.00 © 2022 IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–II: EXPRESS BRIEFS, VOL. -, NO. -, MAY 2022 2

the proposed VMAC results in 50% less area and 2.9×
less power to achieve the same multiple-precision function-
ality when compared with typical transprecision architecture
topologies [11], while supporting a unique unified FP format.

II. BACKGROUND

A. IEEE-754 Standard

The IEEE-754 standard defines a FP number with sign (S),
biased exponent (E) and mantissa (M), with value:

(−1)𝑆 × 2𝐸−𝑏𝑖𝑎𝑠 × 1.𝑀, (1)

where 𝑏𝑖𝑎𝑠 is the exponent bias value. Although the standard
defines formats for half- (16-bit), single- (32-bit), and double-
precision (64-bit), it does not define a low-precision 8-bit
format. However, since the proposed architecture supports 8-
bit posits, for comparison purposes, an 8-bit floating point
format is adopted with 4 exponent bits and 3 mantissa bits.

B. Posit Number System

The posit number system is defined by the pair <n , es>,
where n represents the word size (precision) and es is the
maximum exponent size. Eq. 2 depicts the Posit encoding:

𝑠𝑖𝑔𝑛︷︸︸︷
𝑠

𝑟𝑒𝑔𝑖𝑚𝑒︷ ︸︸ ︷
𝑟 𝑟 ... 𝑟

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡︷ ︸︸ ︷
𝑒0 𝑒1 ... 𝑒𝑒𝑠−1

𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛︷ ︸︸ ︷
𝑓0 𝑓1 𝑓2 ...︸ ︷︷ ︸

𝑛 𝑏𝑖𝑡𝑠

(2)

Similarly to floats, posits include the sign, exponent, and
fraction, with an additional field called regime. Contrarily to
floats, whenever the sign bit corresponds to a negative number,
it is necessary to take the 2’s complement before decoding the
remaining fields. The regime is a variable-sized field, whose
encoded value (k) is given by the run-length of ’0’ or ’1’ bits.

Together with the exponent field, the k encoded value in
the regime represents a scale factor of the represented value,
equivalent to the exponent in floats. As a consequence of the
variable-sized regime, the exponent and fraction contents are
unknown before decoding the regime. In fact, depending on
the run length, they can be partly (or fully) left out of the
binary encoding. Hence, a posit number value is given by:

(−1)𝑠𝑖𝑔𝑛 × 2𝑒𝑥𝑝+𝑘2𝑒𝑠 × 1. 𝑓 (3)

The Posit format has a single encoding for zero (000...0) and
a single Not-a-Real (NaR) mathematical exception (100...0).

Additionally, it makes use of a 2’s complement fixed-point
accumulator (quire) based on the Kulisch accumulator, used
to store sums of products of posits without rounding and
accuracy loss. Naturally, the quire has a considerable hardware
overhead. It is composed by 4 fields: sign, carry guard (cg),
integer (int) and fraction (frac); and its size is given by:

𝑞𝑢𝑖𝑟𝑒 𝑠𝑖𝑧𝑒 = 1 + 𝑐𝑔 + 2𝑒𝑠+2 × (𝑛 − 2) (4)

Hence, the quire must be carefully dimensioned as it grows
exponentially with the exponent size and precision [17].

III. POSIT/IEEE-754 VMAC ARCHITECTURE

A. Overview

The proposed VMAC architecture takes a step further from
existing multiple-precision arithmetic units, not only by com-
bining variable-precision arithmetic and dynamic vectorization
capabilities, but also by providing an unified support for the
Posit and IEEE-754 FP formats. Accordingly, it features:

1 Posit-based Variable-Precision Structure: All modules
of the 32-bit posit fused MAC datapath are designed to
easily allow an adaptation of their arithmetic precision (at
runtime), supporting 32, 16, or 8-bit operations (as illustrated
in Fig. 1.A). To mitigate the hardware overheads associated
with the quire, the proposed unit only provides an exact accu-
mulation for low-precision scenarios with standard 8-bit posits
(𝑒𝑠 = 2) [15], by using a quire of 128-bits (as opposed to 512
bits for 32-bit posit accumulation). Hence, a scale factor value
is paired with the quire to ensure the correct representation of
the accumulations for all the supported precisions.

