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Abstract

Unlimited vector extension (UVE) is a novel instruction set architecture extension that takes stream-

ing and SIMD processing together into the modern computing scenario. It aims to overcome the short-

comings of state-of-the-art scalable vector extensions by adding data streaming as a way to simultane-

ously reduce the overheads associated with loop control and memory access indexations, and mem-

ory access latency. This is achieved through a set of instructions which are able to pre-configure the

loop memory access pattern(s), attaining accurate and timely data prefetching on predictable access

patterns, such as in multidimensional arrays or on indirect memory access patterns. Each of the con-

figured data streams is associated with a general vector register, which is then used to interface with

the streams. In particular, iterating over the stream is simply achieved by reading/writing to the corre-

sponding input/output stream, as the data is instantly consumed/produced. To evaluate the proposed

UVE, a first gem5 implementation was made on an out-of-order processor model, based on the ARM

Cortex-A76, thus taking into consideration typical speculative and out-of-order execution found in high-

performance computing processors. The evaluation was carried out on a set of representative kernels,

by assessing the number of executed instructions, its impact on the memory bus and its overall perfor-

mance. Compared with state-of-the-art solutions, such as the upcoming ARM Scalable Vector Extension

(SVE), results show that the proposed solution attains performance speedups between 2x and 4x.
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Resumo

Unlimited Vector Extension é uma arquitectura de conjuntos de instruções que junta os conceitos de

transmissão de dados em série (fluxo) com o paradigma de processamento instrução única em múltiplos

dados. Este trabalho tenta melhorar o atual estado da arte das extensões vectoriais escaláveis através

da adição do conceito de transmissão de dados em série, permitindo assim reduzir as instruções de

controlo de loop e acesso à memória despensáveis e melhorar a latencia de acesso à memoria. Através

da pré-configuração do acesso à memoria em fluxo é possivel realizar o pré-carregamento de dados

da memoria com absoluta precisão e excelente temporização, mesmo em acessos multidimensionais,

complexos e indirectos. A transmissão de dados para o processador é conseguida realizada através

de um conjunto de registos vectoriais genéricos, servindo de interface para a transmissão do fluxo de

dados. Em particular, a iteração do fluxo de dados é executada através da leitura/escrita do registo

vectorial associado, sendo os dados automaticamente consumidos/produzidos para a transmissão em

série associada. A avaliação foi realizada utilizando o simulador gem5, onde o modelo de um pro-

cessador fora de ordem, basedo no Cortex-A76 da ARM, foi modificado e extendido para suportar a

extensão vectorial. A avaliação teve em conta um conjuto de aplicações representativas, tendo obtido

melhorias de performance entre 2 e 4 vezes, relativamente à extensão ARM Scalable Vector Extension

(SVE).

Palavras Chave

Extensão SIMD, Processamento Vectorial Escalável, Computação em Fluxo de Dados, Processadores

de Uso Geral

iv



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background & Related Work 5

2.1 SIMD: Architectures & Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 SIMD in RISC: Arm NEON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 SIMD in CISC: x86 SSE/AVX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 SIMD Extensions Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Scalable Vectorial Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 RISC-V "V" Vector Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Arm "SVE" Scalable Vector Extension . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Streaming Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Memory Access Pattern Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Scalar Stream-Based ISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Pattern Description and Stream Fundamentals 23

3.1 Introduction to linear patterns - Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Complex accesses - Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Indirection accesses - Indirection Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Multi-decriptor organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



I Instruction Set Achitecture

4 Instruction Set Architecture Design 33

4.1 Architectural State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Vectorial Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Streaming Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.3 Predicate Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Arithmetic Instructions and Predication Mechanisms . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Instructions overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Valid index and mismatched widths . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 Predication mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Data transfer instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Vector load and store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Moving data between registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Stream Description Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Basic Stream Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 Streams with Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.3 Stream State Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.4 Stream Cache Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.5 Stream-dependent Execution Flow Control . . . . . . . . . . . . . . . . . . . . . . 50

4.4.6 Flow Control with Inter-loop Constraints . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Encoding Space Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 ISA Evaluation and Discussion 56

5.1 Compilation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Memcpy performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.2 Strided memory transactions performance evaluation . . . . . . . . . . . . . . . . 63

5.3.3 SAXPY benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.4 IRSmk benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

II Microarchitecture

6 Microarchitecture support for data streaming 67

vi



6.1 Stream Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Out-of-order stream configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.2 Stream renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.3 Background stream processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.4 Memory access management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1.5 Data buffering and consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.6 Store streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.7 Detection of stream termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Speculative execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.3 Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.4 Faulting memory accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Results Overview and Discussion 83

7.1 MEMCPY performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Non-unitary stride in memory transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 SAXPY benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4 IRSmk benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.5 HACCmk benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Conclusions and Future Work 91

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



viii



List of Figures

2.1 NEON 8-way 16-bit add operation [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 x86 AVX register bank structure [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Evolution of vector width in x86 Single Instruction Multiple Data (SIMD) extensions . . . . 11

2.4 Illustration of "vsetvli" instruction behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Illustration of "whilelt" instruction behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Side by side SAXPY code complexity comparison. . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Side by side MEMCPY code complexity comparison. . . . . . . . . . . . . . . . . . . . . . 16

