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Abstract

Forest fires have a devastating impact in several countries, causing serious environmental, social, and

economic damage. The effect of global warming is turning extreme natural disasters into normal events

and forest fires are no exception. Several strategies have been developed to detect early-stage fires

in recent years, namely the use of surveillance cameras in forest areas to autonomously monitor and

detect any incident. However, these autonomous systems often signal a high number of false positives,

demanding several manual checks on the images. The recent use of deep neural networks to perform

image classification in a wide variety of domains has proven to be efficient and accurate. This disser-

tation proposes a method to detect early-stage fires, using pre-trained state-of-the-art deep learning

architectures, together with an image generation approach that may be used to overcome the problem

of limited data in smoke/fire datasets. Tested with real smoke and fire images, this approach can be ap-

plied in several real-world scenarios such as the capture of images by surveillance cameras or drones to

detect emerging fires. The experimental results in image generation show the ability to generate small

smoke plumes that can be merged with normal images to create artificial smoke images. Regarding

image classification, the model is able to detect early-stage fires with 98.2% accuracy, using images

from a variety of locations.
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Resumo

Os fogos florestais têm um impacto devastante em vários paı́ses, causando sérios danos a nı́vel am-

biental, social e económico. O efeito do aquecimento global tem transformado desastres ambientais

raros em eventos normais e os fogos florestais não são uma exceção. Várias estratégias têm sido

desenvolvida para detetar fogos nas suas fases iniciais através, por exemplo, do uso de câmaras de

vigilância em zonas florestais. Contudo, estes sistemas autónomos sinalizam, frequentemente, um el-

evado número de falsos positivos, exigindo muitas vezes uma verificação manual das imagens. O uso

recente de redes neuronais para classificar imagens numa ampla variedade de domı́nios tem provado

ser eficiente e preciso. Esta dissertação propõe um método para detetar fogos nas suas fases inici-

ais, através do uso de redes neuronais pré-treinadas, assim como uma estratégia para gerar imagens

de forma artifical e que pode ser usada para ultrapassar o problema da quantidade de dados limitada

existente em alguns conjunto de dados. Os modelos foram testados com várias imagens reais de fo-

gos e podem ser aplicados em vários cenários do mundo real, como a captura de imagens através de

câmaras de vigilância ou drones para detetar pequenos fogos. Os resultados experimentais na área

da geração de imagens mostram a capacidade em gerar pequenas colunas de fumo que podem ser

inseridas noutras imagens para criar imagens artificiais com fumo. Relativamente à classificação de im-

agens, o modelo é capaz de detetar com sucesso fogos que estão nas suas fases iniciais, com 98.2%

de precisão, usando imagens recolhidas em várias localizações.

Palavras Chave

Deteção de fumo, deteção de fogos emergentes, aprendizagem profunda, fogos florestais, sı́ntese de

imagens
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1.1 Motivation

Wildfires are one of the greatest hazards in forests. Forest fires threaten not only the forest’s fauna

and flora but also the biodiversity of the entire region. Beyond the environmental and economic impact,

uncontrolled fires often pose a danger to local populations, when they reach a village’s vicinity. The

effect of global warming has caused, in the past years, a global average temperature rise, contributing

to an increase in the number and dimension of wildfires.

In Portugal, forest fires are a very common phenomenon in the summer season. They are one of

the most severe natural disasters in our country not only because of the high frequency and dimension

they reach but also because of the devastating effects they cause. According to Pordata [1], Portugal

has the highest burnt area of the European Union (EU) in three of the last four years with available data

(2016-2019). In 2017 alone, Portugal had 541 thousand acres of burnt area, which represents three

times more than Spain, the second most affected country. Despite being one of the smallest countries,

in area, affected by wildfires in the EU, Portugal is still devastated, every year, by thousands of forest

fires. And, although a high effort has been put recently in prevention measures, creating new laws,

and making people more aware of the dangers that forest fires pose to everyone, we are still far from

controlling the consequences of wildfires. Figure 1.1 displays the data regarding the area burnt by forest

fires in the most affected European countries, between 2016 and 2019.

Figure 1.1: Area burnt by forest fires in the most affected European countries between the 2016 and 2019 period.
Hectares [K] represents the forest area burnt, divided by 1000. Data extracted from [1].

Regarding Europe and according to the European Environment Agency [2], more countries have

suffered large forest fires in 2018 than ever recorded before, including in northern and central Europe,

regions not typically affected by wildfires. “Many of the recent extreme fire episodes and devastating
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fire seasons in Europe were driven by severe weather conditions, with record droughts and heat waves

occurring in the spring and summer of 2017 and 2018 for instance.” To minimize the impact of wildfires,

it is very important to develop new ways to detect them at an early stage so that they can be more easily

controlled and extinguished.

1.2 CICLOPE Project

The CICLOPE project [3] is a wildfire monitoring system developed by researchers at Instituto de En-

genharia de Sistemas e Computadores Inovação (INOV), allowing “automatic detection of emerging

wildfires and instantaneous first response trigger”. The CICLOPE system covers, at the moment, more

than 1 million acres of land in Portugal. The use of individual and simultaneous images captured in

the visible and infrared wavelength allows to capture images in day and night and in nearly all weather

conditions.

The CICLOPE system was designed to work in every location, having independent power supplies

and supporting several means of communication. The system is composed of several surveillance and

data acquisition towers, where the information is acquired by the surveillance cameras. These cameras

can cover a wide area of land, with their high zoom range and ability to rotate 360º. The images

captured are then sent to the Control and Management Center (CMC) to be monitored. The application

in the CMC can be used for the automatic detection of fires, which allows identifying smoke columns

and flames even in the most adverse meteorological conditions. The use of this mechanism reduces

manpower requirements and can be effortlessly applied to a large collection of surveillance cameras,

allowing to cover a wide range of land.

Figure 1.2: Overall scheme of the image acquisition and prediction system. The images are captured by surveil-
lance cameras located in forest areas. The focus of this work is the prediction process that assigns a
”smoke” or ”non-smoke” label to the image. Later, if the output label is ”smoke”, the image should be
manually checked.

However, despite the advantages of having an automatic detection system, these systems some-
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times do not reach human-level accuracy when detecting early-stage fires, mainly because of the high

number of false positives. This fact reduces the usefulness of the automatic detection mechanism,

requiring more manpower to operate the CICLOPE system and, potentially, missing some important

early-stage smoke columns.

The images used to perform training and testing in this work were taken from the cameras that are

set up on the top of the surveillance and data acquisition towers located in forest areas. This work

focuses in developing an automatic detection system capable of classifying these images as smoke or

non-smoke. A global overview of the system is illustrated in Figure 1.2.

1.3 Objectives

The main goal of this project is to develop an image classification mechanism that can be applied to

the images that are collected from the surveillance cameras. These mechanisms should have good

accuracy when detecting not only large size fires but especially small, emerging smoke columns. The

early detection of fires is a very important aspect to control and prevent them to become larger and more

dangerous phenomenons. The detection of small fires can also be a very difficult task as, sometimes,

just a very tiny smoke column is shown on the horizon, that even humans struggle to spot, as exemplified

in the next set of examples.

 

 

 

Figure 1.3: The first three images include small, emerging fires. In the last image, it is possible to observe a
medium-sized fire.

To develop this project, INOV provided a dataset with images taken from their Closed-circuit Televi-

sion (CCTV), with both fire and non-fire images. A few examples of images that were taken from this
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dataset will now be discussed. The first three images in Figure 1.3 are typical examples of emerging

fires, with the presence of small white plumes that indicate the presence of a fire in its first stages. The

identification of the first stages of a fire is the main goal of this project. In the last image, a medium-sized

smoke column also indicates the presence of a fire. Medium and large-sized fires are usually the easiest

for the system to detect but they are also the most useless because, most likely, someone has already

identified them and contacted the authorities.

Taking a look at the third example, Figure 1.4, anything unusual can be immediately spotted. How-

ever, when looking closely at the top right corner of the image, a tiny smoke area, that will later become

a larger fire, can be identified. The main goal of this thesis is not to identify large flames but rather these

smoke columns that indicate the presence of fires in images that cover a wide range of forest areas. The

most challenging obstacle will be the similarity between these small smoke plumes and clouds or fog.

Figure 1.4: A very small smoke column in the top right corner can be seen.

1.4 Contributions

Several methods have been used to perform fire detection, namely using computer vision methods. A

common technique is to consider consequent frame sequences and locate regions of movement that

could indicate that a fire is constantly changing its size [4]. A few other computation vision methods [5,6]

analyse specific fire features, such as colour, area size and spatial distribution and combine them to

produce a global output prediction.

The main difference between this and other works is the concern in detecting early-stage fires. This

work focuses on detecting small smoke columns rather than large areas of smoke or flames. To illustrate
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this difference, Figure 1.5 includes a sample image that was used for smoke detection in this work

compared to smoke/fire images used in other papers.

Figure 1.5: The first image is a sample from the dataset used in this work. The other three images were taken from
other papers ( [7], [8] and [9] respectively) related to smoke/fire detection.

Hence, the main contributions of this MSc thesis are summarized as follows:

• Development of a deep learning approach to detect early-stage fires in RGB images. To perform

the image classification stage, the following deep neural networks were used: Xception [10], In-

ceptionResNetV2 [11] and EfficientNet [12] architectures pre-trained in the ImageNet [13] dataset.

The proposed approach includes a fine-tuning phase using a custom dataset with target domain

images, i.e., smoke images. During the training phase, two different approaches were explored:

the detection of smoke in the entire image; and the division of the image in blocks and, thus,

detecting smoke in these individual blocks.

• One of the main contributions of this thesis is to explore new data augmentation techniques to gen-

erate new smoke/fire images. These generated images can be used not only to improve datasets

with limited data but also to fill some gaps that may exist in large datasets, such as the lack of night

fire images, fog images, etc. The image generation stage was performed training the StyleGAN2-

ADA architecture [14] with smoke images. Due to time restraints, these images were not included

in the training datasets when performing the image classification stage.