2 Dynamic Vectorization: All arithmetic modules are
fully vectorized and configurable at runtime to support 1x32-
bit, 2x16-bit, and 4x8-bit vector operations using the same
hardware (see Fig. 1.B). Hence, the resources released when
precision is reduced provide support for parallel computations,
offering increased throughput. To support vectorization, the
32-bit input vectors are decoded into three unified vector
formats that gather the sign (𝑠), scaling factor (or exponent -
sf), and fraction (𝑓) of each vector element, according to the
(−1)𝑠 × 2sf × 1. 𝑓 generic exponential format (see Fig. 1.C).

3 Variable-Exponent Posit Configuration: Posit exponent
size can be defined at runtime (instead of being fixed at
design-time), allowing most of the dynamic range for a given
precision to be representable. Since the quire is already paired
with a scaling factor (see Fig. 1.C), the arithmetic logic
can support dynamic ranges larger than those that can be
represented by the quire. Accordingly, it is only necessary
to include a set of shifters to decode/encode the posit format
according to the configured exponent size (described below).

4 FP Format Unification: While the Posit and IEEE-754
formats are fundamentally different in their representation,
after decoded, both represent a FP number in the generic
exponential format. As such, the logic to perform multiplica-

Fig. 1. Proposed VMAC (A) variable-precision and (B) vector datapath
configuration schemes, together with the (C) encoded/decoded FP and quire
vector data formats. Grey areas represent unused bits.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–II: EXPRESS BRIEFS, VOL. -, NO. -, MAY 2022 3

Fig. 2. Proposed Posit/IEEE-754 VMAC unit architecture diagram.

tion and addition/subtraction is virtually the same. Conversely,
to add IEEE-754 support in a Posit base architecture, it is
only necessary to add minimal decoding/encoding logic and
detection for mathematical exceptions (nonexistent in the Posit
format). For 8-bit precision operations, the 8-bit minifloat
variant was adopted to match the equivalent Posit precision.

5 Inter-format Operations and Conversions: The intro-
duced unified FP format allows the proposed unit to perform
inter-format operations between equivalent Posit and IEEE-
754 precisions. Since the unit’s internal representation is
compatible with both formats, it is only necessary to decode
each operand according to their specific format (controlled
by dedicated configuration signals - see below). Similarly, the
format of the output can also be configured independently of
the input formats, enabling straightforward format conversions.

B. Proposed Architecture

The proposed VMAC unit (depicted in Fig. 2) comprises
a fully pipelined architecture, supporting vector variable-
precision FP addition, subtraction, and multiplication, together
with fused multiply-add and multiply-accumulate operations.
The unit deploys a 32-bit SIMD datapath with unified support
for Posit and IEEE-754 FP formats, implemented by a 6-stage
pipeline : i) Decode; ii) Multiply; iii) Quire Scale;
iv) Quire Accumulate; v) Normalize; and vi) Encode.
The unit accepts three input vector operands (V𝑎, V𝑏 and V𝑐),
and outputs one result vector (V𝑟), and is capable of operating
with 32/16/8-bit scalar values or with 2x16/4x8-bit vectors.

The following paragraphs detail each of the pipeline stages.
Unified Decode: The Decode stage comprises three equiv-

alent vectorized decoding modules (one for each input value
- see Fig. 3.A), each containing the necessary logic to decode
either the Posit and IEEE-754 formats, to their 𝑠, sf , and 𝑓

fields. The FP format and precision are selected according to a
set of control signals paired with the input value (see Fig. 2).

For the IEEE-754 format, the three fields are extracted and
a bias is subtracted from the exponent value, according to
the configured precision. Conversely, for the Posit format, the
2’s complement is applied to the input value according to the
sign bit. Next, the regime run-length is decoded by means of
a leading zero counter (LZC) (if it starts with ’1’ the value
is first inverted). Then, 𝑘 is calculated and the regime is left-
shifted out according to the zero count, leaving the exponent
and fraction. This value is then shifted again by es, to split the

Fig. 3. Unified FP (A) decoding and (B) encoding modules, providing
simultaneous support for Posit and IEEE-754 vector formats.

exponent and the fraction. The 𝑘 value is then shift-aligned
according to es and concatenated with the exponent to obtain
sf . Finally, a ’1’ bit is added to the fraction to obtain 𝑓 .