2.8 Visual and Loop memory access representations side by side. . . . . . . . . . . . . . . . 17

2.9 Descriptor specification proposed by Neves et al. [3]. . . . . . . . . . . . . . . . . . . . . . 18

2.10 Example of a triangular matrix access represented using the base descriptor and one field

modifier. Retrieved from [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.11 Multiple examples of representable pattern using Neves et al. proposed pattern descrip-

tion methods [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.12 Memory access pattern decomposition percentage in CortexSuite and SPEC CPU 2017

benchmark suites [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Simple stream representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Linear memory access pattern description. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Description of regular 2-D examples, with unitary and non-unitary strides. . . . . . . . . . 25

3.4 Lower triangular memory access pattern description. . . . . . . . . . . . . . . . . . . . . . 25

3.5 Deconstructed lower triangular memory access pattern description. . . . . . . . . . . . . 26

3.6 Detailed deconstructed lower triangular memory access pattern description. . . . . . . . . 27

3.7 Descriptors summary containing linear descriptors and static modifiers. . . . . . . . . . . 27

3.8 Indirection stream-based memory access. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.9 Deconstructed stream-based indirection memory access. . . . . . . . . . . . . . . . . . . 28

3.10 A showcase of possible, yet very complex, memory access patterns. . . . . . . . . . . . . 29

3.11 Descriptors summary containing linear descriptors and dynamic modifiers. . . . . . . . . 30

ix



3.12 Possible combinations of streaming configurations. . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Vector register architecture with configuration examples. . . . . . . . . . . . . . . . . . . . 35

4.2 Vertical add UVE instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Horizontal add UVE instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Shift left logical UVE instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Shift left logical scalar UVE instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 UVE predication instructions example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 UVE predicate creation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 Predicate based branch UVE instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 Vector load UVE instruction example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.10 Vector move and transpose UVE instruction. . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.11 UVE vector data conversion instruction example. . . . . . . . . . . . . . . . . . . . . . . . 44

4.12 UVE Shifted conversion instruction example (widenning). . . . . . . . . . . . . . . . . . . 45

4.13 UVE Shifted conversion instruction example (narrowing). . . . . . . . . . . . . . . . . . . 46

4.14 Example with tri-dimensional decription pattern. . . . . . . . . . . . . . . . . . . . . . . . . 46

4.15 Example with lower diagonal description pattern. . . . . . . . . . . . . . . . . . . . . . . . 48

4.16 Examples of dimension coupled streaming. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.17 Vector-coupled streaming behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.18 RISC-V base opcode map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.19 Concretization of the SAXPY example with UVE. . . . . . . . . . . . . . . . . . . . . . . . 54

4.20 Comparison of the SAXPY example between Scalable Vector Extension (SVE) and UVE. 54

5.1 Compilation toolchain automatic feature injection mechanism. . . . . . . . . . . . . . . . . 57

5.2 Extended assembly directives support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Accuracy and speed positioning of computer architecture simulators [5]. . . . . . . . . . . 58

5.4 Overview of the modifications to the gem5 simulator. . . . . . . . . . . . . . . . . . . . . . 59

5.5 The process of defining and expanding one instruction with the gem5 instruction set parser. 60

5.6 MEMCPY kernel instruction count comparison. . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7 Number of instructions comparison in the execution of the memcpy kernel. . . . . . . . . 63

5.8 Paimpac benchmark code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.9 Instructions ratio comparison for the paimpac kernel. . . . . . . . . . . . . . . . . . . . . . 64

5.10 Instructions ratio comparison for the SAXPY kernel. . . . . . . . . . . . . . . . . . . . . . 65

5.11 IRSmk benchmark code and parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Microarchitecture overview block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Stream life-cycle in the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

x



6.3 Out-of-order configuration reordering and stream renaming. . . . . . . . . . . . . . . . . . 69

6.4 Stream pattern processing diagrams and state machines. . . . . . . . . . . . . . . . . . . 70

6.5 Stream processing with full vs split methods. . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.6 Memory manager and queue structures when streaming load data. . . . . . . . . . . . . . 72

6.7 Data reordering when streaming load data. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.8 FIFO queues configurations comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.9 Vector register renaming upon data consumption. . . . . . . . . . . . . . . . . . . . . . . . 76

6.10 Memory manager and queue structures when streaming store data. . . . . . . . . . . . . 76

6.11 Stream ending detection on loading data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.12 Speculation handling in multiple streaming phases. . . . . . . . . . . . . . . . . . . . . . . 78

6.13 Speculation mechanisms in the queues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.14 Microarchitecture overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 MEMCPY performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 MEMCPY prefetcher comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 MEMCPY Bus Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.4 Memory transaction impact of non-unitary stride. . . . . . . . . . . . . . . . . . . . . . . . 86

7.5 SAXPY SpeedUp and Bus Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.6 SAXPY blocked cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.7 IRSmk Performance Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.8 IRSmk Bus Utilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.9 IRSmk Blocked Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.10 HACCmk results. Performance, bus utilization and pipeline blocked cycles. . . . . . . . . 90

xi



xii



List of Tables

4.1 Datatype and data width combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 UVE predication comparisons table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Available UVE widenning and narrowing conversion methods. . . . . . . . . . . . . . . . . 44

4.4 Encoding map of the StreamOps (custom-0) and StreamSet (custom-1) instructions. . . . 53

4.5 Instruction set instructions, organized by type. . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Paimpac kernel benchmarking with varying kernel complexities and element strides. . . . 64

5.2 IRSmk results at size 253. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 IRSmk results at size 1003. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 CPU model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xiii



Listings

2.1 SAXPY C code listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 SAXPY C unrolled loop listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 SAXPY SIMD-parallel loop listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 SAXPY loop assembly code listing for SIMD processing. Pseudo Instruction Set Architec-

ture (ISA) based on NEON instruction set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 SAXPY loop assembly code listing for RISC-V "V" Vector Extension (RVV) scalable vector

processing. RISC-V with V extension [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 SAXPY loop assembly code listing for scalable architecture processing in Arm SVE [7]. . 13

