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Abstract—Dynamic voltage and frequency scaling (DVFS) is a popular technique to improve the energy-efficiency of
high-performance computing systems. It allows placing the devices into lower performance states when the computational demands
are lower, opening the possibility for significant power/energy savings. This work presents a GPU power consumption model, used to
predict the GPU power consumption of any application at different frequency levels. To obtain this model, an estimation algorithm is
proposed, relying on careful benchmarking of the GPU architecture. The model can estimate the contribution of twelve different GPU
components (FP32-ADD/MUL/FMA, FP64-ADD/MUL/FMA, INT, SF, CF units, shared memory, L2-cache, and DRAM) to the GPU
power consumption. Different model use cases are evaluated (fixed-frequency, DVFS, and scaling-factors), which can obtain both the
total or the per-component GPU power consumption. A technique to export models to a distinct GPU from the one it was estimated on
is also proposed. These approaches were extensively validated on five different GPUs from the three most recent microarchitectures
with a set of 42 standard benchmarks, achieving very accurate predictions. In particular, the scaling-factor power model achieves an
average prediction error of 3.5% (Titan Xp), 4.6% (GTX Titan X), 3.1% (GTX 980) and 2.4% (Tesla K40c).

Index Terms—GPGPU, DVFS, Power Modeling, Scaling-Factors.
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1 INTRODUCTION

A S the usage of accelerators, particularly GPUs, has
become more predominant in high-performance com-

puting (HPC) systems [1], it is increasingly important to find
mechanisms to maximize their energy-efficiency. One of the
most widely used techniques is the dynamic voltage and
frequency scaling (DVFS), which allows placing the devices
into lower performance states. When carefully applied to
match the needs of the executing applications, DVFS can
lead to significant power and energy savings, often with
minimum impact on performance [2], [3], [4].

Nonetheless, to efficiently apply power management
techniques (including DVFS), accurate models are re-
quired to predict how the performance/power consumption
of applications scales with the GPU operating frequen-
cies/voltages. In the past, it has been shown that applica-
tions with different GPU resources utilizations have diverse
performance and power consumption scaling behaviours
when DVFS is applied [5], [6], [7], [8]. Hence, attaining
accurate models requires information of how the executing
applications are using the different GPU components.

Previous works proposing GPU power consumption
models have focused on either fixed frequency [9], [10],
[11] or more recently on DVFS prediction [12], [13]. In our
previous work [14], a DVFS-aware GPU power consump-
tion model was proposed, which relies on a set of care-
fully devised microbenchmarks and on a regression-based
algorithm to estimate the unknown model parameters. Such
devised model allows decoupling the power consumption
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in seven different components with a high accuracy. This
was also one of the first works to consider the non-linear
scaling of the GPU voltage with the operating frequency.

This paper significantly expands on our previous
work [14] with an extensive focus on the different usage
scenarios of power models such as: 1) fixed frequency
predictions; 2) DVFS predictions; 3) scaling-factor predic-
tions; and 4) per-component power breakdown in twelve
different components. This work also introduces a detailed
analysis of the effects of hardware changes in the power
consumption model, namely on the portability of an es-
timated model. Furthermore, the microbenchmark suite is
extended with new applications that exercise multiple new
GPU components.

Each of these different approaches was extensively val-
idated on five different GPU devices (Titan Xp, GTX Titan
X, GTX 980, GTX 960 and Tesla K40c) from the three most
recent NVIDIA GPU microarchitectures (Pascal, Maxwell
and Kepler) with a set of 42 benchmarks from five com-
monly used benchmark suites (Parboil [15], Rodinia [16],
Polybench [17], SHOC [18] and CUDA SDK [19]). From
the conducted experimental evaluation it is shown that the
proposed models achieve accurate results, particularly the
scaling-factor power model which achieves an average error
rate as low as 3.5% (Titan Xp), 4.6% (GTX Titan X), 2.4%
(Tesla K40c) and even 3.1% for the GTX 980, where the last
one was obtained by adapting the model estimated for the
GTX Titan X GPU.

Accordingly, this work makes the following contribu-
tions with regards to [14]:

• Introduction of additional microbenchmarks into the
microbenchmark suite, allowing the characterization
of novel GPU components, as well as the separation
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Fig. 1: Block diagram of a Titan Xp GPU (Pascal family).

of some previously aggregated components (e.g. by
separating FP32 unit into FP32 ADD, FP32 MUL and
FP32 FMA compute units).

• New power model and voltage estimation algorithm,
allowing to simultaneously estimate the voltage of
each frequency domain as well as the unknown
model coefficients.

• Extensive validation of the estimated power con-
sumption models in multiple usage scenarios (fixed-
frequency, DVFS, scaling-factors, power breakdown),
including the evaluation of the results obtained from
exporting an estimated model from one GPU to a
different one.

• Discussion of the obtained results, including consid-
erations about the general limits of power models
based on supervised learning (statistical- or machine-
learning).

The complete source code, including the microbench-
mark suite and a tool to construct the DVFS-aware GPU
power consumption model, is publicly available online
(https://github.com/hpc-ulisboa/gpupowermodel).

The rest of this paper is organized as follows. Section 2
motivates the presented work, including a summary of the
most relevant state-of-the-art works. Section 3 details the
proposed DVFS-aware power model. Section 4 presents the
different model use cases, validated on real hardware de-
vices. Section 5 overviews the obtained results and Section 6
concludes the manuscript.

2 BACKGROUND AND MOTIVATION

The architecture of GPUs is composed by several distinct
components (as an example, Fig. 1 represents a NVIDIA
Titan Xp GPU). The main execution components of GPUs
are the streaming-multiprocessors (SMs), which include dif-
ferent computational units (INT, FP32, FP64, etc.), as well
as several elements of private memory (texture/L1-cache,
shared memory). GPU devices usually have multiple SMs
(30 in the case of the Titan Xp), as well as an L2-cache and
the main device memory (DRAM).

2.1 GPU DVFS and Power Consumption

Most GPU devices have two independent frequency do-
mains, which are the core (or graphics) domain, clocked at
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Fig. 2: DVFS impact on the power consumption of two
applications on the GTX Titan X. Left: GPU components
utilization during the applications execution, when fcore =
975 MHz and fmem = 3505 MHz. Right: power consumption
variation with the core and memory frequency scaling.

fcore, and the memory domain, clocked at fmem. DVFS can be
applied as a way of exploiting the existence of these two
independent frequency domains, since it allows adapting
the performance of the GPU components to the particular
requirements of the executing applications. This can often
result in considerable energy savings [2], [3], [20], [21].