The potential applications of this thesis in real-world scenarios include early smoke and fire detection

from images that can be captured from various sources, such as surveillance cameras or Unmanned

Aerial Vehicles (UAVs).
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1.5 Thesis Outline

This thesis is organized as follows: Chapter 2 presents the state-of-the-art techniques in deep learning

architectures for image classification and generation, evaluation metrics and data augmentation. It will

also feature a few methods used to detect fire in images. Chapter 3 details the pre-processing work

performed in the dataset images and also the architectures that were used for both image classification

and generation purposes. Chapter 4 describes the dataset that was provided by INOV as well as several

others that were created to perform the experiments. Chapter 5 covers the experimental methodology

and results of the adopted approach. Finally, Chapter 6 presents the main conclusions of this work and

proposes insights that can be explored for further work and improvement.
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This chapter presents some of the relevant state-of-the-art work in the deep learning field, transfer

learning tasks and also other techniques that have been used for fire detection. In particular, Section 2.1

introduces some basic concepts in the artificial intelligence field, giving a brief insight on machine learn-

ing and deep learning, mentioning some of its applications in our daily life. Section 2.2 overviews the

state-of-the-art in deep learning models for image classification, with particular emphasis on models that

have shown the best results in popular datasets, such as ImageNet, CIFAR, etc. Section 2.3 presents a

few architectures that have been used to generate fake images and that can be used for data augmen-

tation. Section 2.4 presents some of the techniques that have been designed to detect the presence

of fires. Section 2.5 describes a couple of approaches that have been developed to deal with limited

training data. These approaches include the use of data augmentation and transfer learning. Finally,

section 2.6 provides a summary of this chapter.

2.1 Basic Concepts

From self-driving cars to speech recognition, machine learning has had a strong impact, particularly in

recent times, on several aspects of our society. Machine learning is defined as being a set of algorithms

that can learn and improve from experience, without the need to be explicitly programmed. The main

goal is to allow computers to learn from a set of data and, without any kind of human intervention, adjust

their actions accordingly.

In an attempt to overcome the limitations of traditional methods used in machine learning (e.g., de-

cision trees, support vector machines, etc), deep learning has emerged. Deep learning is a sub-field of

machine learning inspired by the behaviour and structure of biological neural networks, often referred to

as artificial neural networks. Deep learning algorithms attempt to make human-level decisions by using

multi-layered neural networks and vast amounts of data, which sometimes demand high computational

power. The use of deep learning algorithms has shown great results in several fields, namely computer

vision, speech recognition, natural language processing, and many others. On the other hand, in the

past few decades, the advances in hardware and software components have allowed the development

of more complex deep learning algorithms that can handle complicated domains. In 2016, AlphaGo, de-

veloped by DeepMind, was the first computer program to defeat a Go world champion without handicap.

When it comes to image classification tasks, Convolutional Neural Networks (CNNs) have proven

to be very effective and produce good results. The input of a CNN is an image with a certain height,

width, and dimension. Each input image passes through a series of convolutional layers (that try to

extract relevant features), pooling layers (to reduce the dimension of the feature maps), fully-connected

layers (to combine the features), and finally a softmax layer that will output the probability distribution

over every class of the domain.
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2.2 Deep Learning Classification Architectures

Image classification is a task that attempts to comprehend an entire image as a whole. The goal is to

classify the image by assigning it to a specific label based on a probability distribution. Typically, image

classification refers to the case in which only one object appears in the image. On the other hand, the

goal of object detection involves both classification and localization tasks and it is typically used when

multiple objects are present in an image.

When it comes to image classification, several deep learning architectures have been introduced

in the past few years. For example, the ResNet architecture [15] introduces the concept of residual

networks, where shortcuts are used to jump over some layers, allowing to create deeper networks.

Similarly, the DenseNet [16] network is an extension of ResNet that uses dense blocks, where each

layer takes all preceding feature-maps as input. This section will detail a few deep learning architectures

that have been developed to perform image classification.

VGGNet is a Convolutional Neural Network that was proposed by Simonyan et al. 2015 [17]. During

training, the architecture takes as input a fixed-size 224×224 RGB image. The only image pre-processing

step performed is subtracting the mean RGB value from each pixel. After that, the training images are

passed through a stack of convolutional layers with small 3 × 3 filters followed by three fully connected

layers. The first two fully connected layers have 4096 channels each, and the third has 1000 channels

(one for each class). Finally, there is a softmax layer for classification purposes. All hidden layers have

ReLU as their activation function. The most popular variations of VGGNet are VGG16 (Figure 2.1) and

VGG19. The VGG16 architecture has a total of 13 convolutional layers, whereas the VGG19 has 16

convolutional layers.

3x3 conv max pool

x2 x3 x3
1x1000

Input Output

224x224x3 x2 x3

max pool3x3 conv FC

Figure 2.1: VGG-16 architecture. The number of times (N) that each stack of layers is repeated, is indicated by xN.

The most straightforward way of improving the performance of deep neural networks is by increasing

their size. This includes both increasing the depth (the number of layers) of the network and its width

(number of units at each level). However, this solution has two main drawbacks. Bigger usually means a

larger number of parameters, which makes the network prone to overfitting and also more difficult to train.

Another drawback is the increased use of computational resources. To overcome this problem, a first

version of the Inception architecture was developed by Szegedy et al. 2015 [18]. In this architecture,

each level has filters with multiple sizes to capture different features in the input. Basically, in each

module, a convolution is performed on the input, with 3 different filters (1 × 1, 3 × 3, and 5 × 5). The
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outputs are concatenated and sent to the next inception module. This makes the network wider rather

than deeper. However, 3 × 3 and 5 × 5 convolutions can be expensive on top of convolutional layers

with a large number of filters. To overcome this problem, an extra 1 × 1 convolution is added to reduce

the dimensionality of the feature maps before the 3× 3 and 5× 5 convolutions. In general, an Inception

network is a network consisting of Inception modules, shown in Figure 2.2, stacked upon each other.

Previous layer

3x3 conv

3x3 max pool

Filter 
concatenation

1x1 conv

1x1 conv

1x1 conv

5x5 conv

1x1 conv

Figure 2.2: Inception module with dimension reductions. Prior to the 3×3 and 5×5 convolutions, a 1×1 convolution
is performed in order to reduce the input dimension.

Both Inception-v2 and Inception-v3 were introduced by Szegedy et al. 2016 [19] to mitigate some

of the problems of the previous version. Firstly, it attempts to avoid representational bottlenecks, since

extreme compression of the input can lead to the loss of important features. Secondly, it improves the

computational complexity by using factorization techniques. The 3 main architectures changes that were

made in the Inception-v2 network were the following:

• Replace the 5× 5 convolution with two layers of 3× 3 convolution. This reduces the computational

cost, as the number of parameters is reduced by 28%.

• Factorize the n × n convolution with two layers of 1 × n and n × 1 convolutions. For example,

using a 1× 3 convolution followed by a 3× 1 convolution is equivalent to using a 3× 3 convolution.

However, the two-layer solution is 33% cheaper.

• Filter banks were expanded, to make the model wider rather than deeper. This avoids representa-

tional bottlenecks, which translates into a lower loss of information (Figure 2.3).

The Inception-v3 model shared the same base architecture as the previous one, with a few changes

which include the use of the RMSprop optimizer, factorization of 7 × 7 convolutions, the use of batch

normalization in the auxiliary classifier and label smoothing.

Dosovitskiy et al. 2020 [20] propose the implementation of transformers (used in NLP tasks) for

image classification. First, the original image x is reshaped into a sequence of flattened 2D patches,
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Previous layer

3x3 conv
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Filter 
concatenation

1x1 conv

1x1 conv

1x1 conv

1x3 conv

1x1 conv

1x3 conv

3x1 conv

1x3 conv

3x1 conv

Figure 2.3: Inception-v2 module.

where (P, P) is the resolution of each image patch. A linear projection is then used to map each patch

to the model dimension D, referred to by the authors as patch embeddings. A learnable embedding,

containing information about the class of the image, is prepended to the patch embeddings. Finally,

to retain positional information about all patches, a position embedding is added. These embedded

patches are then passed to the encoder, and finally, the classification token is used to predict the class

of the image, as shown in Figure 2.4. This ViT architecture is pre-trained on large datasets and then fine-

tuned to smaller tasks. With several experiments, the authors discovered that the larger the pre-trained

dataset is, the better results the model yield. The best results were achieved using JFT300M dataset

for pre-training. They achieved slightly better accuracy results in several known datasets (ImageNet,

CIFAR-100, Oxford Flowers-102) than state-of-the-art models (ResNet and EfficientNet-L2 were used

for comparison), while also needing significantly less computational power to pre-train the ViT model.

Despite being designed for object detection rather than image classification, the YOLO architecture

has been the standard when it comes to locating and classifying objects in videos. The first version

of the YOLO architecture was proposed in Redmon et al. 2016 [21] and it was designed for real-time

object detection. The architecture resizes the input image to a 448 × 448 dimension array and divides

it into an S × S grid (S=7). If a certain grid has the centre of an object in it, that grid cell is responsible

for detecting that object. Each grid cell predicts B (B=2) bounding boxes and the respective confidence

scores for those boxes. These confidence scores reflect how confident the model is that the box contains

an object. Each bounding box consists of 5 predictions: x, y, w, h, and confidence: (x, y) represents the

coordinates of the centre of the object; (w, h) represent the width and weight of the bounding box; and

confidence represents the Intersect Over Union (IOU) between the predicted box and any ground truth

box. The YOLO architecture is fast compared to the existent real-time object detection models and it is
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Figure 2.4: Architecture overview, (Extracted from [20]).

also able to generalize well enough to be applied to new domains while achieving good results.

The most recent version of YOLO - YOLOv4 - was proposed in Bochkovskiy et al. 2020 [22] and

introduces several improvements to previous versions. These improvements include the use of new

data augmentation techniques like Mosaic that mixes 4 different images and produces a single output

image and new regularization techniques, such as DropBlock. This latest version, YOLOv4, was able to

produce state-of-the-art results in real-time object detection, averaging 43.5% average precision (AP) at

65 fps.

2.3 Image Generation Architectures

Image generation refers to the task of generating new images based on an existing dataset. Two of

the most popular methods to create new images are Variational AutoEncoders (VAEs) and Generative

Adversarial Networks (GANs).

An autoencoder is composed of two connected networks: encoder and decoder. First, the encoder

compresses the original image into a lower dimension (latent space). Then, the decoder decompresses

that data and tries to reconstruct the original image. The reconstruction loss measures how distinct the

reconstructed image is compared to the original one. However, in Variational AutoEncoders (Kingma

et al. 2014 [24]), the reconstruction of the original input is not the only purpose, but also to introduce

new variations to it from a continuous space. Since the latent space in normal autoencoders is not
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Figure 2.5: YOLOv4 object detection, (Extracted from [23]).

often continuous, a new term is added to the loss function, the KL divergence, which helps to optimize

the probability parameters (mean and variance) to resemble the target distribution. To generate new

images from a certain class, the VAE is trained with images belonging to that class. Then, a vector (with

the same dimension as the latent space) is initialized with random values and passed to the decoder.

Using this technique, new images that can be used to augment the dataset are produced. The main

disadvantage of VAE’s is that the generated images are often blurry, especially when training the model

with a small dataset.

An alternative approach to synthesize new images is by using Generative Adversarial Networks.