4.1 Configuration code example for a tri-dimensional access. The configuration parameters

are detailed in Figure 4.14. This example assumes a word-sized elements loading scenario. 48

4.2 Code example of inner loop processing with outer loop memory access. . . . . . . . . . . 50

xiv



Acronyms

ALU Arithmetic and Logic Unit

AMPM Access Map Pattern Matching

BOP Best-Offset Prefetcher

CPU Central Processing Unit

DLP Data-Level Parallelism

FP Floating-Point

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

GPP General Purpose Processor

HPC High-Performance Computing

ILP Instruction-Level Parallelism

ISA Instruction Set Architecture

MEMCPY Memory copy. Procedure that copies a source zone of memory to a destination one.

SAXPY Computation of the product of the Real Value A with each element of the Real matrix X

added to the respective element of the Real matrix Y

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SVE Scalable Vector Extension

RVV RISC-V "V" Vector Extension

UVE Unlimited Vector Extension

VL Vector-Length

xv



xvi



1 Introduction

1.1 Motivation
In computing, there is a constant race to obtain the most performance out of a processor. This

competition has been shifting from raw performance increases to more energy-efficient processors, while

still increasing the processing power. This movement removed the main focus from Instruction-Level

Parallelism (ILP) only and shifted it to a combination of instruction, task and Data-Level Parallelism (DLP)

that make out the architecture paradigm of modern high-performance processors.

While instruction-level and multicore parallelism are easily noticed in modern processors, the DLP

is hidden in single-instruction multiple-data units. These units are made of wide Arithmetic and Logic

Units (ALUs) that allow for multiple data elements to be processed at the same time, proportionally

decreasing the computation time, or increasing the processing throughput. In contrast, the scalar nature

of a processing core allows only for one instruction to be processed in one arithmetic and logic unit at

once. While processing more data in one cycle is a clear benefit; Memory access bandwidth, complex

memory patterns, higher latency SIMD instructions, and other constraints limit the promised potential.

Specific applications, like matrix computations, image processing, audio processing are ideal for be-

ing accelerated with SIMD units, due to their array-like memory and processing organization and large

datasets. Also, the SIMD units can only process a fixed data size at each cycle, e.g. Arm NEON is limited

128-bits wide [1], and x86 AVX to 256-bits [2]; these are refered to as fixed Vector-Length (VL) exten-

sions. Taking into account the current processor registers being 64-bits, it places the mentioned SIMD

ISAs in 2 to 4 times the processing width. Considering application overhead and processor architecture

constraints, the increase in processing width is not linearly proportional to a theoretical speed-up.

By having a fixed vector-length, any modification of the length requires a new instruction set to be

defined, and therefore new code needs to be written, compiled and deployed. This quickly leads to

application incompatibilities, additional development time and system downtime. Fixed vector-length

extensions have followed a recent trend where the vector register size rough doubles every five years

[2,8,9]. This trend is well observed in the SIMD extension for the x86 ISA, where sizes have gone from

64-bit (MMX), to 128-bit (SSE) and 256-bit (AVX), currently staying at 512-bit with AVX-512 [2,8–10]

Such a problem can be solved by creating an instruction set that does not rely on a fixed vector size.

As such, ARM introduced Arm SVE that limits the vector length to 2048-bits, but does not require the

full length to be implemented in any processor [7]. Consequently, the same software is compatible with

multiple implemented lengths up to 2048-bits. Which in its turn, allows High-Performance Computing

(HPC) targeted processors to perform better, while allowing lower-power targeted processors to maintain

their energy and resource efficiencies. However, it is not without its own problems and limitations.
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On the one hand, SIMD extensions work with continuously growing data vectors in order to increase

their performance potential. On the other hand, the novel processor architectures have seen a compe-

tition for power and resources in the various processor sections. This means that the budget for wasted

power is reduced and the SIMD extensions may not be able to grow further. Also, to provide such large

vector processing units with data creates a new challenge where the memory access mechanisms also

need improvement and optimisation. One possible solution is relying on data prefetchers, which allow for

indexation prediction and thus increased memory access performance and lower latency [11–13]. How-

ever, as data prefetching may wield performance improvements, it is not as efficient in shorter memory

accesses and in irregular ones. Moreover, the maximum prefetching accuracy is not easily achievable.

Another solution that can improve further is data streaming [14–16]. Configuring the memory access

pattern in software and fetching the data in the background, will lead to perfect prefetching accuracy and

remove the memory access procedures from the core. Data streaming presents itself as an opportu-

nity to further improve the memory access latency and throughput, as well as removing indexation and

access instructions from the core [16–19].

In this thesis, streaming is merged with scalable SIMD extensions to create a novel and still unex-

plored opportunity. While the SVE extension and the RISC-V counterpart RVV [6] are quite new, they are

based on common load-store mechanisms and did not contemplate streaming as a possible solution.

With streaming being a different take on memory accesses, it is expected to bring new performance

aspects as well as new difficulties. This work aims to create a proof-of-concept where streaming poses

as a new path forward in modern computer architectures.

1.2 Objectives
Considering the future computational needs of High-Performance Computing applications, scalable

vectorial extensions have been pondered. The scalable nature of such extensions allow the CPU im-

plementations to adapt their vector length to the targeted applications. Moreover, with a flexible vector-

length it is possible to optimize the resulting performance, power and energy efficiency requirements.