Multiplication: The Multiply stage implements a
variable-precision vector FP multiplier, operating the decoded
V𝑎 and V𝑏 values while propagating V𝑐 to the next stage.
To do so, the product of the fractions is performed with a
4×4 structure of 8-bit radix-4 Booth multipliers, generating 16
partial products in carry-save format, accumulated in a Wal-
lace tree-like structure, resulting in a 64-bit value. Variable-
precision and/or vectorization are applied by only enabling
the required multipliers. The scale factor vectors are added
in a vectorized carry-lookahead adder, capable of breaking its
carry-chain to perform lower-precision parallel additions. The
sign vector results from a bitwise XOR of the input vectors.

Quire Scale and Accumulate: To mitigate the critical path
associated with the quire processing structure, the Quire
module is subdivided into two pipeline stages: Scale and
Accumulate. The operands (V𝑐 and the product from the
previous stage) are first converted to a 128-bit fixed-point quire
format vector (in accordance with the features discussed in
Section III-A), paired with a scale factor vector (see Fig. 1.C).

The conversion is done in the Scale stage, by first taking
the 2’s complement of the fraction vectors and sign-extending
them according to the precision. Next, the fraction is aligned
to the quire fixed-point format, with a vectorized barrel shifter.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–II: EXPRESS BRIEFS, VOL. -, NO. -, MAY 2022 4

TABLE I
COMPARISON OF THE PROPOSED VMAC WITH THE STATE-OF-THE-ART.

UNIT
NUM. PIPEL. ASIC DELAY AREA POWER PERF. AREA EFF. EDP
BITS STAGES TECH. (𝑛𝑠) (𝜇𝑚2) (𝑚𝑊) (GOPS) (×10−6 GOPS/𝜇𝑚2) (×10−22𝐽.𝑠)

Ref. Posit Std. MAC 8 5 28 𝑛𝑚 0.65 7598 21 1.54 202.4 0.89
Ref. Posit Std. MAC 16 5 28 𝑛𝑚 0.8 17384 47 1.25 71.91 3.01
Ref. Posit Std. MAC 32 5 28 𝑛𝑚 0.91 39767 108 1.10 27.63 8.94
Proposed VMAC 8/16/32 6 28 𝑛𝑚 1.5 51563 99 2.7/1.3/0.7 51.7/25.7/12.9 5.6/11.1/22.3
Posit DFMA [10] 32 5 45 𝑛𝑚 1.5 112350 370 0.67 5.95 83.25
FP VFMA [13] 16/32/64 3 90 𝑛𝑚 1.5 180610 44 2.7/1.3/0.7 14.8/7.4/3.7 2.5/4.9/9.9
Posit VMULT [14] 8/16/32 - 90 𝑛𝑚 2.3 91861 64 1.7/0.9/0.4 18.9/9.5/4.7 8.5/16.9/33.9

Given that the quire size is limited to constrain hardware
resources, the shifting amount is calculated from the scale
factor dynamic range with the aid of a saturation module (see
Fig. 2), which saturates the shifting amount (adjusting the scale
factor accordingly) whenever the fixed-point value overflows.

The Accumulate stage is responsible for implementing
the quire arithmetic logic, either by adding the values obtained
from the previous stage, or by accumulating the saved quire
value with one of such values. As such, the required operands
are first selected and then aligned according to their scale
factors. This is done by typical FP alignment logic, with the
aid of a vectorized right barrel shifter, while any discarded
bits are condensed in a sticky vector. Finally, the mathematical
exception flags are generated (both for the Posit and IEEE-754
formats), and the result is saved in the pipeline registers.