GANs were introduced in Goodfellow et al. 2014 [25] and are composed of two parts: the generator,

which learns to generate new data as close as possible to real images from the dataset; and the dis-

criminator, which learns to distinguish real examples from the ones produced by the generator (fake

examples). To train the network, the first step consists of providing a large number of examples until

the discriminator achieves acceptable accuracy in classifying the images. Then, in the second training

step, the generator is initialized with random input, sampled from the latent space, and tries to fool the

discriminator with the image produced. Then, both the first and second training steps are repeated to

keep training the discriminator and the generator. This training loop is repeated until the desired results

are achieved. This type of network is usually very unstable to train but can generate realistic results.

The developments of several GANs models over the years has made possible the creation of high-

quality images. The StyleGAN architecture was introduced in Karras et al. 2018 [26]. The model uses a

Baseline Progressive GAN and starts by training the network in smaller resolutions (4×4). Once both the

generator and discriminator are stable, the resolution of the input images is progressively increased until

15



the desired output resolution is achieved. Miyato et al. 2018 [27] propose a normalization technique,

spectral normalization, to be used in GANs to stabilize the training of the discriminator. By using this

normalization technique, the networks are able to generate more diverse examples and achieve better

experimental results when compared to regular GANs. Brock et al. 2019 [28] introduce the BigGAN

network that aims to generate higher-resolution images by scaling up GANs. The BigGAN is designed

to be a class-conditional GAN, where the input of the network is not only a point from the latent space

but also includes information regarding the desired image class. The BigGAN presents a technique

to make architectural changes to regular GANs, by increasing the number of parameters, using larger

batch sizes and other methods. By introducing a truncation trick that resamples a point in the latent

space, the network is able to generate higher-quality images at the cost of variety. Figure 2.6 displays a

few class-conditional samples generated using the BigGAN architecture.

Figure 2.6: Sample images generated by the BigGAN network, (Extracted from [28]).

2.4 Fire Detection

Several methods have been used to perform fire detection, namely using computer vision techniques,

that aim to extract high-dimensional data from the real world in order to produce symbolic information,

which in this case is the detection of smoke or fire in images. True 2009 [4] considers consecutive frame

sequences to locate regions of movement and extracts the pixels corresponding to these regions using a

perceptron. Then, texture analysis is performed to confirm that these moving regions have the temporal

and motion characteristics of fire. Borges et al. 2010 [5] proposes a method to analyse frame-to-frame

changes of specific low-level features describing potential fire regions. These features are colour, area

size, surface coarseness, boundary roughness, and skewness. In Qi and Ebert 2009 [6], the authors

introduce an algorithm that uses not only colour and movement but also analyses the temporal variation

of the fire intensity and the tendency of the fire to be grouped around a central point, to detect the

presence of fire in video sequences.

More recently, with the application of CNNs to perform image classification in a wide range of do-

mains, new methods have been introduced to detect fire or smoke in images. Lin et al. 2019 [29] uses
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a faster region-based CNN to generate suspected smoke boxes in target frames that are picked from

video sequences at a fixed interval. Then, a 3D CNN is used to perform smoke recognition in the se-

lected frames and signal the existence of smoke. In Yin et al. 2017 [9], the authors combine the use of

image normalization with a CNN to detect the presence of smoke in images. The image pre-processing

stage reduces the variance of images and enhances inherent characteristics of images, by removing the

influence of illumination. Then, the CNN is responsible for performing the image classification stage. In

Muhammad et al. 2018 [30], the authors use the AlexNet architecture [31] pre-trained in the ImageNet

dataset to detect fire in images. The network is then fine-tuned using a target dataset that includes fire

images.

This section will detail a few works that have shown good results when detecting fire and smoke in

images using both computer vision techniques and neural networks.

Genovese et al. 2011 [32] propose a mechanism for real-time smoke detection using low quality

images captured under visible light. The proposed approach extracts different features from the origi-

nal images and then uses a classifier to assign one of the two labels, “fire” and “nofire”, to each pixel

considering a fixed number of consecutive frames. The feature extraction method includes moving re-

gion detection, smoke-colour detection and growing region detection. The experimental results showed

that using neural networks as classifiers proved to be more accurate and also required less compu-

tational time than k-Nearest Neighbors (kNN) classifiers. The authors tested the approach in three

different datasets: low-quality frame sequences, medium-quality frame sequences and synthetic frame

sequences. The tests performed in the three datasets resulted in accuracy values around 99%. When

testing the first dataset with adverse conditions, such as fog, decreased luminance or noise, there was

only a small increase in the classification error (0.15%).

Labati et al. 2013 [33] propose an improved version of the previous classification method, with the

addition of a synthetic image generation algorithm. The proposed wildfire smoke simulation method

aims to generate smoke plumes to be merged with normal images and create artificial smoke images,

which can later be used to train the classifiers. The first step consists in computing an artificial smoke

plume. Then, in order to simulate the presence of wind, an external force is applied to the smoke plume.

Finally, the smoke plume is merged with a normal image frame to produce the artificial image. With the

experimental evaluation, the authors concluded that the use of simulated frame sequences can increase

the accuracy and generalization capability of the wildfire smoke detection approach. The datasets used

in this and the previous work are not public but the examples included in the papers show images with

small smoke plumes, very similar to the ones used in this thesis. Despite this fact, the number of smoke

examples represents only about 2% of the total number of images in each of the three datasets used for

testing purposes.

Frizzi et al. 2016 [8] propose the use of CNN for identifying fire in videos. The CNN operates
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directly on a raw RGB image to learn a set of visual features. The CNN architecture combines several

convolutional layers, to extract the features, with pooling layers, to reduce the input dimension. The

last layer is a fully connected layer that outputs a probability distribution over the three possible outputs:

negative, fire and smoke. The dataset used for testing is composed of 1427 fire images, 1758 smoke

images and 2399 negative images. The few examples of images included in the paper are large fires,

with flames and large areas of smoke (see Figure 2.7). Thus, the main goal of the authors is the

detection of fires of any dimension in images, rather than the detection of emerging fires such as in the

case of this dissertation. The final classification accuracy for the test dataset was 97.9%.

Figure 2.7: Example of an input fire image, (Extracted from [8]).

In Jiao et al. 2019 [7], the authors propose the use of UAVs to monitor and detect forest fires in

real-time. The UAV is equipped with a camera to capture the images and an onboard computer that can

perform real-time image processing. If the UAV identifies a potential fire spot, it relies on that data to

a ground station that would detect and diagnose a forest fire. The onboard computer uses a modified

version of the YOLOv3 algorithm [34] in order to perform the fire detection. During the experiments,

the UAV was capable of reaching 3.2 frames per second when performing the image classification in

a 1920 × 1080 video sample. When the authors tested the model with 60 images, the detection rate

reached 83%. Once again, the examples shown by the authors represent large size fires, with either big

flames or large smoke columns, as exemplified in Figure 2.8. These types of images differ significantly

from the ones used in this thesis.
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Figure 2.8: Testing results with the corresponding bounding boxes displaying the location of smoke and fire, (Ex-
tracted from [7]).

2.5 Data Augmentation and Transfer Learning

The best way to make a model generalize better is to have more data to train it. In practice, there are

limited amounts of data, sometimes even short datasets to train the models. One way to overcome this

problem is to generate new data and add it to the training set. The different techniques that can be used

to augment data will now be explored.

Some of the most basic transformations that can be applied to an image include flip (flip the image

vertically or horizontally), rotation (rotate the image at any angle), scale (scale an image inward and

outward), translation (move the image along the X-axis, Y-axis or both) and adding Gaussian noise (add

noise to the image). Changing the brightness, saturation, hue, and contrast of an image can also be

done to introduce even more variability. All these techniques can be combined and used to create new

data and help enlarge the dataset.

2.5.1 Image-to-image translation

Neural style transfer proposed by Gatys et al. 2015 [35] is a technique that takes two images - a content

image and a style image - and outputs a single image which is a combination of both. The output image
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should be similar to the content image but ”painted” with a new style (e.g. Monet, Van Gogh). To perform

this combination, two loss functions are defined: Lcontent, which measures the difference of content in

two images, and Lstyle, which measures the difference in two images with relation to their style. Then,

given the input (content image), the image is transformed, while minimizing Lcontent and Lstyle. This

technique produces realistic results but has a few limitations: for example, the style cannot be applied

only to a certain part of the input image.

Introduced in Zhu et al. 2017 [36], the CycleGAN network presents a viable solution to the unpaired

image-to-image translation problem. In most cases, image-to-image translation requires a dataset with

pairs of images, e.g. the same image in summer and winter, if one wants to perform a summer-winter

translation. However, building this kind of dataset is very difficult and sometimes even impossible (e.g.

a painting could have no photo in the real world). To address this problem, CycleGAN networks can

be used with unpaired images, meaning that the training dataset can be composed of a large collection

of images in the summer and a large collection of different images in the winter. The CycleGAN is an

extension of the GAN architecture, which includes two discriminators and two generators. One generator

takes as input images from the first domain and outputs images for the second domain, while the other

generator does the opposite. Each one of the discriminators checks whether the images produced

by the generators are plausible in each one of the domains. The CycleGAN architecture uses cycle

consistency: this means that the output produced by the first generator is fed as input to the second

generator. The second generator produces an output image that should match the original image. To

measure the differences between these two images, the network uses an additional loss measure -

cycle consistency loss. In real-world applications, the CycleGAN network produces acceptable results,

namely in style transfer (applying an artistic style to photographs), object transfiguration (being the most

famous case converting a horse in a zebra and vice-versa) and season transfer (e.g. summer-winter

translation), shown in Figure 2.9.

However, other more complex techniques have been developed in the last years, usually based on

generative and adversarial approaches. The following subsections describe the most important ones.

2.5.2 Few/One-shot Learning

One-shot learning is a classification task where only one or a few examples are needed in order to

learn the important information of each class and thus be able to classify new examples in the future.

Whereas most deep learning architectures need a large training dataset to train the parameters of the

network, one-shot learning aims to use only a few examples and be able to generalize well enough for

each training example, to achieve good accuracy in newer images.

Introduced in Vinyals et al. 2016 [37], matching networks achieve higher accurate results in known

datasets when compared to some of the best deep learning models. A support set S of k labelled
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Figure 2.9: The use of CycleGANs to apply the season transfer effect, (Extracted from [36]).

examples, with input x and label y is shown to the matching network. Given a new example x’, the goal

is to calculate the probability distribution and predict the correct label.

The calculation of the probability distribution relies on choosing an attention mechanism to measure

the similarity between the set of examples in the support set x and the new example x’. The similarity is

measured using the cosine distance and then passed to a softmax layer that maps the values between

0 and 1, where 0 represents the absence of similarity and 1 marks highly similar examples. To train the

network, it is used a small number of labels (e.g., {cats,dogs}). From that, a support set S and a batch

B are sampled (both S and B are labelled examples of cats and dogs). The network is then trained to

minimise the error predicting the labels in the batch B conditioned to the support set S.