However, optimizing the GPU configuration, i.e. the
voltage-frequency (V-F) levels of both core and memory
domains is not a trivial problem [7], [8], [22]. It requires
accurate estimations of both the execution time and average
power consumption, namely the effects that changing the
V-F configuration will have on these two metrics.

Different GPU applications have their unique character-
istics (used algorithm, data types, operations, size of the
input data, dimensions of the grid of threads, etc.), which
determine how the different GPU components are stressed
during the application execution. Furthermore, depending
on how the different GPU components are exercised by
applications, DVFS can have vastly different impacts on the
performance and on the total GPU power consumption.

Fig. 2 presents an example of such a scenario, where the
BlackScholes and the CUTCP benchmarks are executed on
an NVIDIA GTX Titan X GPU across multiple V-F config-
urations. Fig. 2 also shows the utilization of the main GPU
components, represented as the ratio of the achieved and
peak theoretical throughputs of the component. As it can be
seen, the two applications present very different utilization
rates of some GPU components (see L2-cache and DRAM
utilizations), which results in the different power consump-
tion levels of 181W and 135W at the default GPU frequency
configuration (fcore = 975 MHz and fmem = 3505 MHz).
Additionally, it can also be seen that the variation of the
power consumption when the memory frequency is de-
creased is much higher for the BlackScholes benchmark,
because of its greater DRAM utilization: when the memory
frequency decreases from 3505 MHz to 810 MHz, the power
consumption decreases by 52% (from 181W to 87W). On
the other hand, the power consumption of the CUTCP
benchmark decreases by only 24% (from 135W to 102W).

Regarding the core frequency scaling, it can be seen that,
unlike it is proposed in other previous works [10], [12],
the GPU power cannot be represented as a simple linear
function of the core frequency. In practice, the power con-
sumption of a GPU device can be decomposed in the sum of

https://github.com/hpc-ulisboa/gpupowermodel
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the power consumptions of its multiple architectural com-
ponents [23]. Furthermore, the power of each component
(Ck) is associated with its peak power consumption and
with how an executing application stresses such component
(Power(Ck) ∝ Utilization(Ck)).

With regards to this observation, Butts et al. [24] and
Gonzalez et al. [25] proposed the power models presented in
Eqs. 1 and 2, which can be used to describe how the dynamic
and static components scale with the frequency and voltage
of their respective hardware elements:

PowerStatic = V ·N ·Kdesign · Îleak, (1)

PowerDynamic = a · C ·V2 · f, (2)

where a denotes the average utilization ratio, C the total
capacitance, V the supply voltage, f the operating fre-
quency and N the number of transistors in the chip design.
Kdesign is a constant factor associated with the technology
characteristics and Îleak is a normalized leakage current for
a single transistor, which depends on the threshold voltage.

These models can already provide some reasoning about
the non-linear behaviour of the power consumption in
Fig. 2, as frequency scaling is usually accompanied by
changes of the components voltage. However, even though
these models give a valuable insight on the impact of
DVFS, it is usually impossible to accurately measure these
two components separately, let alone determine the model
individual parameters. Consequently, other approaches to
model the GPU power consumption are often required [12].

From these observations, it becomes clear the importance
of accurate DVFS-aware power models to characterize the
relationship between the GPU components utilization, their
runtime power consumption and how they change when
the frequency/voltage of the GPU domains are scaled.

2.2 Related Work
Initial attempts to model the GPU power consumption were
focused on modeling the power at a fixed V-F configuration,
not taking into consideration the effect of DVFS [26], [27],
[28]. In particular, Nagasaka et al. [29] proposed a power
consumption model for a Tesla GPU (GTX285) using a
statistical approach to find the correlation between hard-
ware performance events and the GPU power consumption,
achieving an average prediction error of 4.7%. However, the
authors stated that the approach was ineffective for more
recent GPUs, namely those from the Fermi generation.

Hong et al. also proposed a power model for a Tesla
GPU (GTX280) [9] based on an analysis of both the binary
PTX and the device pipeline at runtime. The offline PTX
analysis allows this model to attain highly accurate GPU
power predictions, at the cost of being very GPU-specific.
Hence, such an approach lacks the ability to make accurate
predictions for different GPU architectures, or even for the
same GPU at different core and memory configurations.

Song et al. proposed an artificial neural-network based
power model for GPU devices [11], achieving better pre-
diction accuracy than previous traditional regression-based
models. However, neural network approaches usually lead
to highly complex models, where it is often hard to extract
its physical/architectural meaning.

Leng et al. integrated Hong’s power model inside the
GPGPU-Sim [30] simulator, resulting in the GPUWattch [10]
tool. Hence, it only supports NVIDIA Tesla and Fermi GPU
microarchitectures. GPUWattch can estimate the cycle-level
GPU power consumption during application execution.
However, it assumes that the power consumption of a GPU
domain always scales linearly with its frequency [10, eq.6],
which previous works (Mei et al. [8] and Guerreiro et al. [14])
showed to be often incorrect, because of the non-linear
behaviour of the voltage scaling in some GPU devices. Nath
et al. also used GPGPU-Sim to create a performance model
for DVFS, which could potentially be expanded to include
a power model [31]. However, this type of approaches often
requires adding logic to the GPU scoreboard, making it
impossible to replicate them on real hardware.

Abe et al. deemed the previous approaches to be product-
specific and difficult to apply on modern GPUs, and pro-
posed DVFS-aware power regression models for GPUs from
the NVIDIA Tesla, Fermi and Kepler generations [12]. The
authors separated the GPU power consumption in core and
memory domains, each proportional to their corresponding
frequency and associated performance events. The models
were estimated through linear regression by using mea-
surements taken at three different core and three different
memory frequencies. The proposed models achieved av-
erage prediction errors of 15% for the Tesla GPU, 14% for
the Fermi GPU and 23.5% for the most recent Kepler GPU.
However, the work does not disclose the set of performance
events used in the model. Additionally, despite performing
the power consumption decomposition in the core and
memory domains (similar to the one herein presented) the
work proposed in [12] also does not consider the non-linear
scaling effects of the voltage.

Wu et al. studied how the performance and power con-
sumption of an AMD GPU scale with core and memory
frequency variations, as well as with different number of
cores [13]. The proposed work groups GPU applications
into distinct clusters based on their characteristics, each
representing a different performance/power scaling-factor.
Properly trained neural-network classifiers are then used to
characterize new applications, by predicting which scaling-
factor better represents an application. They achieve an
average prediction error of about 10% on the tested GPU
device. However, the model accuracy is highly dependent
on a set of fine-tuned parameters, such as the number of
clusters, which makes it difficult to replicate on different
architectures. More recently, a follow-up technique [32] was
proposed that predicts the characteristics of upcoming ker-
nels, based on recent execution history.