Normalization: The Normalize stage is responsible for
re-normalizing the quire and extracting the 𝑠, sf , and 𝑓 vectors.
First, the sign vector is extracted from the MSB of each
quire vector element, which allows converting the quire to an
unsigned value. Next, the number of shift positions required
to normalize the quire is obtained with a vectorized LZC. The
obtained zero count is used by a vectorized left shifter to align
the unsigned quire vector. Any discarded bits are condensed in
a sticky vector. Finally, the scale factor is obtained by adding
the quire scale factor and the obtained zero count.

Unified Encode: Finally, the Encode stage provides the
necessary logic for encoding the output vectors to Posit and
IEEE-754 formats (see Fig. 3.B). The logic is fully vectorized
and translates the 𝑠, sf , and 𝑓 vectors of the result to the
selected FP format vector. For the IEEE-754 format, the bias
is added to the scale factor (according to the precision) and the
resulting value is verified, adjusting the fraction for subnormal
numbers. Afterwards, the fields of each vector element are
concatenated and the fraction is rounded. The output result is
selected between the rounded result, zero, infinity or canonical
NaN, according to the flags generated by previous stages.

For the Posit format, sf and 𝑓 are first concatenated and
then right shifted, according to es, to obtain 𝑘 . The 𝑘 value’s
2’s complement is taken and the regime is shifted-in to sf and
𝑓 , according to 𝑘’s sign. The resulting binary value is then
rounded and the 2’s complement is taken according to 𝑠.

IV. IMPLEMENTATION RESULTS

The proposed Unified Posit/IEEE-754 VMAC unit was
described in RTL and synthesized for 28nm UMC standard
cell technology, targeting an operating frequency of 667 MHz,
under typical operating conditions (1.05 V, 25° C). Chip area

TABLE II
AREA BREAKDOWN FOR THE PROPOSED VMAC AND ITS COMPONENTS.

Pipeline Stage Area (𝜇𝑚2) Power (𝑚𝑊)
Decode Posit 2430 4.6

(x3) IEEE-754 263 0.8
Multiply 15917 29.5

Quire 13711 27.9
Normalize 6418 11.9

Encode Posit 3515 6.3
IEEE-754 2340 4.6

Total VMAC 51563 99

and power estimation results were obtained with Cadence
Genus 19.11 and presented in Tables I and II. Energy effi-
ciency was calculated using the energy-delay product (EDP),
by considering energy consumption and latency. Its operation
was validated with testing vectors generated with Sigmoid
Numbers julia library [22] and TestFloat [23].

To establish reference architectures, three fixed Posit fused
multiply-accumulate (MAC) architectures with 8, 16, and 32
bits were also implemented, with fixed 2-bit exponent size, as
per the latest Posit standard [15]. These precisions imply the
use of 128, 256, 512-bit quires, respectively. The proposed de-
sign was also compared with state-of-the-art variable-precision
units, including a 64-bit IEEE-754 variable-precision fused
multiply-add (FMA) [13] (VFMA), a 32-bit Posit variable-
precision multiplier [14] (VMULT), and a 32-bit Posit dy-
namic FMA [10] with configurable exponent size (DFMA).

When compared with the reference 32-bit Posit MAC unit, it
is observed that despite the introduced variable-precision and
unified FP, the proposed VMAC only presents a 30% chip
area increase, while showcasing a similar power consumption.
In fact, the VMAC is more area- and energy-efficient (see
Table I) since it reuses hardware resources to deploy variable-
precision vectorization, increasing throughput. Also, although
a higher latency was expected due to the increased complexity,
the critical path is still majorly mitigated by limiting the size
of the VMAC quire to 128 bits (as opposed to the reference
512-bit quire). This is also evident when comparing it with the
DFMA [10], which also adopts a 512-bit quire. Additionally,
as opposed to the VMAC, the DFMA [10] presents a fixed-
precision datapath, unsuited for transprecision computation.