To evaluate the model, the authors have used three different variations of the ImageNet dataset. In

two of those variations, they achieved better results compared to the baseline classifier (Inception). This

model is fast to train, requires fewer training examples, and still achieves good performance. The biggest

limitation is that does not perform so well when dealing with fine-grained images.

In [38], siamese neural networks are used for one-shot image recognition. In general, the image

representations are learned via a supervised approach with siamese neural networks, and then the

network is reused for one-shot learning.

The model was first trained on a subset of the Omniglot dataset (a set of handwritten characters).

Once trained, the network is ready to perform one-shot learning. A test image x and some other images

xc (with xc representing examples of each of the C classes) are given to the network. Then, the network,

based on x and xc, predicts the class corresponding to the maximum similarity.

The model was evaluated using a different alphabet than the one used for training and achieved a

92% accuracy. The model was then evaluated on the MNIST dataset, to see if the network was able

to generalize well enough. However, it only achieved 70.3% of accuracy, which is far worse than state-
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Figure 2.10: Matching Networks architecture, (Extracted from [37]).

of-the-art models can do. It can be inferred that this approach achieves viable results only when both

datasets (train and evaluation) are not too different.

2.5.3 Transfer Learning

Sometimes, to develop complex deep learning models, large amounts of data are needed to train the

model. However, getting vast structured and labelled data can be difficult and it is not always possible. A

good example of a vast structured dataset is ImageNet [13], which contains more than 14 million hand-

annotated images belonging to many categories. Transfer learning refers to the situation where the

knowledge obtained after performing one task is stored and applied in a different problem. In the case

that there is significantly more data in the first dataset (used to gain knowledge), then that knowledge

may help to learn representations that are useful to generalize from just a few examples in the second

dataset (the one to perform the classification task). This is often the case because images from different

domains share low-level notions of edges, shapes, geometric changes, lighting change, etc.

In Raina et al. 2007 [39], the authors propose a new framework, ”self-taught learning”, for using

unlabeled data in supervised classification tasks. The algorithm starts by using unlabeled data to learn

a higher-level, more succinct, representation of the inputs. This makes the algorithm learn the most

basic elements of an image, such as strong correlations between pixels, that may correspond to edges.

After this process, applying this learned representation to the labelled data translates into better model
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performance. The experiments made in this work used data from similar domains for the unlabelled and

labelled data and achieved better performance compared to traditional machine learning classification

algorithms.

In Wang et al. 2020 [40], the researchers propose attentive feature distillation and selection (AFDS),

which help to adjust the strength of transfer learning regularization and also dynamically determine

the important features to transfer. During transfer learning, they explore the output response of each

convolutional layer in the source model when images from the target dataset are shown. Using this

method, the fine-tuned model can still learn the behaviour of the source model and the weights in the

target model can be optimized freely, increasing the generalization capacity. This method is referred to

as attentive feature distillation (AFD) and it is used to learn which are the relevant features to transfer.

To accelerate the transfer learning process, they propose attentive feature selection (AFS) to prune

networks dynamically. AFS is designed to select important channels in the convolution to evaluate and

skip irrelevant ones. Neurons that are rarely activated can be removed from the network, improving

memory consumption. Using both AFS and AFD (AFDS), not only a higher target task accuracy is

achieved (compared to existing pruning methods) but it can also allow a new model to learn faster by

computing only a subset of channel neurons in each convolutional layer.

2.6 Summary

This chapter presented an overview of the related work relevant to this thesis. Firstly, some of the state-

of-the-art deep learning models in image classification were discussed. These models are mainly based

in CNNs with multiple layers to extract high-level features. Then, two types of networks that are able

to generate new images were introduced: GANs and VAEs. Whilst there are some limitations to the

quality of the generated images using VAEs, GANs offer a viable solution that is able to generate high-

quality images. Concerning the limited data in some datasets, a couple of approaches, such as data

augmentation and transfer learning, were discussed. Furthermore, a few works to detect fire or smoke

were approached, mainly based on computer vision methods and convolutional neural networks. The

majority of these works do not use datasets that represent early-stage fires, but rather evident images

of flames or smoke.
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Some of the models introduced in the previous section are still being widely used for image classifi-

cation, like the VGGNet and the Inception architecture. However, several years have passed since their

creation and new models with better performance and efficiency have been developed. At the same

time, the best models that exist nowadays have high memory and processing requirements, as there are

enough computational resources to develop and train those architectures. For instance, the ViT-G/14

architecture developed by Google researchers in 2021 [41] is able to reach the highest top-1 accuracy

in the ImageNet dataset ever, at 90.45%. The computational power needed to train this network is also

very demanding, as the ViT model has two billion parameters.

Regarding the image generation stage, and having the goal of improving any smoke/fire datasets,

namely increasing the number of fire images, a couple of image generation techniques were employed.

In this work, the StyleGAN [26] architecture was used for image generation since it is possible to fine-

tune the model into a custom dataset. The BigGAN [28] model was not tested in this project because its

developers do not publicly provide the discriminator: “We are releasing the pre-trained generator to allow

our work to be verified, which is standard practice in academia. It does not include the discriminator to

minimize the potential for exploitation”, the authors refer.

Neural Network

Smoke

Non-Smoke

0.78

0.22

Image

Image Processing

Image Classification

Figure 3.1: Overview of the proposed system.
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The overall overview of the proposed approach is shown in Figure 3.1. First, the image processing

step is executed, including the image subdivision. Then, the neural network is trained with smoke and

non-smoke images. Finally, the neural network is ready to perform image classification: it receives an

image as input and outputs the respective label, ”smoke” or ”non-smoke”.

This chapter will be divided as follows. Section 3.1 will detail the proposed approach used in the

image pre-processing step, which includes the division of the image in several blocks and also the iden-

tification of the fire region in the image. This section will also explain the several methods used to

create the train datasets used in both image generation and image classification networks. Section 3.2

will describe the deep learning architectures that were chosen to perform image classification: Xcep-

tion, InceptionResNetV2 and EfficientNet. This section also includes the explanation of the fine-tuning

phase, with the use of two transfer learning approaches. Finally, section 3.3 will describe the StyleGAN

architecture that was used to generate new smoke images.

3.1 Image Pre-Processing

The dataset used in this work has both smoke and non-smoke images. For every smoke image, there is

information that describes the number of smoke plumes present in the image and their location, which

is given by 4 coordinates (Xmin, Ymin, Xmax, Ymax) that form the bounding box of the smoke region. In

particular, (Xmin, Xmax) and (Ymin, Ymax) represent, respectively, the width and height of the bounding

box. It was possible to calculate the area that a given fire occupies in the image, by dividing the area of

the smoke’s bounding box by the total area of the image. Using this information, the first step consisted

in drawing a rectangular shape around the smoke region, as shown in Figure 3.2.

Figure 3.2: Smoke image example. A red rectangular shape displays the location of the smoke plume.
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3.1.1 Image division

Dividing an image into blocks and performing the image classification step in each of these small blocks

has a couple of advantages compared to classifying the entire image. Firstly, when classifying small

portions of the image and later combining the results in a single output, the model only pays attention

to one block at a time. Therefore, small objects that seem irrelevant in the overall picture can be more

precisely detected when considering the block in which the object is inserted. Regarding the several

datasets used in this work, the majority of images represent early-stage fires that occupy a small area

in the image. Another advantage when considering classifying individual portions of the image is the

ability to locate the position of the object. In the case of this thesis, the precise location of the fire is not a

mandatory requirement but in real-world scenarios, it could be a useful feature. The major disadvantage

when classifying small blocks in the image is the detection of false positives. For instance, small smoke

plumes can be mistaken as clouds or fog when considering small areas in the image. Therefore, the

model is not taking into account the environment around these phenomenons, making it more prone to

signal false alarms. Also, if the model signals a false positive in a single block, the entire image is then

labelled as having a fire. To study the potential advantages and disadvantages when classifying the

entire image and classifying smaller parts of the image, the image was divided using two methods.

Figure 3.3: A 5x4 grid image with two hotspots outlined by a red rectangular shape. The smoke area in each grid
is also displayed.

3.1.1.A Normal grids

The first approach consists in converting every smoke and non-smoke image into a m × n grid, where

each individual grid has the same size. It is important that the individual blocks are not too small to avoid
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potential false alarms, where the smoke plumes are mistaken as clouds, for example. Therefore, the

image was divided into a 5× 4 grid. For training purposes, it was important to calculate the smoke area

in each of the individual grids. The image division process can be seen in Figure 3.3.

3.1.1.B Overlapped grids

One disadvantage in dividing the image into normal grids is that small smoke plumes can be present

in the borders of consecutive grids, which may result in an overall loss of information. This can happen

when the smoke location is spread across, for example, four neighbours (top right, top left, bottom right

and bottom left), making each one of the four grids with a very small portion of the smoke. To overcome

this problem, the second approach consists in having consecutive grids overlap each other in 15%, as

it is shown in Figure 3.4. In this case, the image is also divided into a 5× 4 grid but each grid is slightly

bigger and contains information about its neighbours.

Figure 3.4: Sample snapshot from the grid overlap dataset. Each grid overlaps 15% to its neighbours. The smoke
is outlined in a red rectangular shape.

In the evaluation phase, in order to label an image as smoke or non-smoke, all 20 grids are separately

classified by the model. If the model output is greater than 0.5 in any of the grids, the global image is

labelled as smoke. Otherwise, the output label is non-smoke.

3.2 Deep Learning Classification Architectures

The next subsections will detail the proposed framework that was implemented to perform image clas-

sification on smoke images. It will also describe the deep neural networks used for training and testing

purposes.
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3.2.1 Proposed framework

The main objective of this thesis is the early detection of wildfires during the surveillance of forest ar-

eas. The developed algorithm must be able to detect early-stage fires and simultaneously minimize the

number of false alarms. To achieve this goal, three different deep CNNs were explored and two differ-

ent methods to fine-tune the original networks were devised. Transfer learning has proven to be very

effective in several classification tasks, as better results can be achieved with less training effort [42,43],

where a model is pre-trained in a larger dataset and then fine-tuned to perform a target task. In this

work, we used the Keras API [44], which offers a vast number of pre-trained models in the ImageNet

dataset. A few changes had to be made so that the model only supports the two classes of our domain:

”smoke” and ”non-smoke”. Two transfer learning approaches were developed and applied to each one

of the original models.