The work that is herein presented vastly expands over
our previous work [14], where a DVFS-aware power con-
sumption model was proposed. Such model could predict
the total or per-component power consumption of GPUs for
any voltage-frequency configuration, by using performance
counters gathered at a single configuration. To estimate the
model of each GPU device, a suite of microbenchmarks was
provided and made publicly available, as well as a tool that
implemented the devised iterative algorithm relying on sta-
tistical regression to model not only the unknown hardware
characteristics but also to accurately predict how the core
voltage scales with its frequency. The model was validated
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on three GPU devices from different microarchitectures
using a set of 26 standard benchmarks, achieving average
errors of 7% (Pascal), 6% (Maxwell) and 12% (Kepler). The
herein presented work not only extends on our previous
power model (using several more GPU components), but
also provides an extensive focus on different usage scenarios
(e.g., fixed frequency predictions, DVFS predictions, scaling-
factor predictions, per-component power breakdown and
the effects of hardware changes), ultimately resulting in
more accurate GPU power consumption predictions.

2.3 Applications of a GPU Power Model

As it was referred above, one advantage of this work over
previous models (e.g. over machine-learning based ones,
where it is hard to convey the architectural meaning of
the estimated elements) is its versatility over multiple usage
scenarios. Hence, the following use cases can be highlighted:

1) DVFS management, since the model allows search-
ing for the optimal frequency state without exhaus-
tive execution on all possible configurations (con-
trasting to [33]). With the proposed model it is pos-
sible to estimate the power consumption at different
V-F configurations after executing the application at
a single configuration (Section 4.4).

2) Power consumption estimation in GPUs without
power sensors, by using a previously estimated
model (e.g. using external sensors) to provide an
estimate of the total and/or per-component GPU
power consumption (similarly to [34] from Intel).
Additionally, by using a power model such as the
herein proposed one, i.e. based on architectural char-
acteristics of the devices, it can also be possible to
export a power model from one GPU device to a
different one (Section 4.6).

3) Power-aware optimization of applications, as the
model allows obtaining the per-component power
consumption breakdown, which can help develop-
ers to assess the power bottlenecks of applications
(Section 4.5), as an alternative to the more common
performance optimization. This can even be useful
in virtualization scenarios (such as the NVIDIA
GRID system using Hyper-V execution [35]), where
the model — constructed in the Hypervisor — could
be provided to the guest VMs, allowing them
to estimate their corresponding total and/or per-
component power consumption (which they cur-
rently have no way of measuring).

4) GPU hardware integration, by implementing the
proposed model in hardware (similar to Intel RAPL
[36]), where it would be able to account for fine-
grained V-F perturbations and potentially even non-
SMU (System Management Unit) V-F adjustments.

3 GPU POWER CONSUMPTION MODEL

To effectively apply DVFS techniques to optimize the power
consumption of an application execution, it is fundamen-
tal to predict how the scaling of each GPU domain fre-
quency/voltage affects its overall power consumption. This

section describes the proposed procedure to create a statis-
tical power consumption model of the GPU architecture.

To obtain an accurate model of the GPU power consump-
tion, one must consider the decomposition of the power
consumption across the internal components of the GPU.
By taking into account that these components operate un-
der different frequency and voltage domains, the following
decomposition can be obtained:

PGPU =

NV-F∑
k=1

P(Dk), (3)

where NV-F is the number of independent volt-
age/frequency (V-F) domains and P(Dk) is the power con-
sumption of each domain (Dk), defined as follows:

P(Dk) = α0v̄k + v̄2
kfk(α1 +

NC∑
i=1

γi ·Ui) (4)

where fk represents the frequency of domain Dk, v̄k is the
normalized voltage of the domain (v̄k = vk/vRef.), NC is the
number of GPU components operating in domain Dk and
Ui ∈ [0, 1] is their respective average utilization rate. The
coefficients α0, α1, γ1,...,γNC

represent a set of hardware-
specific parameters, associated to the characteristics of the
underlying architecture, such as component total capaci-
tance and leakage resistance. In particular, the proposed
power model contains the following distinct elements:

1) α0v̄k: corresponding to the static power of domain
Dk (see Eq. 1).

2) α1v̄2
kfk: corresponding to the constant power con-

sumption of that V-F configuration of domain Dk,
i.e. the dynamic power that is independent of the
modeled component utilizations.

3) γiv̄
2
kfkUi: corresponding to the dynamic power of

component i (see Eq. 2).

Terms α0v̄k and α1v̄2
kfk correspond to what it is usually

denoted by the idle power of that specific V-F level, inde-
pendent of the utilization rates.

As previously stated, most modern GPU devices com-
prise two frequency domains, i.e. NV-F = 2, corresponding
to the core and memory domains (PGPU = Pcore+Pmem). By
rewriting Eq. 4 considering these two domains and by de-
noting with Ncore the number of modeled GPU components
from the core domain, the following equations are obtained:

Pcore = α0v̄core + v̄2
corefcore(α1 +

Ncore∑
i=1

γiUi), (5)

Pmem = α2v̄mem + v̄2
memfmem(α3 + γmemUmem). (6)

3.1 Modeled GPU Components
The proposed power model (Eqs. 5 and 6) is based on the
utilization rates of the modeled GPU components. These
rates represent a reliable measure of how the considered ap-
plication exercises the components during its execution. The
proposed model focuses on modeling the hardware compo-
nents that have a significant impact on power consumption
during the execution of GPU applications (and which have
associated performance counters available), namely: the
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TABLE 1: Required metrics to compute the utilization rates
used in the proposed power consumption model.

Name Domain
1 ACycles Core

2-5 AWarps{INT/FP32,FP64,SF,CF} Core
6-7 Inst{INT,FP32} Core

8-10 FP32FLOPS{ADD,MUL,FMA} Core
11-13 FP64FLOPS{ADD,MUL,FMA} Core
14-15 ABand{L2,Shared} Core

16 ABandDRAM Memory

integer (INT), single- and double-precision floating-point
(FP32/FP64), special-function (SF) and control-flow units
(CF), the shared memory, the L2 cache and the DRAM.
Additionally, the model also considers separate units for dif-
ferent FP compute instructions (FMA, ADD and MUL), as it
was experimentally observed that their distinct complexities
lead to different power consumption levels. Furthermore,
the modular structure of the model allows an easy adap-
tation of it if/when new components (and corresponding
performance counters) are added to new GPUs.