Since the state-of-the-art variable-precision solutions were
implemented with distinct technology processes (90nm vs.
28nm), sclaed area and power estimations were obtained for
28nm technology with the DeepScaleTool [24]. When consid-
ering the estimated results (see Table III), it is observed that
although the proposed VMAC presents an increased resource
utilization when compared to the VFMA [13] (IEEE-754),
the difference is easily explained by two main factors: i) the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–II: EXPRESS BRIEFS, VOL. -, NO. -, MAY 2022 5

TABLE III
COMPARISON OF THE PROPOSED VMAC WITH THE STATE-OF-THE-ART

(SCALED TO 28 𝑛𝑚 TECHNOLOGY WITH DEEPSCALETOOL [24]).

UNIT
NUM. PIPEL. RESULT DELAY AREA POWER
BITS STAGES SOURCE (𝑛𝑠) (𝜇𝑚2) (𝑚𝑊)

Proposed VMAC 8/16/32 6 Synthesis 1.5 51563 99
Posit DFMA [10] 32 5 Estimated 1.24 39324 266
FP VFMA [13] 16/32/64 3 Estimated 0.77 16044 21
Posit VMULT [14] 8/16/32 - Estimated 1.18 8160 31

Posit decoding, encoding and quire modules account for more
than 50% of the total area and power of the VMAC (see
Table II); and ii) the VFMA [13] unit is not fully pipelined,
requiring much less area that is often related to registers.
The latter is also true when comparing with VMULT [14],
by only considering the multiplier stage of the VMAC (see
Tables III and II). However, the VMAC presents a much
higher functionality than previous solutions.

In particular, while the VFMA [13] presents a variable-
precision architecture, with SIMD capabilities, it is bound by
its sole adoption of the IEEE-754 format, and cannot perform
8-bit low-precision operations. Contrarily, while also providing
IEEE-754 support, the proposed VMAC leverages the Posit
format to perform low-precision operations with a configurable
dynamic range. Hence, the VMAC shows a much higher
flexibility and is better suited for low-precision computation
scenarios. Conversely, while the more recent VMULT [14]
presents variable and low-precision capabilities (similar to the
proposed VMAC), it only implements the multiplier datapath
and lacks the same flexibility of the VMAC in what concerns
the configurable exponent size and IEEE-754 format support.

Furthermore, the benefits of the proposed VMAC are also
evidenced when considering throughput and energy efficiency.
Despite the implicit logic increase, necessary to implement
its unified format and variable-precision datapath, the VMAC
still presents similar throughput and energy efficient when
compared to the state-of-the-art solutions (see Table I).

Finally, when considering the integration of the proposed
VMAC in a typical transprecision architecture [11] to support
multiple-precision datapaths, it is estimated to require 50% less
area and 2.9× less power than a combination of the considered
Posit MAC reference units with the same precision mix (i.e.,
4x8-bit + 2x16-bit + 1x32-bit MACs). Moreover, the VMAC
offers increased flexibility, by supporting a unified FP format.

V. CONCLUSIONS

This paper proposes a new unified Posit/IEEE-754 Vector
Multiply-Accumulate (VMAC) unit architecture for trans-
precision computing. It offers a variable-precision datapath
with SIMD capabilities with a unified support for the Posit
and IEEE-754 FP standards. Accordingly, it is capable of
performing low- and high-precision Posit operations (with
dynamic exponent size), while maintaining compatibility with
the standard IEEE-754 format. A 28nm ASIC implementation
resulted in 50% less area and 2.9× less power when compared
with a typical transprecision system topology. In the future, we
will consider deploying the proposed VMAC in transprecision
acceleration platforms and the development of RISC-V exten-
sions to support its inclusion in existing processors.

REFERENCES

[1] A. C. I. Malossi et al., “The transprecision computing paradigm:
Concept, design, and applications,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1105–1110, IEEE, 2018.

[2] M. Klöwer, P. D. Düben, and T. N. Palmer, “Posits as an alternative to
floats for weather and climate models,” in Proceedings of the Conference
for Next Generation Arithmetic 2019, pp. 1–8, 2019.

[3] X. Sun, N. Wang, C.-Y. Chen, J. Ni, A. Agrawal, X. Cui, S. Venkatara-
mani, K. El Maghraoui, V. V. Srinivasan, and K. Gopalakrishnan, “Ultra-
low precision 4-bit training of deep neural networks,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

[4] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its
own game: Posit arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, pp. 71–86, 2017.