In the first approach, designated TN-1, two fully connected layers were added to the models. The

output of the original models had originally 2048 neurons, so the first layer added is a fully connected

layer with a ReLU activation function to reduce the dimension of the vector, outputting a feature map

with size (batch size, 32), where batch size corresponds to the number of batch images. The last fully

connected layer added has a sigmoid activation function and outputs a single number, corresponding

to the prediction of the input. If the output of the last layer is less than 0.50, the label is ”non-smoke”,

otherwise the output is ”smoke”. In the fine-tuning phase using the custom dataset, the entire network

was trained using a very small learning rate, lr=0.0001, in order to avoid potential loss of information. In

this approach, the models were trained for 60 epochs in all datasets.

DenseDenseNeural Network

32x1

ReLU

1x1

Output

1x1

Sig Sigmoid

Sig

Figure 3.5: Deep learning architecture overview using the first transfer learning method, TN-1.

The second approach, designated TN-2 and based in [45], was implemented to avoid the loss of the

original information that is present in the pre-trained weights of the original model. First, the original

layers are frozen, in order to avoid the destruction of the information they contain. Secondly, new,

trainable layers were added on top of the frozen layers. In this case, four new layers were added. The

first one is an average pooling layer, that reduces the dimension of the input feature map. It outputs a

two-dimensional vector with size (batch size, channels), where batch size corresponds to the number of
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batch images and channels is the number of channels in the input feature map (2048 in this case). The

second added layer is a dropout layer, that helps prevent overfitting by randomly discarding some of the

input units. In this case, the dropout ratio is 0.2, which means 20% of the input units will be discarded at

each training step. The next layer is a fully connected layer with a ReLU activation function to reduce the

dimension of the vector, outputting a feature map with size (batch size, 32). The last fully connected layer

added has a sigmoid activation function and outputs a single number, corresponding to the prediction of

the input. The network is then trained with a learning rate lr=0.001, and since the weights of the original

networks are frozen, only the weights of the newly added layers are changed. The goal is that the newly

added layers will learn to transform the old features into predictions in the new custom dataset. The

last step is to unfreeze the layers from the original model and train the whole network with a very small

learning rate (lr=0.00001). The goal is to slightly improve the whole network’s accuracy by training it as

a whole in the custom dataset while retaining the original information. Using this approach, the first and

second training steps were both executed for 30 epochs.

DenseDenseNeural Network

32x1
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Output

1x1
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Drop. 
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Drop. Dropout
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Figure 3.6: Deep learning architecture overview using the second transfer learning method, TN-2.

In both transfer learning methods, and after training the models, the weights corresponding to the

best epoch related to the validation accuracy were saved to later proceed with the evaluation phase.

Both methods were trained using the Adam optimization algorithm.

To compare the results in the evaluation phase, three different models were chosen. Since the Keras

API offers more than 20 pre-trained models, the criteria used to choose the networks was the top-1 and

top-5 performance in the ImageNet dataset. Therefore, the models that achieved the highest accuracy

were the Xception [10], InceptionResNetV2 [11] and EfficientNetB6 [12] architectures.

3.2.2 Xception

Introduced in Chollet 2020 [10], Xception stands for an ”extreme” version of the Inception architecture.

The base of the Xception architecture is a modified version of the depthwise separable convolution

operation. The original depthwise separable convolution is simply a depthwise convolution followed by
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a pointwise convolution:

1. Depthwise convolution consists in applying an n× n convolution in each channel of the input. For

example, if we have 4 channels, we apply a total of 4 n× n convolutions, one in each channel.

2. Pointwise convolution is performing a 1×1 convolution on the input in order to change its dimension

(number of channels).

The ”extreme” version of the Inception module has a key difference compared to the original Inception

module: the order in which the operations are made. Firstly, a pointwise convolution is performed

followed by a depthwise convolution. This important difference reduces the computational cost and

memory needed to accomplish the whole operation compared to the original version. This happens

because the number of n × n convolutions is smaller since we already reduced the input dimension in

the pointwise (1× 1) convolution.

The whole architecture can be seen in Figure 3.7 and it is composed of 14 modules, all of which

have linear residual connections around them, except for the first and last modules. The input goes first

through the entry flow, then is repeated eight times in the middle flow, and finally goes through the exit

flow. The final number of parameters of the Xception network is 22 million, compared to the InceptionV3

23 million parameters and 138 million in the VGG16 model. In terms of performance, the Xception

network is able to reach both higher top-1 and top-5 accuracies in the ImageNet dataset than VGG-16,

ResNet-152 and InceptionV3 models.

Input Entry flow Middle flow Exit flow D

2048 1000

299x299x3 x2 x8 x3

conv sep

conv

conv sep max pool add

Entry Flow

conv

conv sep conv sep add

Middle Flow

conv sep conv sep max pool add

Exit Flow

conv

conv sep

x2

x2

D

Figure 3.7: Xception architecture.
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3.2.3 InceptionResNetV2

InceptionResNetV2 was introduced in Szegedy et al. 2016 [11] and is another variant of the original

Inception network. In this network, multiple sized convolutional filters, that form the network modules,

are combined with residual connections (Figure 3.8). The use of residual connections allows the creation

of deeper networks mitigating the vanishing gradient problem, which may lead to better performance.

This network is significantly deeper than the previous Xception architecture, having around 55 million

parameters. The top-1 and top-5 accuracies in the ImageNet dataset are also slightly higher when

compared to the Xception network.

Input Inception-resnet-A

299x299x3 x5

x5

Stem Reduction-A Inception-resnet-B

x10

Reduction-B Inception-resnet-A Avg Pool Dropout Softmax

Figure 3.8: InceptionResNetV2 architecture.

3.2.4 EfficientNet

The EfficientNet network was introduced in Tan et al. 2019 [12] and is a convolutional neural network

architecture that uniformly scales all dimensions of depth/width/resolution using a compound coefficient.

Increasing a network’s depth is the most common way of scaling. As more layers are added, the

intuition is that the network is able to capture richer and more complex features. However, deeper

networks are also harder to train due to the vanishing gradient problem. One other way of scaling is

through width and is commonly used for small size models. Wider networks tend to capture more fine-

grained features, but not so well the higher-level features. In order to achieve higher accuracy, it is

important to balance all dimensions of the network: width (w), depth (d) and resolution (r). The authors

propose a new compound scaling method, using a compound coefficient Φ that scales all dimensions in

a principled way:

depth : d = αφ

width : w = βφ

resolution : r = γφ

s.t. α× β2 × γ2 ≈ 2 and α ≥ 1, β ≥ 1, γ ≥ 1

(3.1)

Starting from the baseline EfficientNet-B0, the first step is fixing φ = 1. After the calculations, the best

values for EfficientNet-B0 according to Equation 3.1 are α = 1.2, β = 1.1, γ = 1.15 (according to [12]).
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In order to obtain EfficientNet-B1 to B7, α, β and γ are fixed as constants (with the values above) and

the baseline network is scaled up with different values for Φ.

The experiments illustrated in Figure 3.9 compare the accuracy of the EfficientNet architectures

with other state-of-the-art models in the ImageNet dataset. The results demonstrate that EfficientNet

achieves better results compared to other models, whilst having significantly fewer parameters. In the

testing phase of this work, EfficientNet-B6 was chosen due to its high accuracy and reasonable size: 43

million parameters.

Figure 3.9: Model size compared to ImageNet accuracy in several architectures, (Extracted from [12]).

3.3 StyleGAN

One of the objectives of this thesis is also to explore new data augmentation techniques that could be

used to improve the datasets related to smoke and fire. Despite traditional data augmentation tech-

niques, such as image rotation, flip and scaling, are still being widely used when dealing with limited

amounts of data, new image synthesis methods have been developed that can generate high-quality im-

ages. One of those methods is by using GANs, which are usually very unstable to train but can produce

realistic results when it comes to image generation. In this work, the StyleGAN [26] architecture was

used since it is possible to train it using a custom dataset and it also can generate high-quality images.
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The StyleGAN network is an extension of the GAN architecture that allows controlling different style

properties of generated images. The architecture of the generator is significantly different from regular

GANs as the generator no longer takes a random vector from the latent space. The major differences in

the architecture of the StyleGAN generator, shown in Figure 3.10, will now be covered.

Figure 3.10: StyleGAN generator architecture, (Extracted from [26]).

StyleGAN uses a Baseline Progressive GAN and starts by training the network in smaller resolutions

(4 × 4). Once both the generator and discriminator are stable, the width and height of the images is

doubled (8× 8) and the training process is repeated. For every new resolution, a new block is added to

the synthesis network. This process is repeated until the desired output resolution is achieved, which

is 1024 × 1024 in StyleGAN. Next, an independent mapping network is responsible for generating the

style input vector, in which different elements control different visual features of an image. This network

is composed of eight fully connected layers and outputs a 512 dimension vector (4 × 4 × 512). This

style vector is then used in the synthesis network and, in each block, goes through a Adaptive Instance

Normalization (AdaIN) operation that adds the style vector to the feature map. Before each AdaIN

operation, a sample of Gaussian noise is added.

With all these changes, the StyleGAN network is not only able to generate high-resolution images

but also very effective in controlling the several features of the image. For the experiments, the authors

trained the network in both the Celeba-HQ and FFHQ datasets. The impressive quality of the generated
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images can be seen in Figure 3.11.

Figure 3.11: Results produced by the generator with the FFHQ dataset, (Extracted from [26]).

The authors improve the original architecture of the SyleGAN architecture to create the StyleGAN2

version [46], which is able to improve the Fréchet Inception Distance (FID) score when generating new

images. The most recent version of this model is named StyleGAN2-ADA [14]. The main difference from

StyleGAN2-ADA to the original StyleGAN2 architecture is the use of adaptive discriminator augmenta-

tion, a technique that dynamically controls the augmentation strength based on the degree of overfitting.

To test the potential use of smoke generated images to improve the size and quality of any dataset,

StyleGAN2-ADA was used in this work. Two different approaches were tested in this architecture:

• Use of entire smoke images to train the GAN to try and generate full smoke images, in other words,

images with small smoke hotspots and the corresponding landscape.

• Use of smoke hotspots to train the GAN in order to generate only new small smoke plumes. Then,

these generated images were to be merged with normal images to create smoke images.

In order to generate new smoke images using StyleGAN, it was necessary to have many small smoke

plumes images in the training dataset. Therefore, it was necessary to extract from the fire images only

the smoke hotspots, based on the respective coordinates. The images were then resized to a 64 × 64
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resolution. Figure 3.12 shows a few examples of smoke images that were created.

Figure 3.12: Examples of smoke hotspots extracted from fire images.