Considering their scalable essence, implementations could easily support up to 2048-bit vectors that

represents huge and fast memory accesses in order to keep the vectorial units active. Making use of

memory accesses pre-configurarion and decloupled memory access, data streaming is an opportunity

to improve the overall performance in memory transactions, thus representing an enhanced application

performance.

To validate this proposition and their impact in application performance, this work is cleary defined by

two objectives. Being the first, the definition of a streaming scalable vectorial instruction set architecture

extension, featuring an agnostic vector length programing model based on the open-source RISC-V ISA

architecture. And the second, the evaluation of the extension performance in a representative out-of-
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order CPU model.

1.3 Contributions
The Unlimited Vector Extension (UVE) is the pilar of this thesis, combining novel scalable SIMD

processing with the data streaming paradigm, the main contribution of this thesis is proving that data

streaming in a vectorial extension is a real opportunity to increase the SIMD processing performance.

In detail, contributions of this work are:

• The creation of a streaming tailored scalable SIMD extension, which can exploit increased perfor-

mance in memory access and increased processing performance.

• A set of architectural modifications to a representative out-of-order Central Processing Unit (CPU)

model that bring support for streaming mechanisms and the UVE extension.

• The proposal of mechanisms that allow streaming to work seamlessly with a representative pro-

cessing core model and memory hierarchy.

• An implementation of the CPU model on the Gem5 simulator, that can be easily tuned to target

any common processor model, and extended or modified for future iterations of UVE.

• A minimal implementation of UVE in the compiler toolchain, which allows for simpler application

development and porting.

• An estimation of the performance improvements of a reference streaming scalable vectorial exten-

sion implementation.

1.4 Outline
This document proceeds with a background and literature review in chapter 2. chapter 2 introduces

the necessary concepts and backgrounds in computer architectures that are necessary to follow the

work that was developed in this thesis. After, chapter 3 delves into the core concepts of data streaming

and stream representations; this chapter prepares the reader for an in-depth discussion of streaming

and streams in the subsequent sections. At this point, Part I develops on the instruction set architecture.

Being followed by the supporting microarchitecture in Part II. Each document part is composed of a

design, discussion and implementation chapter; and a chapter where the results are presented and

discussed. The document ends with chapter 8, where a conclusion is taken on the objectives, learnings,

achievements and the future opportunities of this work.

This work groups four chapter in two parts. In the first part, the higher level ISA definition is given,

where UVE is designed, defined and implemented (chapter 4). At the end of part one, the potential of the

UVE instruction set is examined and compared with the state-of-the-art scalable extension (chapter 5). In
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the second part, a supporting microarchitecture that implements streaming is defined and implemented

(chapter 6). A battery of applications is then simulated with the microarchitecture and compared with an

identical microarchitecture model using the state-of-the-art scalable extension (chapter 7).
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2 Background & Related Work

This chapter gives an overview of the single instruction multiple data technologies. These technologies

are the ones employed by modern ISAs, such as x86 1 and Arm 2. These will serve as a knowledge

base for the developed work. Additionally, the state-of-the-art scalable vector extensions, SVE and RVV

are explored as an improvement over the earlier fixed vector-length extensions. After, we will address

methods for describing memory accesses, which are fundamental to the description of memory streams.

Additionally, the concept of memory streams is further detailed. Last but not least, it is carried out the

description of an already existing streaming ISA extension technology.

2.1 SIMD: Architectures & Extensions
To set the tone, let us start by establishing that the objective of all SIMD ISA extensions is to allow

the CPU to explore DLP, thus providing a solution that is a compromise, in terms of resources and

processing performance, between using external specialized accelerators (e.g., Field Programmable

Gate Array (FPGA), Graphics Processing Unit (GPU)) and the typical scalar execution. However, due to

the proximity with the CPU, there are critical advantages from the low communication overhead and the

shared processing pipeline. Overall, SIMD processing is a discussable solution, with considerations of

energy and space, as well as processing performance.

Taking this into consideration, the following subsections detail the Arm NEON and x86 SSX and AVX

extensions. These present two distinct approaches that somewhat reflect the respective base ISA. As

a side note, RISC-V also defined a fixed-length SIMD extension. However, since its been deprecated, it

will not be refered here.

2.1.1 SIMD in RISC: Arm NEON
The NEON extension is ARM’s leading solution in accelerating media content processing. This

extension is composed of 32 registers that are 64-bits wide. These registers are not shared with the

Arm core registers but are an extension to the floating-point extension (VFPv2) registers. To give more

flexibility to the processing; NEON defines groups of instructions operating on vectors stored in 64-

bit registers (double-word (D)) and 128-bit register (quad-word (Q)). The instructions defined in NEON

perform the following operations [1,20]:

• data processing (additions, multiplications, among others)

• memory accesses (load, store)
1x86 is used to represent the ia-32e ISA family. The x86 term is kept as it is more common and widespread.
2Any references to the Arm ISA are relative to the ISA version Armv8. On contrast, ARM, with all letters uppercase, refers to

Arm Holdings, the company.
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• data moving between NEON register and Arm core registers (general purpose)

• datatype conversion (width extension, integer to floating-point conversion)

Figure 2.1 shows an example of data processing using NEON. Here, the used registers are 128-bit

wide and divided into 8 lanes. The addition operation executes by summing each register (Q1 and Q2)

lane and storing the result in the Q0 register.

Figure 2.1: NEON 8-way 16-bit add operation [1].