The utilization rate of the considered GPU compute
units, measured during the application execution, is com-
puted as the ratio between the number of executing warps
with the number of warps that would execute if these units
were always filled (theoretical peak). Hence, the utilization
rates of the SM computational units can be expressed as:

Ux =
AWarpsx ·WarpSize

ACycles ·UnitsPerSMx
,

x ∈ {INT/FP32,FP64,SF,CF}, (7)

where AWarpsx is the number of warps executing on unit
x during the application execution, ACycles is the number
of cycles when there is at least one active warp on the SMs,
UnitsPerSMx is the number of units of type x on each SM
and WarpSize is the number of threads in a warp, which
is a characteristic of the GPU device. Since NVIDIA GPUs
aggregate in a single counter the number of warps executing
in the INT and FP32 units, the number of instructions of
each type (InstINT and InstFP32) is used to decompose this
metric into the utilizations of each separate unit. Similarly,
the number of floating-point operations (single or double
precision) of each type (ADD, MUL or FMA) are used to
separate the utilizations of the FP32 and FP64 units.

On the other hand, the utilization rate of the different
memory hierarchy levels is computed as follows:

Uy =
ABandy

PeakBandy
, y ∈ {L2,Shared,DRAM} , (8)

where ABand and PeakBand are the achieved and peak
bandwidth of each memory subsystem, respectively.

Accordingly, to model all the considered GPU compo-
nents, the metrics summarized in Table 1 are required.

3.2 Microbenchmarking the GPU

To accurately model the unknown characteristics of the
underlying architecture, the proposed methodology relies
on microbenchmarking. By creating a set of carefully de-
signed applications covering several GPU components, it is

GPU_Kernel {

  initialize registers;

  unrolled for loop {

    stress component Ci;
  }

  copy results to main memory;

}

(a) Example of the microbench-
marks code used to stress the
GPU components.
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Fig. 3: Microbenchmark Suite.

TABLE 2: Developed microbenchmark suite to model the
power consumption of the considered GPU components.

Name Components # Name Components #
INT Integer units 13 SF SF units 10

FP32 32-bit FP units
ADD 4

FP64 64-bit FP units
ADD 4

MUL 4 MUL 4
FMA 4 FMA 4

L2 L2-cache 10 Shared Shared memory 9

DRAM DRAM 12 Mix
Mix of arithmetic

7
Shared, L2 and DRAM

CF Control-flow units 15 Idle - 1

possible to get an accurate prediction on the contribution of
each component to the total GPU power consumption.

Fig. 3a presents an example of a skeleton source code
of the developed microbenchmark GPU kernels. These mi-
crobenchmarks are mainly composed by an unrolled for loop
which stresses the desired GPU component. By varying its
loop boundaries, it is possible to achieve different mixtures
of components utilizations. For example, in a given mi-
crobenchmark stressing the integer unit, each iteration of the
loop executes arithmetic instructions on the registers data.
By decreasing the number of loop iterations, the resulting
arithmetic intensity (arithmetic instructions per amount of
data read from main memory) decreases, which allows cre-
ating a range of microbenchmarks, e.g. from a more integer-
intensive (high INT and low DRAM utilizations) to a more
DRAM-intensive (low INT and high DRAM utilizations).

Table 2 presents a summary of the developed collection
of 101 microbenchmarks used to estimate the proposed
power model. The model considers 12 different GPU com-
ponents. To better model the interactions between different
instructions, the suite also includes microbenchmarks with
different mixes of GPU components utilizations (MIX).

Fig. 3b shows a correlation heatmap of the utilization
vectors for all microbenchmarks, as well as an histogram of
the correlation values. As expected, microbenchmarks from
the same group have a higher correlation value, as they are
exercising the same component. However, the histogram
shows that most microbenchmarks from different groups
mostly have a low correlation (absolute value around 0.2).

3.3 Model parameter estimation
Estimating the DVFS-aware power model corresponds
to the determination of the unknown coefficients x =
[ α0, α1, α2, α3, γmem, γ1, . . . , γN ]. In order to facilitate
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Power Model and Voltage Estimation Algorithm

xFinal: [α0,α1,α2,α3,γmem,γ1,...,γN]
VFinal: [vcore,vmem]

Outputs:

Configuration Parameters: ξX: Coefficients  threshold
ξV: Voltage  threshold
Max_iter: Maximum number of 
                 iterations

Yes

i == Max_iter
 
 

Yes

No

i=1

No

For all configurations:
   Calculate coefficients x(i)=x          (Optimization Problem 2)

Next iteration

With previous coefficients x=x(i-1), for each frequency domain (Dk):

xFinal = x(i)

VFinal = V(i)

x(i)<x(i-1)+ξx 

and
V(i)<V(i-1)+ξV 

 
 

Initialize the coefficients x=x(0):

Phase 1:

Phase 2:

All microbenchmarks, One configuration — (S1fk_j
)

All microbenchmarks, All configurations — (S2all_frequencies)

i=i+1

x(0): Initial coefficients

For each frequency configuration fk_j of domain Dk:

Calculate voltage vk_j
(i)=v               (Optimization Problem 1)

Fig. 4: Devised algorithm to estimate the model coefficients
(x) and GPU voltage levels (v̄core and v̄mem).

the presentation of the proposed methodology, this section
considers a device consisting of 2 frequency domains, with 1
component in the memory domain and N components in the
core domain (which is consistent with most GPU devices).
Additionally, given that in some devices it is unknown
how the voltage of each frequency domain scales with their
operating frequency [8], the proposed methodology also
estimates the vectors of voltages v̄core and v̄mem associated
with each operating frequency.

In order to better understand the characteristics of each
GPU component, the previously described set of devel-
oped microbenchmarks (Section 3.2) is used to stress these
components. The microbenchmarks are executed and their
power consumption is measured at each supported V-F
configuration. Additionally, the value of the metrics (see
Table 1) required to compute the component utilization
rates is also measured for each microbenchmark. This set
of measurements can then be used to estimate the unknown
parameters of the proposed model.

Finally, Eqs. 5 and 6 show a relation between both
the unknown voltages v̄k and coefficients αi and γi (with
k∈{core,mem}). Therefore, a simple least squares regres-
sion cannot be used, as it leads to a non-full-rank optimiza-
tion problem. Hence, an alternative iterative optimization

Optimization Problem 1. Voltage of Domain Dk (v̄).
For each frequency level of domain Dk (fk j, with
k∈{core,mem}, j∈ [k min, k max]), the voltage Vk j is
calculated by solving:

arg min
v̄

∑
Microbench.∈S

(
Pmeas.−P̂

)2
subject to P̂ = Pcore + Pmem,

S = S1fk j
,

∀
fk 1>fk 2

v̄k 1≥v̄k 2, k∈{core,mem}

Optimization Problem 2. Model Coefficients (x).

arg min
x

∑
Microbench.∈S

(
Pmeas. − P̂

)2
subject to P̂ = Pcore + Pmem,

S = S2all frequencies

Fig. 5: Optimization problems for the algorithm from Fig. 4.

algorithm was devised to estimate such parameters. Its op-
eration is summarized in Fig. 4. The referred Optimization
Problems 1 and 2 are described in Fig. 5.