3.4 Summary

This chapter detailed the proposed approach to perform image classification on smoke images and

also to generate new images that can be used to improve limited datasets. Section 3.1 described the

pre-processing work that was implemented in smoke images. First, the smoke region was located in

the respective image and the area that it occupies was calculated. Then, two types of image division

methods were implemented. The first method divides an image into a 5 × 4 grid, where each block

is independent of the others. In the second method, each block overlaps its neighbours, by sharing a

small area of the image. Both of these methods were used to create the different datasets used to train

and test the models. Section 3.2 detailed the proposed framework used to perform image classification.

Two different transfer learning techniques were implemented to retrain the models in several training

datasets. This section also detailed the three models chosen to perform image classification: Xception,

InceptionResNetV2 and EfficientNet. Finally, section 3.3 details the StyleGAN architecture, used to
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generate new images, and also the two different implemented approaches. The first approach includes

the generation of full smoke images with the respective background and the second approach consists

in generating only small smoke plumes to be later merged with normal images.
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4.1 INOV Dataset Description

The dataset used for training and testing purposes was provided by INOV [47] and has a total of 35328

RGB images with 1920× 1080 resolution: 14125 represent images containing mainly smoke but also fire

and the other 21203 are normal images with no smoke or fire. The first set includes images with different

types of fires, from small to large smoke columns. For every fire in the dataset, there are different images

of it, corresponding to different temporal snapshots of the same fire. While some fires are extinguished in

the beginning and thus have few images, others take longer to disappear and have multiple snapshots.

All of the dataset images were captured by surveillance cameras in Portuguese forests between 2019

and 2020, and represent the most diverse weather conditions: fog, clear sky, cloudy, etc. They were

also taken at different times of the day (sunrise, sunset, night), which means they have very diverse

lighting conditions. Figure 4.1 presents some examples of non-smoke images taken in diverse weather

conditions.

Figure 4.1: Examples of non-smoke images included in the dataset, captured in different conditions. The first
example is a normal landscape. The second image is taken during sunrise. In the third image, only
clouds can be observed. In the last image, a dense fog is present, severely limiting visibility.

The samples contained in the smoke dataset include images from a variety of fires that took place

between 2019 and 2020 and include mainly white small smoke columns that correspond to early-stage

fires. Some examples of the smoke images present in the dataset can be observed in Figure 4.2.

The images contained in the INOV dataset were captured by surveillance cameras installed in several

towers and that are able to rotate 360º. The dataset is organized as follows:

1. Tower - The data and acquisition tower in which a given image was captured. There are a total of

40



Figure 4.2: Examples of smoke images included in the dataset.

9 towers that were used to capture the images present in this dataset.

2. Direction - Corresponds to the camera’s direction at the time of acquiring the image. This value

ranges from 0º to 359º.

3. Date - Corresponds to the day, month and year a given image was captured. In this case, the

images were captured in the time period of 2019 and 2020.

Table 4.1 displays the distribution of the images in relation to the tower from which they were acquired.

Table 4.1: Distribution of Smoke (S) and Non-Smoke (NS) images by tower.

Tower id Frequency (S) Percent Frequency (NS) Percent
Tower 1 204 1.4 1942 9.2
Tower 2 2795 19.8 2920 13.8
Tower 3 474 3.4 3315 15.6
Tower 4 928 6.6 2393 11.3
Tower 5 2069 14.7 1304 6.2
Tower 6 3570 25.3 2329 11.0
Tower 7 2350 16.6 2409 11.4
Tower 8 1129 8.0 2822 13.3
Tower 9 606 4.3 1769 8.3

Total 14125 100 21203 100
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4.2 Image Classification Datasets

4.2.1 Train Dataset

In order to train the CNNs, three different types of datasets were created. All datasets include both

smoke and non-smoke images. Firstly, and in order to evaluate the impact that the number of images

has in the training phase, two datasets (DN-1 and DN-2) with different numbers of training images were

built.

Two more datasets were created to study the impact of dividing the image into blocks and classifying

these blocks individually. The second type of dataset created was the grid dataset (DG). This dataset is

composed of grid images, using images from the method previously described in section 3.1.1.A. The

overlap grid dataset (DGO) was created with images in which consecutive grids overlap each other, as

described in section 3.1.1.B and exemplified in Figure 3.4. In both datasets, for training purposes, the

grids that contain a smoke area greater than 5% are labelled as smoke. All other grids are labelled as

”non-smoke”.

All the images from the train datasets were scaled down from the original 1920 × 1080 resolution to

640× 360. During the training phase, 80% of the images were used for training and the remaining 20%

were used for validation purposes.

4.2.2 Test Dataset

The test dataset was created to evaluate the quality of the models after being trained and has a total

of 1000 non-smoke images and 1000 images containing smoke. The test dataset was created after all

training datasets and, to provide an unbiased evaluation, the images that compose the test dataset are

not present in any of the training datasets. Table 4.2 provides an analysis of the smoke images present

in the test dataset.

Table 4.2: Distribution of smoke images in the test dataset by smoke area.

Smoke Area (%) Frequency Percent
0-2 487 48.7

2-10 382 38.2
10-20 80 8
20-40 42 4.2

40-100 9 0.9
Total 1000 100

Since the objective of this work is to detect early-stage fires, it was important that the majority of

images in the test dataset represent images with small smoke areas. As observed in Table 4.2, 86.9%

of the smoke images in the test dataset have a smoke area less or equal to 10%. Medium size fires,
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with a smoke area between 10% and 40%, represent 12.2% of the total smoke images. On the other

hand, large size fires with a smoke area larger than 40% represent only 0.9%.

A summary of all datasets (train and test) is shown in Table 4.3. The sum of the number of images

present in the training and test dataset was designed to be low when compared to the original number

of the INOV. As some fires have multiple snapshots corresponding to similar images, it was important

to choose for the training dataset only a few examples from each one, so that the model can generalize

well enough. Regarding the test dataset, all images correspond to fires that were not used in the training

dataset.

Table 4.3: Summary of the training datasets

Dataset Name Smoke images Non Smoke images
DN-1 320 360
DN-2 1840 2880
DG 6047 6047

DGO 6956 6956
Test 1000 1000

4.3 Image Generation Datasets

In order to generate images using the StyleGAN2 architecture, a high number of training examples need

to be used to produce decent results. As previously mentioned in section 3.3, there are two types of

train datasets: a dataset composed of normal smoke images (DS) and a dataset composed of extracted

smoke hotspots (DSH).

The DS dataset is composed of all smoke images present in the INOV dataset with a total of 14125

smoke images, exemplified in Figure 4.2. For training purposes, all images were scaled down to 256 ×

256.

The DSH has a total of 22255 training images. The number of smoke hotspot images is bigger

than the number of overall smoke images because some fire images have multiple smoke plumes. All

images from this dataset were also resized to a small 64 × 64 resolution because the majority of the

smoke plumes represent a small area in the original image. A sample of images taken from this dataset

is shown in Figure 4.3.

4.4 Summary

This chapter detailed the datasets that were used to train and evaluate the deep neural networks when

performing image classification and image generation. Regarding image classification, two different

types of datasets were created. The DN-1 and DN-2 datasets include normal images for both labels,
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Figure 4.3: Examples of smoke hotspots from the DSH dataset, used to train the StyleGAN2-ADA network.

”smoke” and ”non-smoke”, where the only difference is that the DN-2 dataset has a larger number

of training images compared to the DN-1 dataset. The second dataset type is the grid category that

also includes two datasets, DG and DGO. The DG dataset is composed of individual blocks, where an

image is divided into a 5 × 4 grid. In the DGO dataset, the only difference is that each grid overlaps

its neighbours by 15%. The test dataset created to evaluate the image classification models includes

different images from the ones present in the training datasets and was made to match the main goal of

this thesis: the detection of early-stage fires. Regarding image generation, two types of datasets were

created. Whilst the first DS dataset is composed of normal images, the DSH dataset is made of small

smoke plumes that were extracted from the original smoke images.
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This chapter will detail the experimental evaluation of the proposed deep learning approach. Sec-

tion 5.1 describes the experimental methodology and results achieved when generating new smoke

images. Section 5.2 presents the results when performing image classification in the several training

datasets using the proposed architectures and transfer learning methods. Finally, section 5.3 summa-

rizes the results that were obtained and compares them with other papers with similar goals.

Both the image generation and image classification experiments were run using Google’s cloud ser-

vices [48]. The specifications of the virtual machine used include 2 Virtual Centralized Processing

Units (vCPUs), 16GB RAM, a Nvidia Tesla T4 GPU with 16GB dedicated VRAM, and Ubuntu 20.04 as

the operating system. This chapter is divided as follows. Section 5.1 will describe the methodology and

results achieved in the image generation stage. Section 5.2 details the results achieved when classifying

the smoke and non-smoke images. Finally, section 5.3 will compare the results achieved in the image

classification step with other similar works regarding smoke and fire detection.

5.1 Image Generation

The image generation evaluation was performed using the StyleGAN2-ADA [14] architecture available

in its official repository [49]. The image generation stage is divided into two main purposes: generating

an entire smoke image and generating only small smoke hotspots. The latter is intended to be artifi-

cially merged with normal images to create smoke images. This section is divided into four main topics:

subsection 5.1.1 details the evaluation metric used to assess the quality of the generated images; sub-

section 5.1.2 will present some results from the StyleGAN2-ADA authors, to have a base comparison

model; section 5.1.3 will display the results that were achieved when generating full smoke images;

finally, subsection 5.1.4 will describe the results achieved when generating small smoke hotspot images.

5.1.1 Metric

When using several methods to generate fake images, such as GANs or VAEs, it is important to have a

measure that indicates how good the generated images are compared to real-world examples. One of

the most popular metrics is the FID metric.

Heusel et al. 2017 [50] proposed the FID metric that relies on a pre-trained Inception-v3 network on

ImageNet to capture the features of the images. It uses the last pooling layer before the classification

output to capture the most relevant features of an input image. This method is done using a collection

of real and generated images. The data distribution of these features is then modelled as a multivariate

Gaussian distribution. The FID score between real and generated images is calculated using the two

distributions (real and generated images distributions) with the Wasserstein-2 distance. A lower FID

score represents a better quality image. The FID score is calculated using the following equation, where
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µ1 and µ2 refers to the feature-wise mean of the real and generated images; Σ1 and Σ2 refer to the

covariance matrix for the feature vectors of both images; and Tr refers to the sum of the elements along

the main diagonal of the matrix:

FID = ‖µ1 − µ2‖2 + Tr(Σ1 + Σ2 − 2(Σ1Σ2)2) (5.1)

In practice, the FID metric works well when adding some kinds of distortions to an image, such as

blur or noise, as the value will increase as more distortion is applied.