NEON sets support for 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integer elements. For

floating-point elements, only 32-bit single-precision and 16-bit half-precision are available. There is also

support for 8-bit and 16-bit polynomials, mainly used for carry-less multiplications. Additionally, some

data processing operations can make use of different sized input and output registers. Thus, results

can have higher precision (long multiplications) or lower precision (narrowing) in the output. NEON

also defines specific instructions to address the narrowing and widening of the datatype. The NEON

instructions operate only in register-register mode, following the principle of the Reduced Instruction Set

Computer (RISC) mindset [1].

However, NEON is not withouth downsides, it is limited when it comes to complex memory accesses,

where a scatter-gather mechanism is essential but not present. Additonally, there is no per-lane execu-

tion control mechanisms, which considerably limits the vectorizable applications.

2.1.2 SIMD in CISC: x86 SSE/AVX

In the x86 side, currently the most used and available SIMD extensions are SSE (Streaming SIMD

Extensions) and AVX (Advanced Vector eXtensions), with the latest version supporting up to 512-bit

registers.

Nevertheless, we should remember that Intel started SIMD extensions with the MMX extension.

From MMX to AVX, the SIMD extensions improved multiple times, taking around 20 years of technology

improvements. From these improvements, some honourable mentions follow [2,8,9,21–23]:
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1) MMX 94’: The MMX extension allowed programmers to execute instructions on multiple data

elements. It makes use of MMX technology registers (standard SIMD vector registers), packing 64-bits.

2) SSE 99’: SSE extension allowed SIMD operations to use four floating-point single-precision ele-

ments packed in 128-bit vector registers. All saved on a 1024-bit register bank.

3) SSE4 06’: SSE4 provided 128-bit integers (using SIMD engine) and double-precision floating-

point. The vector register size used is still 128-bit. The total number of SIMD extension instructions is

around 350. Also, at this particular time, applications could already benefit from wider vector-registers.

4) AVX 08’: AVX introduces 256-bit vector registers, all fitted in a 16x256-bit register bank. It also

added four operand and three operand SIMD instructions, with support for single and double-precision

floating-point operations. AVX shares the register bank with the previous SSE extensions (see Fig-

ure 2.2). A further revision of AVX, named AVX2, added support for integer SIMD processing.

Figure 2.2: x86 AVX register bank structure [2].

5) AVX-512 15’: AVX comprises 512-bit vector registers.

While the most-recent x86 SIMD extension (AVX-512) supports 512-bit vector registers, NEON still

stands at 128-bit. With consideration to the vector-width, AVX has more processing capability, additon-

ally, as it is a CISC ISA, it support a wider range of generic and specialized instructions. In contrast,

NEON is limited to narrower range of instructions, being the main constraint the lack of scatter-gather

support. Even so, in terms of energy efficiency, having a narrower vector pipeline and a more curated

set of instructions gives NEON an advantage over AVX.

2.1.3 Discussion

To better understand the effect of a SIMD approach on the programmer’s perspective, a simple

program will be used, consisting of the well known SAXPY (Listing 2.1) loop code.

To accelerate the loop, consider the use of 128-bit SIMD registers. Hence, these can pack four

single-precision floating-point elements (32-bit). Also, we use a pseudo assembly that loosely relates to

the Arm + NEON extension dialect in the assembly code. The choice of assembly dialect was majorly

influenced by the additional complexity of the x86 + AVX instruction set.
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Listing 2.1: SAXPY C code listing.

1 #define n 34
2 void saxpy(float *X, float *Y, float A, int n){
3 for( int i = 0; i < n; i++){
4 Y[i] = A*X[i] + Y[i];
5 }
6 }

The standard approach to SIMD vectorization is first to unroll the application loop. By taking into

account that the packing factor is 4, the loop unrolls four times. Additionally, as we have four results

in each iteration, it is necessary to skip three out of four scalar iterations. As so, Listing 2.2 shows

the result. What Listing 2.2 also shows is that in some special conditions, we have to process edge

cases without SIMD. These aroused from the loop iterations count (34) not being a multiple of our

packing factor (4). Thus, the creation of an epilogue or prologue is necessary to solve the edge cases.

Some other strategies could be employed, such as forming a mirrored or zero padding around the loop

boundaries [24, pp. 222-230] [25].

Listing 2.2: SAXPY C unrolled loop listing.

1 for( int i = 0; i < n; i+=4){
2 Y[i] = A*X[i] + Y[i];
3 Y[i+1] = A*X[i+1] + Y[i+1];
4 Y[i+2] = A*X[i+2] + Y[i+2];
5 Y[i+3] = A*X[i+3] + Y[i+3];
6 }
7 Y[n-1] = A*X[n-1] + Y[n-1];
8 Y[n] = A*X[n] + Y[n];

Sequentially, the following step is to condense the four unrolls in a SIMD operation (see Listing 2.3).

Listing 2.3: SAXPY SIMD-parallel loop listing.

1 for( int i = 0; i < n; i+=4){
2 SIMD_LOAD(vY, Y, i)
3 SIMD_LOAD(vX, X, i)
4 vY = SIMD_ADD(SIMD_MUL(vX,vA), vY)
5 SIMD_STORE(Y, vY, i)
6 }
7 Y[n-1] = A*X[n-1] + Y[n-1];
8 Y[n] = A*X[n] + Y[n];

We can now write it to assembly, as in Listing 2.4. Here, we observe that the loop control and mem-

ory address calculation instructions are present inside the loop and undesirably occupy a considerable

portion of the code. Additionally, the edge cases are a concern that needs special attention, as they

exist in any traditional SIMD processing, sometimes leading to considerable overhead (particullarly for
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a low number of iterations). While in cases with a low number of total iterations the overhead may be

negligible, sometimes the overhead is repeated multiple times due to being inside an outer loop, which

gives rise to a significant negative impact on application performance.