The algorithm is composed of two main phases, corre-
sponding to the estimation of the voltage levels and model
coefficients. In phase 1, the model coefficients (x) are fixed
to the previously found values in order to compute the
voltage levels of each frequency domain. Furthermore, the
algorithm focuses on each domain separately, for example,
by first fixing the memory voltages to a constant value and
estimating the core voltages for each frequency level (i.e.,
by solving Problem 1 for each core operating frequency).
Afterwards the estimated core voltages are used to esti-
mate the memory voltages associated with each memory
configuration (i.e., by solving Problem 1 for each memory
operating frequency). In phase 2, all the estimated voltages
are simultaneously used to estimate the model coefficients
(i.e., by solving Problem 2).

It is important to note that, unlike previous works [10],
[12], the proposed methodology does not make any assump-
tion on the scaling of the voltage with the frequency of each
domain. Given the importance of the voltage in the power
consumption of these types of devices (in both the static —
Eq. 1 — and dynamic — Eq. 2 — power consumptions), it is
important to have an informed knowledge of these values,
in order to avoid a low prediction accuracy. However, in
situations where the device voltage levels are known a
priori, the proposed methodology can be simplified into a
single execution of phase 2 (i.e., by only solving Problem 2),
utilizing the real voltage values.

3.4 Fixed Frequency Estimation
The proposed model can also be applied when the goal is
to simply predict the power consumption for a fixed fre-
quency configuration, i.e. in the same configuration where
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Fig. 6: Usage of a (previously estimated) power model to predict the power consumption of a new application.

the utilization levels are measured. In this simpler case, the
model parameters are estimated with a fixed frequency (and
voltage), and Eq. 4 can be rewritten as:

P(Dk) = β0 +

NC∑
i=1

ωi ·Ui, (9)

where the values of the voltages and frequencies are now
integrated inside the coefficients to be determined. Since
there are no products between unknown parameters in this
simplified model (in contrast with the previous formula-
tion), parameter estimation can be done in a single step,
by using least squares regression. This is done by executing
phase 2 of the previous algorithm, i.e., by solving Problem 2
using the measurements taken at the target frequency.

3.5 Power Consumption Prediction
Once the model coefficients are known, the newly de-
termined GPU power model can be used to predict the
power consumption of any (previously unseen) application,
as it is presented in Fig. 6. The model allows predicting
how the application power consumption changes over the
whole range of the device V-F configurations, by simply
measuring its performance events on a single configuration
(without requiring any power measure). The model also
allows decoupling the partial power consumption of the
multiple modeled GPU components from the total power
consumption (more on this in Section 4.5).

4 POWER MODEL USE CASES

One feature of the proposed power model is its potential
usefulness in multiple and diverse scenarios. This section
presents five of these use cases, providing also a validation
of the proposed model in real and modern hardware devices
and with a set of commonly used standard benchmarks (not
used during model estimation).

4.1 Experimental setup
To validate the proposed model, a collection of five GPUs
from different NVIDIA microarchitectures were used as
testing platforms (summarized in Table 3). All experiments
were performed on a Linux CentOS 7.4 server, with CUDA
9.0 and NVIDIA driver v384.98.

The NVML [37] library was used for monitoring and
for changing the operating frequencies of the GPU domains
(the voltage is automatically set). Additionally, real power
measurements are also obtained using NVML. To guarantee
a proper model validation, a reasonable set of power sam-
ples are required during the kernel execution. Since the GPU
power sensors have a low sampling frequency, the kernels

TABLE 3: Summarized description of the used GPUs.

Titan GTX GTX GTX Tesla
Xp Titan X 980 960 K40c

Base architecture Pascal Maxwell Kepler
Compute capability 6.1 5.2 3.5

Memory frequencies (MHz) {5705, 4705}∗ {4005, 3505,
3505 3004

3300, 810}
Core freq. range (MHz) [1911:582] [1164:595] 1226 [875:666]
Default Mem. Frequency 5705 3505 3505 3004
Default Core Frequency 1404 975 1226 875
Number of SMs 30 24 16 8 15

Per SM

SP/INT Units 128 128 128 128 192
DP Units 4 4 4 4 64
SF Units 32 32 32 32 32

Shared Memory
96K 96K 96K 96K

{16,32
(bytes) 48}K

L2-Cache Size (bytes) 3M 3M 2M 1M 1.5M
L2-Cache Banks 12 12 8 4 6
Global Memory Size (bytes) 12G 12G 4G 4G 12G
Memory Bus Width (bits) 384 384 256 128 384
TDP (W) 250 250 165 120 235
∗ NVIDIA driver does not allow setting the memory frequency to lower levels.

TABLE 4: Standard benchmarks used for model validation.

Suite Application Name
Parboil [15] CUTCP, LBM, MRI-Gridding

Rodinia [16]
Backprop, DWT2D, Gaussian, Hotspot, Hotspot3D,
LUD, K-Means, K-Means 2, ParticleFilter naive,

ParticleFilter float, SRAD v1, SRAD v2, Streamcluster

Polybench [17]
2MM, 3MM, 3DCONV, ATAX, BICG,

CORR, COVAR, FDTD-2D, GEMM, GESUMMV,
GRAMSCHM, MVT, SYRK, SYRK DOUBLE

SHOC [18]
BFS, FFT, MD5Hash, Reduction, S3D, S3D double,

Sort, Stencil2D, Stencil2D double, QTClustering
CUDA SDK [19] Blackscholes, matrixMulCUBLAS

were repeatedly executed whenever necessary, to ensure an
execution time of at least 1 second at the fastest GPU con-
figuration (highest core and memory frequencies). Finally,
the power consumption of each kernel was computed as the
average of all gathered samples. To guarantee the accuracy
of the presented results, all applications were repeatedly
executed, with the presented values corresponding to the
median value.

To estimate the devised power model on each GPU de-
vice, the conceived microbenchmark suite (see Section 3.2)
was executed on a wide range of different V-F configu-
rations. By using the corresponding power consumption
values (measured at all tested V-F configurations) and the
performance events used to compute the metrics presented
in Table 1 (measured only at the reference frequency config-
uration), it is possible to estimate all the model coefficients.
For all GPU devices, the estimation algorithm (see Fig. 4)
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Fig. 7: Per-component utilizations for the set of 42 standard benchmarks on the Titan Xp.

converged in less than 100 iterations, corresponding to less
than 5 minutes execution on an Intel i7 8550U processor.