5.1.2 StyleGAN2-ADA

The main results achieved using the StyleGAN2-ADA architecture used two large datasets: the Flickr-

Faces-HQ (FFHQ) dataset [51] and the LSUN cat dataset [52]. The FFHQ is a high-quality image dataset

of human faces, originally created as a benchmark for the StyleGAN architecture. The dataset consists

of 70,000 high-quality PNG images at 1024×1024 resolution and contains considerable variation in terms

of age, ethnicity and image background. It also has good coverage of accessories such as eyeglasses,

sunglasses, hats, etc. On the other hand, the LSUN cat dataset has a total of 1,657,266 cat images.

To evaluate the quality of the generated images, the FID metric was used, where lower values translate

into higher quality generated images.

Table 5.1: Comparison of the FID metric between the StyleGAN2 and StyleGAN2-ADA architectures in both FFHQ
and LSUN cat datasets, using different dataset sizes during training.

Dataset Size StyleGAN2 (FID) StyleGAN2-ADA (FID)

FFHQ 256x256

1k 100.16 21.29
5k 49.68 10.96

10k 30.74 8.13
30k 12.31 5.46
70k 5.28 4.30

140k 3.71 3.81

LSUN cat 256x256

1k 186.91 43.25
5k 96.44 16.95

10k 50.66 13.13
30k 15.90 10.50

100k 8.56 9.26
200k 7.98 9.22

In practice, the use of StyleGAN2-ADA compared to the baseline StyleGAN2 allows achieving lower

FID values when training datasets with limited data. The results presented by the authors are signifi-

cantly better when the training dataset has less than 30k images. Table 5.1 compares the FID results

from both SyleGAN2 and StyleGAN2-ADA achieved by the authors [14] using different training dataset

sizes. Figure 5.1 displays a few examples of the generated images using the FFHQ and LSUN datasets

for training.
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Figure 5.1: Examples of generated images using the StyleGAN2-ADA architecture. The left figure represents gen-
erated cat images. The right figure has real images from the AFHQ Cat dataset [53] used for training.
(Extracted from [14]).

5.1.3 Smoke Images

The first approach when generating new images was trying to generate smoke images with a similar

forest background, just as in the INOV dataset. Therefore, the dataset used to train the StyleGAN2-ADA

model was the DS dataset, previously described in section 4.3, containing 14125 smoke images. The

StyleGAN2-ADA model allows to stop and resume training when desired. To do so, the model saves

periodic snapshots that preserve the training information. In this case, the gap between saved snapshots

is when the discriminator sees about 40k images, meaning the generator already generated this amount

of images. The way to evaluate the quality of the generated images is by using the FID metric, the same

method used by the StyleGAN2-ADA authors in their experiments. The results of training StyleGAN2

using the entire full smoke images dataset are summarized in Table 5.2.

Table 5.2: Evaluation results using StyleGAN2 using the full smoke DS dataset for training. #images [K] represent
the number of images used during training, divided by 1000.

Snapshot #images [K] Time (hh:mm:ss) FID (256x256)
1 40.4 00:17:30 336.47
2 80.7 01:27:04 327.77
3 121.1 02:26:57 142.45
4 161.5 03:37:59 71.77
5 201.8 04:49:53 52.57
6 242.1 05:58:40 46.41
7 282.4 07:08:02 42.67
8 322.8 08:17:25 41.16
9 363.1 09:25:05 41.15
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It is important to note that the dataset used in this experiment is very different from the FFHQ, LSUN

and even the AFHQ cat datasets used by the StyleGAN2-ADA authors. All these datasets offer high-

quality images of close-range objects, whilst the DS dataset represent smoke images in the most diverse

conditions, where the smoke region, in the vast majority of the cases, represents only a small portion of

the image. Also, to establish a base reference, in order to obtain a FID value less than 5 in the FFHQ

dataset with 140k 1024 × 1024 images, the authors trained the model for more than 5 days, using 8

parallel NVIDIA Tesla V100 GPUs.

In our experiments, the FID score started to stabilize around snapshot 6, when the discriminator had

seen around 242k images, achieving the lowest score at 41.15. In total, the model was trained for 9

hours, 25 minutes and 5 seconds using 14125 images and the discriminator saw 363k images. This

value is similar to the one achieved by the authors when training the LSUN cat dataset with 1k images.

Figure 5.2 displays a few examples of the total 1k generated images.

In all images it is possible to notice a lot of green tones, representing trees and other vegetation and

also a clear division between the sky and the rest of the background. A few images also include resi-

dential areas, in which it is possible to see white walls and red roofs. Finally, there are some images that

contain areas resembling smoke plumes, despite being a little blurry at times. With these experiments,

despite some of the images being very similar to real ones, it was not possible to include them in the

smoke dataset, since the majority of the generated images did not have any smoke area.

5.1.4 Smoke Plumes Images

The second approach when generating new images was trying to generate only small smoke plumes

with no background. Therefore, the dataset used in the training stage was the DSH dataset, previously

described in section 4.3, containing 22255 smoke plumes images. In this case, the saved snapshots

have a gap that corresponds to the discriminator having seen about 41k images. The results of training

StyleGAN2 using the DSH dataset are summarized in Table 5.3.

Table 5.3: Evaluation results using StyleGAN2 using the smoke plumes DSH dataset for training. #images [K]
represent the number of images used during training, divided by 1000.

Snapshot #images [K] Time (hh:mm:ss) FID (64x64)
1 41.1 00:38:02 236.99
2 82.0 01:09:29 131.44
3 123.0 01:40:53 60.45
4 164.0 02:12:18 42.32
5 204.9 02:43:41 28.92
6 245.9 03:15:07 20.90
7 286.8 03:46:34 14.84
8 326.9 04:19:26 12.61
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Figure 5.2: Examples of 256× 256 full smoke generated images using the StyleGAN2-ADA architecture.

With these experiments, the best FID score achieved was 12.61 in snapshot 8, when the discrim-

inator had seen 326k images. Comparing both approaches, we can conclude that the FID value was

lower in this second method, which allows generating images with higher quality. A possible explanation

is the complexity of the training images: whilst in the first DS dataset, the images are complex with lots

of different backgrounds and smoke plumes sizes, the second DSH dataset only contains small 64× 64

smoke plumes. The best FID value (12.61) is similar to the one achieved by the StyleGAN2-ADA authors

using the FFHQ 5k dataset and also the LSUN 10k dataset for training. In Figure 5.3, we can see some

examples of the total 1k generated smoke plumes images.
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Figure 5.3: Examples of 64× 64 smoke plumes generated images using the StyleGAN2-ADA architecture.

5.2 Image Classification

This section will present the results achieved when performing image classification in the several training

datasets using the Xception, InceptionResNetV2 and EfficientNet architectures. The first and second

sets of results are related, respectively, to the first and second transfer learning methods, TN-1 and TN-2,

previously described in section 3.2.1. The metrics used to test the model are described in section 5.2.1.

5.2.1 Metrics

In order to detail the relevant metrics, and considering the problem at hand, only 2 classes will be

considered: Smoke and Non-Smoke. The Smoke class represents an image with smoke, flames, or any

presence of fire. The Non-Smoke class corresponds to normal images. There are 4 important concepts

to take into account:

• True Positives (TP) - The cases in which the model predicted SMOKE and the actual label is

SMOKE.

• True Negatives (TN) - The cases in which the model predicted NON-SMOKE and the actual label
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is NON-SMOKE.

• False Positives (FP) - The cases in which the model predicted SMOKE and the actual label is

NON-SMOKE.

• False Negatives (FN) - The cases in which the model predicted NON-SMOKE and the actual label

is SMOKE.

The most important metrics that can be used to evaluate image classification models are the follow-

ing:

• Accuracy - accuracy is the number of correct predictions made by the model compared to all

predictions that were made. It is a good metric to use when the variables in the target classes are

nearly balanced. In this thesis, the majority of the training datasets have a balanced number of

images in both classes.

Accuracy =
Number of correct predictions

Total number of predictions made
(5.2)

• Precision - precision is a measure that shows the proportion of images that were classified as

having smoke, actually had smoke. This metric allows seeing if the number of false positives is too

high compared to the number of true positives.

Precision =
TP

TP + FP
(5.3)

• Recall - recall is a measure that tells the proportion of images that actually have smoke, compared

to the images that the model predicted as having smoke.

Recall =
TP

TP + FN
(5.4)

• F1 Score - combines both precision and recall in a single value, by taking their harmonic mean. A

good F1 score translates in both a low number of both false positives and false negatives, meaning

that the model is correctly identifying real threats.

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(5.5)

5.2.2 Experiments

The experiments performed using the first transfer learning method, TN-1, are summarized in Table 5.4.

In this approach, a few layers are added at the end of the models in order to support the only 2 classes
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and, then, the whole network is trained using the target dataset and a very small learning rate.

Table 5.4: Results for the TN-1 method.

Model Dataset Accuracy Precision Recall F1

Xcep

DN-1 0.867 0.814 0.950 0.877
DN-2 0.950 0.975 0.923 0.948
DG 0.868 0.800 0.981 0.881

DGO 0.917 0.897 0.942 0.919

IRNv2

DN-1 0.839 0.822 0.865 0.843
DN-2 0.954 0.968 0.939 0.953
DG 0.837 0.854 0.812 0.832

DGO 0.833 0.843 0.819 0.831

EN-B6

DN-1 0.791 0.892 0.663 0.761
DN-2 0.911 0.951 0.868 0.907
DG 0.685 0.894 0.420 0.571

DGO 0.653 0.599 0.927 0.724

When training all models with the first transfer learning method, the InceptionResNetV2 architecture

presented the best accuracy (0.954) and F1 score (0.953) metrics trained in the DN-2 dataset. The

Xception model has the best results both in precision (0.975), when trained in the DN-2 dataset, and

recall (0.981), when trained in the DG dataset. The results show that the EfficientNet network reached

lower values in most of the metrics compared to the other two models when trained in any of the datasets.

Comparing both methods when classifying the entire image (datasets DN-1 and DN-2) or individual

image grids (datasets DG and DGO), the results were better when the network is trained and evaluated

with the whole images. It is also important to note that the results of training both DN-1 and DN-2

datasets, where the only difference is the number of training images, show that a higher number of

training images is better.

Table 5.5: Results for the TN-2 method.

Model Dataset Accuracy Precision Recall F1

Xcep

DN-1 0.870 0.836 0.920 0.876
DN-2 0.968 0.976 0.959 0.967
DG 0.849 0.978 0.714 0.825

DGO 0.860 0.980 0.734 0.839

IRNv2

DN-1 0.903 0.879 0.934 0.906
DN-2 0.959 0.977 0.940 0.958
DG 0.726 0.993 0.455 0.624

DGO 0.778 0.984 0.565 0.718

EN-B6

DN-1 0.900 0.887 0.918 0.902
DN-2 0.982 0.987 0.977 0.982
DG 0.501 0.506 0.081 0.140

DGO 0.505 0.739 0.017 0.033

The second set of results, regarding the second transfer learning method, TN-2, are shown in Ta-

ble 5.5. In this approach, the training is executed in two phases: firstly we freeze the original network
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and train only the recently added layers in the new dataset; secondly, the original network is unfrozen

and the whole network is trained using a small learning rate.