Listing 2.4: SAXPY loop assembly code listing for SIMD processing. Pseudo ISA based on NEON instruction set.

1 V.DUP_32 V0, R4 ;Loading value of A (R4) into all elements of V0 (vector register
) with elements of size 32-bits

2

3 Loop:
4 ;R2 contains X address, R1 is the indexer i
5 VLD V1, [R2+R1] ;Loads 4 elements of 32-bits of the array X to V1
6 VMUL_SP V1, V0, V1
7 VLD V2, [R3+R1] ;R3 contains Y address
8 VADD_SP V2, V2, V1
9 VST [R3+R1], V2 ;Stores the result of the 4 parallel operations

10 ADD R1, 16 ;Increments i by 4 floating point elements(4-bit
addressing)

11 SUB R5, 4 ;R5 contains N (number of iterations)
12 B.NP Loop ;Repeats until N < 0
13

14 LD R12, [R2+R1] ;Case Y[n-1]
15 MUL_SP R12, R4, R12
16 LD R13, [R3+R1]
17 ADD_SP R13, R12, R13
18 ST [R3+R1], R13
19

20 ADD R1, R1, 1
21

22 LD R12, [R2+R1] ;Case Y[n]
23 MUL_SP R12, R4, R12
24 LD R13, [R3+R1]
25 ADD_SP R13, R12, R13
26 ST [R3+1], R13

2.1.4 SIMD Extensions Summary
In a more architecture-related overview, one of the advantages that the SIMD technologies bring is

the ability to exploit DLP inside the CPUs. By exploiting DLP, the CPU can reach higher levels of per-

formance in some applications characterized by massive levels of data parallelism. Additionally, a SIMD

architecture executes a lower number of loop iterations when compared with a Single Instruction Single

Data (SISD) architecture, as shown in Listing 2.3, and therefore, there will be, ideally, less clogging in the

functional units, and fewer accesses to the instructions memory. Also, there are advantages concern-

ing the loop control instructions, as there will be fewer loop iterations, and less speculative execution.

Hence, due to the fewer loop instructions, there is a lower impact in wrong branch predictions, leading

to more power-efficient CPUs.

As with every technology, there are also some caveats. Traditional SIMD is not an exception, and

there are some downsides to it as well. First, the limited vector width is a significant concern. A static
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vector width, specified in the ISA definition forces the implementations to conform with it. Second, having

a specific vector length limits the achievable performance in some applications that could profit from

being executed in larger vector widths [26]. As an example, the implemented vectors can be too wide

for some applications (leading to larger epilogues/prologues) and too narrow for others (leading to an

excess overhead in memory access indexing and loop control). This leads to significant implementation

inefficiency and ultimately to performance boundaries constrained by the vector length. Additionally,

SIMD technology also has drawbacks related to memory access. In simple, linear memory accesses, the

SIMD architecture can easily fetch all the data. However, more complicated memory access patterns can

lower the performance of the architecture. Admittedly, we can make use of scatter-gather mechanisms to

access intricate patterns of data. By taking AVX2 as example, a gather load works by using a pre-loaded

vector with indexes that is used to index the memory accesses of the load destination vector. This means

that the AVX2 scatter-gather mechanism needs to access memory twice per fetched data element, and

the vector that indexes the memory access must be indexed ahead of the data access. Leading to

inevitably lower performance. In general, scatter-gather mechanisms need to be deeply intertwined with

the cache memory controller, which is an added dificulty in implementing such mechanisms. Specifically,

NEON and the first version AVX do not support scatter-gather instructions.

Finally, by making an example out of x86 SIMD extensions progression (see Figure 2.3), we realize

that there is a continuous progression in vector register width. This progression has been driven by tech-

nological progress, involving video media processing and the continuous uprising of machine learning

applications. However, continuing to create more extensions as the vector lenght increases is unsus-

tainable. In detail, by creating a new extension, all the code must be recompiled, effectivelly rendering

obsolete all non open-source software packages. Also, to guarantee that old binaries (not recompiled)

are still executable by newer machines, the old ISA extensions must be part of the implementation, pos-

ing a significant pressure on both the decoding and execution stages of new processor implementations.

In conclusion, the drawbacks of maintaining code may seriously outmatch the benefits of using broader

vector registers.

Even so, the path of improvement is a never-ending one. Hence, the objective is to devise a new

extension that can benefit from broader registers while avoiding the previously described drawbacks.

2.2 Scalable Vectorial Extensions
The scalable vector extensions are the most recent state-of-the-art in vectorial processing. The vec-

torial SIMD architecture has as main objective of mitigating the disadvantages of the SIMD architecture,

with the premise that registers have to be scalable at the implementation level. The first question that

should come to mind is how much this will improve on the non-scalable SIMD architectures. First, scal-

ability means we can compile once and run in different vector width implementations. Second, if the
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Figure 2.3: Evolution of vector width in x86 SIMD extensions. The rightmost orange mark is a prospective that
represents the trend in the usage of wider vector registers [8,9,22].

implementation can scale well, we can eliminate the edge-cases. By using a vector of the size of a

scalar register, there will be no edge cases. Hence, by scaling that same example from scalar to a more

wide register, we will remain with no edge cases.

Currently, two scalable vector extensions are worth mentioning: RVV and SVE.