[5] G. Raposo, P. Tomás, and N. Roma, “Positnn: Training Deep Neural
Networks with Mixed Low-Precision Posit,” in ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 7908–7912, IEEE, 2021.

[6] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point numbers,” in
Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 7686–7695, 2018.

[7] M. K. Jaiswal and H. K.-H. So, “Pacogen: A hardware posit arithmetic
core generator,” IEEE Access, vol. 7, pp. 74586–74601, 2019.

[8] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson,
and D. Kudithipudi, “Deep positron: A deep neural network using the
posit number system,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1421–1426, IEEE, 2019.

[9] H. Zhang, J. He, and S.-B. Ko, “Efficient posit multiply-accumulate unit
generator for deep learning applications,” in 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5, IEEE, 2019.

[10] N. Neves, P. Tomás, and N. Roma, “Dynamic Fused Multiply-
Accumulate Posit Unit with Variable Exponent Size for Low-Precision
DSP Applications,” in 2020 IEEE Workshop on Signal Processing
Systems (SiPS), pp. 1–6, IEEE, 2020.

[11] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “A
transprecision floating-point platform for ultra-low power computing,”
in 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1051–1056, IEEE, 2018.

[12] N. Neves, P. Tomás, and N. Roma, “Reconfigurable Stream-based Tensor
Unit with Variable-Precision Posit Arithmetic,” in 2020 IEEE 31st
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), pp. 149–156, IEEE, 2020.

[13] H. Zhang, D. Chen, and S.-B. Ko, “Efficient multiple-precision floating-
point fused multiply-add with mixed-precision support,” IEEE Transac-
tions on Computers, vol. 68, no. 7, pp. 1035–1048, 2019.

[14] H. Zhang and S.-B. Ko, “Efficient multiple-precision posit multiplier,” in
2021 IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–5, IEEE, 2021.

[15] P. W. Group, “Posit Standard Documentation,” Rel. 4.12-draft, Jul. 2021.
[16] F. De Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, “Posits: the

good, the bad and the ugly,” in Proceedings of the Conference for Next
Generation Arithmetic 2019, pp. 1–10, 2019.

[17] F. d. D. Luc Forget, Yohann Uguen, “Hardware cost evaluation of the
posit number system,” in Compas’2019 - Conférence d’informatique en
Parallélisme, Architecture et Système, pp. 1–7, Jun 2019.

[18] S. Jean, A. Raveendran, A. D. Selvakumar, G. Kaur, S. G. Dharani,
S. G. Pattanshetty, and V. Desalphine, “P-fma: A novel parameterized
posit fused multiply-accumulate arithmetic processor,” in 2021 34th
International Conference on VLSI Design and 2021 20th International
Conference on Embedded Systems (VLSID), pp. 282–287, IEEE, 2021.

[19] A. Waterman and K. Asanovic, “RISC-V "V" Vector Extension,” 2019.
[20] S. Tiwari, N. Gala, C. Rebeiro, and V. Kamakoti, “Peri: A configurable

posit enabled risc-v core,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 18, no. 3, pp. 1–26, 2021.

[21] R. Jain, N. Sharma, F. Merchant, S. Patkar, and R. Leupers, “Clarinet: A
risc-v based framework for posit arithmetic empiricism,” arXiv preprint
arXiv:2006.00364, 2020.

[22] I. Yonemoto, “"sigmoid numbers",” [Online].
https://github.com/interplanetary-robot/SigmoidNumbers, 2018.

[23] J. Hauser, “Berkeley testfloat.,” [Online]. Available:
http://www.jhauser.us/arithmetic/TestFloat.html, 2018.

[24] S. Sarangi and B. Baas, “Deepscaletool: A tool for the accurate
estimation of technology scaling in the deep-submicron era,” in 2021
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–
5, IEEE, 2021.

	Introduction
	Background
	IEEE-754 Standard
	Posit Number System

	Posit/IEEE-754 VMAC Architecture
	Overview
	Proposed Architecture

	Implementation Results
	Conclusions
	References