Model validation was performed using an independent
collection of 42 applications from 5 benchmark suites (see
Table 4), i.e. these benchmarks were not used during model
estimation. Each application was executed at the reference
frequency configuration to measure the hardware events
required by the model. Fig. 7 presents the utilization rate
of the GPU components for each benchmark, where the
utilization of each component is in the [0, 1] range. The ob-
tained results show a wide diversity of different utilizations.
In order to evaluate the accuracy of the power predictions
provided by the devised model, the power consumption
of each application at the different V-F configurations was
also measured. Since these applications were not used to
estimate the model parameters, they show the model ro-
bustness for new (unseen) applications.

The rest of this section will analyze the model by looking
at the different scenarios in which it can be used: i) at fixed
V-F configuration, therefore disregarding the influence of
both voltage and frequency levels on the power consump-
tion (Section 4.2); ii) for DVFS management, i.e. by providing
predictions over the whole frequency range, which (in these
cases) also include providing the voltage levels — as such
values are unknown (Section 4.3); iii) using a single power
sample to improve the DVFS model accuracy over the whole
frequency range (using scaling-factors — Section 4.4); iv)
providing a per-component breakdown of the GPU power
consumption (Section 4.5); and v) performing power pre-
dictions on a different GPU than the one the model was
estimated on (Section 4.6).

4.2 Power Prediction at a Fixed Frequency

As previously discussed, the proposed power consumption
model can be used to predict the power consumption of
applications at the same frequency configuration that the
performance counters are measured. Fig. 8a presents such
a scenario, with the values of the predicted and measured
power consumptions for each benchmark executed on the
GTX Titan X GPU. The obtained results show the accuracy
of the proposed power model for the set of standard bench-
marks (used only to validate the model).

Fig. 8b presents the obtained results for the five consid-
ered GPUs at their respective reference (default) frequency
configuration, namely the cumulative prediction errors on
each GPU. For the GTX 980 and GTX 960 GPUs, two
curves are presented corresponding to the obtained results
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Fig. 8: Power prediction at a fixed V-F configuration on the
standard benchmarks (not used in the model estimation).

with and without the correction factor after exporting an
estimated model to a different GPU (more details on this in
Section 4.6). The results show that the power model is able
to accurately predict the GPUs power consumption, where a
mean absolute error of 5.5% was achieved on the GTX Titan
X, while on the other GPUs the errors were 8.8% (Titan Xp),
7.7% (GTX 980), 8.5% (GTX 960) and 7.1% (Tesla K40c).

4.3 DVFS-Aware Power Prediction

Unlike previous ones, the proposed model assumes that
both Vcore and Vmem can scale with the frequency changes
of the two GPU domains. However, while the estimated core
voltages were possible to be confirmed, by using the mea-
sured voltages obtained using the NVIDIA Inspector and
MSI Afterburner (third-party Windows tools), the voltage of
the memory domain cannot be measured using these tools.

From the obtained measurements, it was observed that
the voltage scaling behaviour depends on the method used
to scale the domains frequency. When using the NVML
library (on the Titan Xp, GTX Titan X and Tesla K40c GPUs),
the voltage variation presents two different regions [14]:
for higher frequencies the voltage scales linearly, while for
lower frequencies it stays constant. In some GPUs NVML
does not allow changing the frequency (e.g., for non-Titan
or non-Tesla GPUs). In these cases, the domains frequencies
were changed by varying the graphics clock and memory
transfer rate offsets of the Powermizer inside the nvidia-
settings tool. However, experimental results showed that this
alternate method does not result in the same behaviour as
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Fig. 9: DVFS power predictions, across all V-F configura-
tions, of the standard benchmarks (not used in the model
estimation), on the Titan Xp.

in this case the voltage stays constant across all frequencies.

Fig. 9 presents the accuracy of the proposed DVFS power
model when considering the validation set of standard
benchmarks, for multiple core and memory V-F config-
urations on the GTX Titan X GPU. This figure presents
the power estimated by the model versus the measured
power consumptions for the considered benchmarks (not
used to estimate the model), across 2 memory and 12 core
frequencies. The power predictions are based on the perfor-
mance counters measured, for each application, at a single
(reference) V-F setting. The diverse set of applications and
frequency configurations results in a wide range of observed
power consumptions, going from 50W up to 250W. Hence,
when covering a frequency range up to 4× for the core
frequencies and 1.2× for the memory frequencies, the model
showed to be still able to make accurate power predictions,
with a mean absolute error of 9.9%.

Fig. 10C presents the obtained results across the four
considered GPU devices (GTX960 was not considered in
this section, because it does not allow to change frequency
configurations). Overall, the devised DVFS-aware power
model results in mean absolute errors of 9.9% (Titan Xp),
6.4% (GTX Titan X), 7.7% (GTX 980) and 8.6% (Tesla K40c).
The approach presented in [12] proposed a DVFS power
consumption model for NVIDIA GPUs, achieving a mean
error of 23.5% for the Kepler GPU (same as the Tesla K40c).

4.4 DVFS Predictions with Scaling-Factors

To produce power estimations, the proposed power model
always requires at least one execution of the application
under evaluation to measure the components utilizations.
Leveraging from this fact, whenever the device has power
sensors available, the GPU power consumption can also be
measured during the application execution. Once the power
consumption at a certain V-F configuration is known, the
power model can be used to determine how the consump-
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tion will scale for different V-F variations (i.e., the different
scaling-factors, as referred in [13]), in the following way:

P̂(scaling)(f2,v2) =
PGPU(f2,v2)

PGPU(f1,v1)
· Pmeas.(f1,v1), (10)

where f1 and v1 are the frequencies and voltages at the
reference configuration, and PGPU(f1,v1) and PGPU(f2,v2)
are the power consumptions given by the regular DVFS
model (Eqs. 5 and 6) at configurations (f1,v1) and
(f2,v2), respectively. Finally, Pmeas.(f1,v1) is the measured
power consumption at the reference configuration and
P̂(scaling)(f2,v2) is the new estimate for the power consump-
tion at configuration (f2,v2).

Since this method is already using a measured value of
the power consumption (offsetting the curve to a known
value), it will result in a much higher accuracy of the DVFS
power predictions. Figs. 10A and 10B present an example
of the benefits of using the scaling-factors approach on two
distinct applications on the Titan Xp GPU. Fig. 10A presents
the measured and estimated power consumptions using the
regular DVFS approach (presented in Section 4.3), resulting
in a mean absolute prediction error of 9.3%. However, in
both cases, the error is almost constant across the different
V-F configurations, i.e. the model accurately predicts how
the power scales with the frequency and voltage of the
two domains. This is confirmed in the results achieved
using the scaling-factors method, presented in Fig. 10B. In
this case, the measured power sample allows sliding the
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estimated curve closer to the measure values, resulting in
much smaller prediction errors (1.7%).