2.2.1 RISC-V "V" Vector Extension

Instruction set architecture The RISC-V vector extension follows the simplicity and genericity of the

RISC-V base ISA, so the constraints in terms of maximum and mininum vector width are very loose, not

limiting any implementation to a particular configuration. Hence, the definition of the extension states

that a single vector element must have size ELEN (element length, unspecified), and that the size of a

vector register is VLEN (≥ ELEN)(vector-length), both constrained to powers of two. The total number

of register is 32.

Additionally, the available integer and fixed-point data types are all inherited from the implemented

base ISA [27]. Finally, the implemented Floating-Point (FP) extensions define the FP data types [27]. To

guarantee fine-grained control over the execution, a set of 8 predicate registers is defined, which allow

for finer control over the execution by setting an execution control mask on top of a vector register.

By using specific control status registers (CSRs), one can control the configuration of each vector

as it executes in run-time, namely regarding the vector length and the vector data length and data type.

The vector configuration depends fully on the "vsetvli" instruction.

vsetvli "configured size", "size", #element size, [#grouping factor]

The configuration starts with requesting a vector size (in elements) and an element size. Then, the

total requested size (element size * vector size) is compared with the implemented vector-length, the

minimum of both is used to configure all the vectors and written do the destination operand ("configured
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size") [6]. The illustration in Figure 2.4 is included to clarify the behavior of "vsetvli" and the respective

effects in the registers.

Figure 2.4: Illustration of "vsetvli" instruction behavior, with calculation of the configured size and effects on the
vectorial registers.

Moreover, the operand "grouping factor" can be used to group a series of consecutive registers,

being particularly useful when the total requested size is larger than the implemented vector size. In

detail, a grouping factor of 4 will group registers 0 to 3 into register 0 and so on for the remaining vector

registers.

Application example To materialize this in an application example, the assembly code in Listing 2.5,

represents the SAXPY application ported to RVV, given before in Listing 2.1.

Listing 2.5: SAXPY loop assembly code listing for RVV scalable vector processing. RISC-V with V extension [6].

1 ; register arguments:
2 ; a0 n
3 ; fa0 A
4 ; a1 X
5 ; a2 Y
6

7 saxpy:
8 vsetvli a4, a0, e32, m8 ; Ask for n elements of size 32b and group 8 vector

registers
9 vlw.v v0, (a1) ; Load data from X to v{0-7}

10 sub a0, a0, a4 ; Decrement n with the number of processed elements
11 slli a4, a4, 2
12 add a1, a1, a4
13 vlw.v v8, (a2) ; Load data from Y to v{8-15}
14 vfmacc.vf v8, fa0, v0 ; Floating-point multiply and acumulate
15 vsw.v v8, (a2) ; Store data
16 add a2, a2, a4
17 bnez a0, saxpy
18 ret

The RVV SAXPY application shows the high dependency on the "vsetvli" instruction which is the core

point of the loop iteration. In detail, the application requests to "vsetvli" the total remaining elements

of the loop, then the actual number of processable elements in the iteration is subtracted to the total
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remaining elements, the loop ends when there are no remaining elements. As note, in the case where

the number of elements is smaller than the total vector-length (considering the grouped registers), there

will be only one iteration. The internal part of the loop brings nothing new, there is address calculation,

memory access and computation.

2.2.2 Arm "SVE" Scalable Vector Extension
On the SVE side, the vector registers do not follow the width flexibility of RVV. In this case, the vector

registers are limited from 128-bits to 2048-bits, in multiples of 128-bits. Also, the allowed element widths

range from 8-bit to 64-bit. The total number of registers is 32, the same as in NEON. The SVE registers

extend on top of the NEON registers. [7].

Alongside the scalable registers, SVE introduces a set of predicate registers that behave has execu-

tion masks, like in the RVV architecture. In specific, the SVE predicate registers are 16 in total; however,

only eight are usable on arithmetic and memory instructions. ARM states that this balance mitigates the

register pressure observed in other architectures [7,28].

The SAXPY function (see Listing 2.1) will be reused to explain the differences between SVE and

RVV. The matching assembly for SAXPY in SVE is in Listing 2.6. The SVE assembly the instructions

"whilelt" and "incs" are in the core of the scalability.

Listing 2.6: SAXPY loop assembly code listing for scalable architecture processing in Arm SVE [7].

1

2 mov x4, #0 ;Initialize iteration counter (i) in r4
3 whilelt p0.d, x4, x3 ;Set predicate p0 for each r4 element that is lower than

n
4 ld1rd z0.d, p0/z, [x2] ;Broadcast value A to v0, with predicate zeroing
5 .loop:
6 ld1d z1.d, p0/z, [x8, x4, lsl #2] ;Loads to v1 the values pointed by X[i] with a

stride of 32-bits elements
7 ld1d z2.d, p0/z, [x9, x4, lsl #2] ;v2:=Y[i]
8 fmla z2.d, p0/m, z1.d, z0.d ;Fused multiply-accumulate Y[i]=A*X[i]+Y[i],

with predicate merging
9 st1d z2.d, p0, [x1, x4, lsl #2] ;Store v2 to memory pointed by Y[i]

10 incs x4 ;Increment i based on the vector size and SP (VL/32)
11 .latch:
12 whilelt p0.d, r4, r3
13 b.any.loop ;Loop again if all of the predicate elements are 0

On the one hand, the "whilelt" instruction will populate a predicate register that will condition the loop

iteration. This instruction matches the following format:

whilelt "predicate", "start value", "comparison value"

In simple terms, the predicate is filled with ones while the incremented start value is less than the

comparison value. Figure 2.5 gives more detail in the behavior of "whilelt". Additionally, to loop into the
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next iterations, the branch instruction uses the AArch64 NZCV condition code flags [29]. The "whilelt"

instruction sets the condition codes that are later used in the branch [7,30].

whilelt   p0.d,   r4,   r3

Less Than
p0.d

double (64-bits)

1 1 0

element 1
SVE Length = 256

0

element 2 element 3 element 4

0 2

Length/Size of Element = 4 elements

i=0 r4 + i = 0 True
is < r3 ?

i=1 r4 + i = 1 True
is < r3 ?

i=2 r4 + i = 2 False
is < r3 ?

i=3 r4 + i = 3 False
is < r3 ?