When it comes to the second transfer learning approach, the EfficientNet-B6 network displays the

best accuracy (0.982), recall (0.977) and F1 score (0.982), when trained in the DN-2 dataset. Regard-

ing the precision metric, despite the InceptionResNetV2 model having the best value (0.993), all other

metrics are significantly lower compared to the best EfficientNet-B6 result. Similar conclusions to the

ones in the previous method can be drawn when comparing both normal and grid datasets: both nor-

mal datasets achieved better results in all models when compared to the grid datasets. Despite having

the overall best result, the EfficientNet network was unable to deal with both DG and DGO datasets,

displaying in both poor results, namely in the precision and F1 score. The cause of these poor results,

for example in the DG dataset, is the high number of false negatives and true negatives, which com-

bined resulted in 1840 ”non-smoke” predictions when the real number of ”non-smoke” images in the test

dataset is 1000.

When comparing both transfer learning techniques, TN-1 and TN-2, we conclude that the results for

the normal datasets were better using the TN-2 method. On the other hand, when considering the grid

datasets, the results were better using the TN-1 method. Overall, the best result is the one achieved in

the second transfer learning approach, by the EfficientNet-B6 network.

5.2.3 Best Results Analysis

To better understand the obtained results, a deeper analysis was performed using the EfficientNet-B6

model trained in the DN-2 dataset using the TN-2 approach. Table 5.6 displays the total number of TP,

TN, FP and FN classified by the model. With 98.2% accuracy, the model only predicted ”smoke” in a

”non-smoke” image in 13 out of the 1000 ”non-smoke” images. On the other hand, the model predicted

”non-smoke” in a ”smoke” picture in 23 out of the 1000 ”smoke” images.

Table 5.6: Total number of TP, TN, FP and FN.

True Positives True Negatives False Positives False Negatives
977 987 13 23

Figure 5.4 displays a line chart of the train and validation accuracy using the TN-2 transfer learning

method. In the first training stage, where the original weights of the models are frozen and only the

newly added layers are trained, the training accuracy is steadily increasing. The validation accuracy is

also increasing, despite having some ups and downs. In the second training stage, where the whole

network is trained, we conclude that the validation accuracy has a great improvement, getting closer to

the training accuracy. We can also conclude that the model is not overfitting because the final train and

validation have similar accuracy values, with a small 0.02 gap.
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Figure 5.4: Charts A) and B) represent, respectively, the training and validation accuracy in the first and second
training stages using the TN-2 method.

To further analyse the results, a visual inspection of the images was performed. To highlight this

analysis, the following images are annotated with a corresponding label (1 for ”smoke” and 0 for non-

smoke) and the corresponding prediction. For this reason, if the label is 1 (smoke), a prediction value

closer to 1 indicates that the model is very confident about the prediction. On the other hand, if the label

is 0 (non-smoke), a prediction value closer to 0 shows more confidence by the model.

The first examples are images that the model classified as ”smoke” but they actually do not contain

smoke, in other words, false positives. The majority of false positives correspond to images that either

have fog or clouds or images that are a little blurry, as shown in Figure 5.5.

Figure 5.5: Examples of False Positives.

Figure 5.6 shows examples of true positives, in other words, images that had smoke and were

correctly labelled as ”smoke”. The majority of the examples presented show small smoke columns,

which the model correctly identified.
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Figure 5.6: Examples of True Positives. A red bounding box identifies the smoke location.

The last few examples, displayed in Figure 5.7, are regular images that do not contain smoke and the

model also correctly classified them as ”non-smoke”. The first three examples are particularly interesting

as they have many clouds that could be interpreted as smoke.

5.3 Discussion

This section compares the results that were achieved in this thesis to other results achieved in similar

works, summarized in Table 5.7. The majority of the related works focuses on detecting large areas of

fire or smoke in images, not considering the importance of detecting these incidents at an early stage.

Jiao et al. 2019 [7] proposes the use of the YOLOv3 object detection architecture to train the model
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Figure 5.7: Examples of True Negatives.

Table 5.7: Results comparison with other related works.

Method Technique Accuracy Image type Dataset
Jiao et al. 2019 [7] YOLOv3 83% Large size fires Private
Frizzi et al. 2016 [8] CNN 97.9% Large size fires and smoke areas Private
Yin et al. 2017 [9] CNN 98.1% Large smoke areas Private
Wang et al. 2020 [32] Computer vision >99% Small smoke columns Private
Muhammad et al. 2018 [30] AlexNet 94.4% Fire and smoke frames Mivia [54]
Foggia et al. 2015 [55] Computer vision 93.6% Fire and smoke frames Mivia [54]
Lascio et al. 2014 [56] Computer vision 92.6% Fire and smoke frames Mivia [54]
Proposed EfficientNet 98.2% Small smoke columns Private

with fire images. Then, they tested the model using a UAV to perform fire detection. Using 60 test

images, the detection rate achieved 83%. Despite the model being able to pinpoint smoke and fire
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locations using bounding boxes, the dataset consisted in large size fires, whereas this work focuses on

the early detection of small smoke columns. In Frizzi et al. 2016 [8], the authors use CNNs to perform

smoke detection in images. The classification accuracy on the test dataset is 97.9%, which is similar

to the one achieved in our experiments (98.2%). However, the images shown in the respective paper

also consist in large fires with big flames and smoke columns. Yin et al. 2017 [9] also uses CNNs for

smoke detection. The examples from the smoke training dataset represent images where only smoke

is visible, rather than images with small smoke areas like the ones used in this thesis. The accuracy

rate presented is 98.1% using a total of 1505 images for testing purposes. Wang et al. 2020 [32] aims

to detect early-stage fires, making use of several computer vision techniques such as moving region

detection, smoke-colour analysis and sharp edge detection to identify small smoke plumes. The results

presented show a >99% accuracy rate. Despite the promising results, the datasets that were used

in this work were not disclosed. It is also important to mention that the number of smoke examples

represents only about 2% of the total number of images in each of the three datasets, which sets the

baseline for a naive classifier at 98% accuracy when he classifies all images as non-smoke.

There is also a public fire detection dataset, the Mivia dataset [54], that is composed of 14 videos

that include fire and smoke frames captured indoor and outdoor and also 17 videos with no events of

interest. This dataset includes some images with small smoke areas that are similar to the ones used

in this work. In Muhammad et al. 2018 [30], the authors use the AlexNet architecture pre-trained in

the ImageNet dataset to detect fire and smoke in images. The network is fine-tuned using a target

dataset and the Mivia dataset was used to evaluate the proposed approach. The accuracy presented

is 94.4% after fine-tuning the network and 90.1% without the fine-tuning phase. Foggia et al. 2015 [55]

uses several methods to identify the presence of fire: colour-based, shape analysis and movement

analysis in consecutive frames. Then, these features are combined to produce a single output. To

assess the quality of the proposed approach, the authors achieved 93.6% accuracy in the Mivia dataset.

In Lascio et al. 2014 [56], the pixels corresponding to moving objects are extracted from the images

by using a detection algorithm. Then, two different kinds of information, respectively based on colour

(Colour Threshold) and movement (Connected Component Filter and Disorder Evaluation), are properly

combined by a multi-expert system to identify the presence of fire in videos. To test the approach, once

again the Mivia dataset was used, and the results showed a 92.6% accuracy.

In summary, despite most of the works being focused on detecting large areas of smoke or flames

and the datasets used were not public, the proposed approach used in this dissertation achieved a

98.2% accuracy whilst, simultaneously, being targeted to detect small emerging fires.
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This chapter starts by listing the main conclusions and contributions of this dissertation (section 6.1)

and then presents some approaches that could be explored in future works (section 6.2).

6.1 Contributions

This MSc thesis presents a deep learning method that allows the early detection of forest fires, commonly

represented as small smoke areas, using images taken from multiple surveillance cameras. This work is

divided into three main stages: (i) data pre-processing, (ii) image generation and (iii) image classification.

The data pre-processing stage includes the several steps performed to create the datasets used

to train and test the models in both image generation and image classification. The data provided

in the INOV dataset was used to locate and calculate the smoke area in the fire images. Regarding

image classification, the image subdivision in several blocks allowed the study of this approach when

compared to performing classification in regular images. When it comes to image generation, the smoke

area location in the fire images was important to extract the smoke plumes that were used to train the

image generation network.

The image generation phase was performed in the StyleGAN2-ADA architecture using two methods.

In the first method, the goal was to use entire smoke images to train the network and try to generate

fake smoke images that resemble real ones. This approach was not very successful, as the majority

of the fake images generated either did not include any smoke areas or contained blurry areas. Since

the results achieved did not allow to include these images in real datasets, a new method was tested,

where the objective was to generate only small smoke plumes that later could be merged with regular

images to create artificial fire images. This method achieved a similar FID score (12.61) compared to

the baseline scores reached by the original StyleGAN2-ADA authors.

The proposed approach in the image classification stage compared the results obtained using the

Xception, InceptionResNetV2 and EfficientNet architectures pre-trained in the ImageNet dataset. These

models were then fine-tuned using two different transfer learning methods and several target datasets.

The dataset used to test the quality of these models included mainly images with small size smoke

areas, to assess the performance when detecting early-stage fires. The best result was obtained using

the EfficientNet-B6 network and achieved a 98.2% accuracy.

6.2 Future Work

There are a few approaches that can be explored in future works. For instance, this work was performed

using regular fire and non-fire images that were sampled from videos captured by the surveillance cam-

eras. An interesting approach is to test and make the necessary adjustments to apply the image classi-
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fication process in live real-world scenarios, for example in the CICLOPE project [3], taking into account

processing performance and other real-life constraints. Regarding image generation, the generated im-

ages in this work were not used in the training datasets during image classification and, therefore, there

are also a few approaches that can be taken into account. The first approach is to explore new ways

to generate viable smoke images that can be used in real datasets. The second approach could be ex-

ploring methods that can be used to merge two different input images, to create a realistic output image,

such as by using the SinGAN network [57]. In this case, the goal is to merge small smoke plumes with

normal images, to generate artificial smoke images. Regarding the image classification process, there

are a couple of scenarios that were not taken into account in this work, due to the lack of examples in the

original dataset. For instance, training the model to detect fires at night or in other adverse conditions

could be an interesting approach. One other way that has been recently used to monitor wildfires, to

complement the use of surveillance cameras, is by using UAVs. It would also be interesting to test the

model using aerial images captured from this source and make the necessary adjustments to allow the

UAV to automatically detect the presence of a fire.
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