The overall results of the scaling-factors approach on
the considered GPU devices are presented in Fig. 10D.
Since the model is using the actual samples for the ref-
erence configuration, it will have an error of 0% at those
configurations (hence the curves are not asymptomatically
tending to 0, when the relative error goes to −∞). From
these results it can be seen that around 20% (Titan Xp),
18% (GTX Titan X), 30% (GTX 980) and 40% (Tesla K40c)
of the estimated values have an error below 1%. On the
other hand, 95% (Titan Xp), 85% (GTX Titan X), 95% (GTX
980) and 97% (Tesla K40c) of the estimated values have an
error below 10%, while using the regular DVFS approach
these values would be 60% (Titan Xp), 80% (GTX Titan
X), 70% (GTX 980) and 70% (Tesla K40c). The results are
summarised in Fig. 10E. Comparing with previous state-
of-the-art works, the approach presented in [13] proposed
a scaling-factor power consumption model (using a neural
network classifier) and achieved a mean error of 10%.

4.5 GPU Power Decoupling

Once the power model is fully determined, it can be used to
estimate not only the total GPU power consumption, but
also the power of each component during the execution
of any application. This power breakdown can be very
useful for the application optimization, as it provides crucial
information to the developers regarding which components
represent the main power consumption bottleneck.

Fig. 11 presents a breakdown of the dynamic power
consumption at the reference V-F configuration for each
modeled component of the GTX Titan X GPU, for four
distinct benchmarks (large pies). The relative utilizations of
the GPU components for each of these applications are also
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Fig. 12: Diagram displaying how a model estimated for a
GPU can be used on a different GPU.

presented in the figure (small pie). As one would expect,
these two representations produce different results. This
is because of the different estimated weights of each GPU
component in the power model (γi in Eqs. 5 and 6), which
make some components to have a more dominant contribu-
tion to the power consumption than others. For example, in
the MRI-Gridding application, the SFU has a utilization of
only 5% of the total application execution. However, as it is
shown in Fig. 11, the SFU contributes to 9% of the GPU
dynamic power consumption. Its contribution is actually
higher than the contribution of the CF units, which have
a much larger utilization. Naturally, this result is coherent
with the complexity of each unit, as the SF performs much
more complex operations than the CF unit.

The difference between the two representations of Fig. 11
confirms the usefulness of the proposed model: providing
the means for alternative power optimization strategies
regarding the conventional performance only approach.

4.6 Exporting the Model to Different GPUs
Given the modular design of NVIDIA GPUs (as it can be ob-
served from Table 3), a power model estimated for a specific
GPU could potentially be adapted and applied to a different
GPU. To attain this objective, one must take into account the
effects of the architectural changes in the power consump-
tion of GPU applications. This can be particularly useful
in providing power estimations for GPU devices without
power sensors. Additionally, this approach (summarized in
Fig. 12) would also avoid the need for the execution of the
whole microbenchmark suite on the target GPU device. For
now, this work focused on extrapolating the model only
within GPUs of the same microarchitecture, namely, for the
three Maxwell GPUs (see Table 3). Despite that, a similar
approach could be used to provide power predictions for
GPUs of different microarchitectures, which could be even
useful in the design stages of future microarchitectures.

As it is summarized in Table 3, the GTX Titan X, GTX 980
and GTX 960 have 30, 24 and 16 SMs, respectively. However,
the internal architecture of each SM is the same. Therefore,
it is reasonable to assume that the peak power consumption
associated with each modeled internal component (FP32,
FP64, INT, etc.) will scale by the same factor. Hence, for
the target GPUs, the model coefficients associated with
each modeled GPU component are obtained by scaling the
estimated coefficients (from the base GPU) in the same way
that the corresponding components are scaling between the
two GPU devices. For example, between the GTX Titan X
and GTX 980 GPUs, the number of SMs is decreased by
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TABLE 5: Summary of proposed model results.

Source
Model Titan GTX GTX GTX Tesla
Type Xp Titan X 980 960 K40c

HPCA [14] DVFS 11.7% 6.75% - - 9.07%

Proposed
Fixed 8.75% 5.51% 14.2% (7.66%)† 15.4% (8.47%)† 7.09%
DVFS 9.91% 6.43% 14.3% (7.67%)† -‡ 8.60%

Scaling 3.54% 4.55% 3.07% (2.80%)† -‡ 2.39%
† Porting model trained on GTX Titan X. Errors without (with) constant power correction.
‡ The GTX 960 only allows 1 frequency configuration.

2/3. Therefore, the coefficients associated with the SMs units
(γi in Eq. 5) will be 2/3 of the coefficient value from the
GTX Titan X. Regarding the memory hierarchy, it can be
seen that from Table 3 L2-Cache and DRAM components
are actually scaling in the same proportion as the number
of SMs. Therefore, their coefficients (γL2 and γmem) will
also scale by the same factor (naturally, on other GPUs the
scalings for the memory and SM components may differ).

Regarding the estimation of the new coefficients associ-
ated with the static and constant power of the V-F configu-
rations (α0, . . . , α3 in Eqs. 5 and 6) two possible approaches
were tested. The first one assumes the coefficients also scale
with the same factors as the components of each domain
(e.g., for GTX 980 α0 and α1 would be 2/3 of the values
in GTX Titan X, etc.). However, this approach ignores the
possibility that between the two GPUs there are probably
multiple (not modeled) components that do not change
(e.g., PCIe interface, GigaThread Engine, etc.) and therefore
their power consumption remains the same. Therefore, this
straightforward approach will generally under-predict the
power consumption on the target GPUs, resulting in pre-
diction errors greater than the ones obtained on the source
GPU. In particular, for the fixed-frequency model, the mean
absolute errors obtained for the two GPUs were 14.2% (GTX
980) and 15.4% (GTX 960). For the regular DVFS model on
the GTX 980, a mean absolute error of 14.3% was obtained.

The second approach requires the measurement of the
idle power at the reference configuration and therefore
requires the existence of GPU power sensors. Using the
measured idle power consumptions, the values of the new
coefficients can be obtained in the following way:

α
(target)
i = α

(base)
i ·

P
(target)
idle

P
(base)
idle

, i ∈ {0, 1, 2, 3}. (11)

The measured values for the idle power consumption at
the reference V-F configuration of each GPU device are 75W
(GTX Titan X), 65W (GTX 980) and 36W (GTX 960). As it was
previously mentioned, it can be seen that the idle power
values at the target GPUs are greater than those obtained
by assuming it simply scales with the number of SMs (e.g.,
75W × 2/3 = 50W < 65W).

By using this approach to determine the corrected coeffi-
cients, a much higher prediction accuracy is obtained, where
the fixed frequency prediction model has a mean absolute
errors of 7.7% (GTX 980) and 8.5% (GTX 960). The DVFS
model also has an error of 7.7% on the GTX 980 GPU.

5 DISCUSSION

The presented research represents an improvement and a
substantial extension over our previous work presented in
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Fig. 13: Model limitations.

[14], where a DVFS power model was proposed, together
with a microbenchmark suite that allowed the modeling
of seven GPU components. The herein presented work
proposes three different variations of a GPU power model:
1) fixed frequency, 2) DVFS and 3) DVFS with scaling-
factors. All three include the modeling of twelve GPU
components, allowing the models to provide either the total
or per-component GPU power consumption. Furthermore,
this extended work also presented a successful technique to
export power models estimated on a GPU device to GPUs
with different hardware configurations.

The newly proposed model was validated on five dif-
ferent GPU devices (from three different NVIDIA microar-
chitectures) with a set of 42 benchmarks. The results of the
different model usage scenarios are summarized in Table 5,
where the results obtained from the models trained in [14]
are also provided (applied to the new set of benchmarks). It
is important to recall that some of the model features herein
proposed were not supported in [14] (e.g., scaling-factors
model or portability of an estimated model). It can be seen
that even in a fair comparison scenario, i.e. comparing just
the regular DVFS power model between the two works, the
herein proposed model outperforms the former one on all
GPU devices. Furthermore, these predictions can even be
further improved on all devices by using the scaling-factors
model, which was not considered in the previous work.

5.1 Model Limitations
Despite achieving considerable improvements over the
work presented in [14], a few roadblocks were reached
while trying to develop the herein presented work, some
of which would equally limit the quality of any supervised
regression/machine-learning based power model. In partic-
ular, one factor that can limit the quality of the proposed
model is the accuracy of the GPU performance counters (or
power samples). Notwithstanding, as it was presented the
proposed model is still able to achieve very accurate power
predictions on a diverse range of GPU devices.

On the other hand, by allowing to directly choose which
GPU components can be modeled, the proposed model
arises as in a more hardware-centric approach. However,
it becomes very important to consider the possibility for
multicollinearity between utilization rates of the chosen
components [38]. Fig. 13a presents an example of the ob-
served correlation between the utilization rates of 10 GPU
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components during the execution of the microbenchmark
suite (Section 3.2) on the Titan Xp GPU (for simplicity, this
figure aggregates the ADD, MUL and FMA components in
the FP32 and FP64 units). It can be seen that there is a very
high correlation (≈ 0.99) between the utilizations of the
Load/Store (LDST) unit and the shared memory. Similarly,
there is also a high correlation between the utilizations of
the texture units and L2 cache. A similar behaviour was
observed on the GTX Titan X and Tesla K40c devices. For
this reason, the LDST units and Texture units were not
considered as separate units in the herein presented model,
since their inclusion would result in a decrease of the model
prediction accuracy. In fact, the high correlation between
their utilizations and the utilization of an already modeled
unit, means the proposed regression-based model is already
partially accounting for their power consumptions.

Another limitation arises from the fact that the same
PTX instruction can have different power consumptions
depending on the used operands. For example, a FP32
ADD instruction of the form Rc=Ra+Ra has a different
power consumption than one of the form Rc=Ra+Rb. This
difference can be seen in Fig. 13b, where it is presented the
GPU power consumption over the time for seven different
32-bit FP instructions (using different number of register
operands) on the GTX 980 GPU. The encountered problem
is the fact that these different power consumptions are im-
possible to take into account in the proposed power model,
as there are no performance counters that give insights
on these differences during the applications execution (i.e.,
how to distinguish between FMA-3Regs, FMA-2Regs and
FMA-1Reg). Similarly, there are also no counters that allow
distinguishing between different types of integer instruc-
tions (ADD, MUL or MAD), which were observed to also
have different power consumptions. Without being able
to identify these differences, they are impossible to model
and therefore there will always be a baseline prediction in
accuracy which cannot be reduced. However, it is important
to note that these different power consumptions could be
easily included in the model if NVIDIA introduced new per-
formance counters that allowed identifying these different
invocations of similar instructions types.

6 CONCLUSIONS

This work presented a GPU power consumption model
that can be used to predict the GPU power consumption
during the execution of any application (and at any voltage
and frequency configuration). To model the GPU, a novel
estimation algorithm is presented, which relies on care-
ful benchmarking of the GPU architecture. This algorithm
not only is able to estimate the contribution of twelve
different GPU components (FP32-ADD/MUL/FMA, FP64-
ADD/MUL/FMA, INT, SF, CF units, shared memory, L2-
cache and DRAM) to the total power consumption, but it
also allows to determine how the voltage of each separate
GPU domain scales with its corresponding frequency.

Three different model use cases were proposed (fixed
frequency, DVFS and scaling-factors) to obtain the total or
per-component GPU power consumption, as well as a way
to export models to a distinct GPU device than the one it
was estimated on. Each of these approaches was extensively

validated on five different GPU devices from the three most
recent GPU microarchitectures (Pascal, Maxwell and Kepler)
with a set of 42 benchmarks from five commonly used
benchmark suites. In particular, the scaling-factor power
model provided very accurate power predictions, with an
average error of 3.5%, 4.6%, 3.1% and 2.4% for the Titan Xp,
GTX Titan X, GTX 980 and Tesla K40c GPUs, respectively.
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Instituto Superior Técnico (IST), Universidade
de Lisboa, Lisbon, Portugal in 2014. He is a
Junior Researcher at the Instituto de Engenharia
de Sistemas e Computadores R&D (INESC-ID)
where he is working toward the PhD degree.
His research interests include parallel comput-
ing, graphics processors and energy-efficiency.
He is a student member of IEEE.

Aleksandar Ilic received his Ph.D. degree in
electrical and computer engineering from Insti-
tuto Superior Tecnico (IST), Universidade de Lis-
boa, Portugal, in 2014. He is currently an Assis-
tant Professor with the Department of Electrical
and Computer Engineering of IST and a Senior
Researcher of the Signal Processing Systems
Group (SiPS), Instituto de Engenharia de Sis-
temas e Computadores R&D (INESC-ID). His
research interests include high-performance and
energy-efficient computing and modeling on par-

allel heterogeneous systems. He contributed to more than 40 papers to
international journals and conferences and served in the organization of
several international scientific events.

Nuno Roma received the Ph.D. degree in elec-
trical and computer engineering from Instituto
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