Figure 2.5: Illustration of "whilelt" instruction behavior.

On the other hand, the "incs" instruction iterates the start value by the vector size, simplifiing the

memory addressing calculations and removing more unnecessary iteration counters [7, 30]. To directly

compare the scalability approach between RVV and SVE, we can compare the "setvli" instruction directly

to the "whilelt" instruction. While RVV configures the vector register behavior, the SVE contrasts by

setting a predicate register and controlling the iterations through it. In sum, both the approaches are

entirely valid. However, both could still achieve more simplicity.

2.2.3 Discussion
When comparing to the SIMD extensions discussed in section 2.1 with the scalable solutions in

RVV and SVE presented in section 2.2, the later shows significant benefits, particularly related with the

handling of loop edge cases and with the automatic scaling of the vector length. However, to understand

their caveats, let us analyze the RVV and SVE codes in Listings 2.5 and 2.6) as well as Figure 2.6,

which presents the different implementations side-by-side to make it easier to interpret and analyze. For

interpretation and analysis simplification, both RVV and SVE assembly codes are shown in Figure 2.6.

But first, let us discuss the primary purpose of vectorization. As already mentioned, SIMD archi-

tectures lean on DLP to increase computation performance, which is ultimately achieved by processing

data in parallel and consequently reducing the total loop iterations. For instance, having fewer iterations

will schedule fewer instructions and diminish the speculation cost, which is more prominent in SIMD

processing. Additionally, having fewer loop iterations is usually beneficial, up to a point where over-

head instructions are not removed or even added. Furthermore, works on decoupled access-execute

architectures that physically separate memory-accessing and memory-consuming instruction promote

the decoupling of the mechanisms of memory access from the processing ones. Outrider [19], is one

decoupled access-execute architecture that shows high tolerancy to memory access latency while using

a low complexity in-order microarchitecture. In specific, Outrider takes leverage of the decoupling to

reduce the latency. Moreover, DeSC (Decoupled Supply-Compute) [31] is another work based on the
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decoupled access-execute architecture that fully decouples the processing from the program control,

DeSC shows an average of 2.04x speedup over a baseline out-of-order single-chip multiprocessor. In

sum, there are energy efficiency, area and performance advantages in separating the memory access

and the processing part, thus reducing latency and diminishing the undesirable overheads. For this

same reason, the comparison between scalable SIMD extensions targets the aforementioned undesir-

able overheads directly.

For this same reason, the comparison between scalable SIMD extensions targets the undesirable

overheads directly. By observing in Figure 2.6 a) and b), it is concluded that there are more instructions

than the minimum necessary inside the loops; in other words, the only instructions that contribute to

data processing are the memory accessors (load/store) and the multiply and accumulate instructions.

The memory address calculation and loop control are not responsible for any data processing; hence

Figure 2.6: Side by side code complexity comparison. At the top, the C SAXPY source code (linear memory copy),
from whom the following are based. In the left, the RISC-V V extension assembly. In the center, the Arm SVE
extension assembly. And in the right, a possible extension loosely based on RISC-V. Finally, at the bottom, the
progression of the number of looped instructions is shown. The rightmost assembly, shows that a complete removal
of looping unnecessary instructions is possible.

can be labelled as extraneous. As contrast, the branch instruction is not considered in any of these

categorizations, as it is the core instruction that creates the loop. Concisely, it’s reportable that more

than 50% of the loop instructions are overhead. Importantly, as stated by Kuck et al. [32] and reaffirmed

by Knijnenburg et al. [33], a computer program spends the majority of computation time in a small portion

of code, namely, in the loops. As it is, the computation paradigm as changed significantly, but still, data

processing times remain concentrated inside the computational kernels. Taking back to the example

of the SAXPY kernel, to exacerbate the subject, the example shown here is rather simple. In contrast,

cascaded loops would add further overhead in loop control and address calculations.

With this in mind, Figure 2.6 c) details a solution to remove overhead entirely. The pseudo-code

presented can be split into the following 3 phases: Configuration, Execution, Control.
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1 In the first phase, the data is configured, and three data accesses are coupled with three register

vectors.

2 Subsequently, the data is processed, provided that the registers already have the necessary data.

3 Finally, the execution process repeats until all of the configured input is processed.

In addition to the SAXPY kernel example, in Figure 2.7 another example is depticted, where a MEMCPY

kernel is compared between RVV and SVE, in which an according result is obtained.

Figure 2.7: Side by side code complexity comparison. At the top, the C MEMCPY source code (linear memory
copy), from whom the following are based. In the left, the RISC-V V extension assembly. In the center, the SVE
extension assembly. And in the right, a possible extension loosely based on RISC-V. Finally, at the bottom, the
progression of the number of looped instructions is shown. The rightmost assembly, shows that a complete removal
of looping unnecessary instructions is possible. The RISC-V V example was gathered from [6]. Arm SVE example
is based on [30, Listing 1.1].

In summary, by opposing to the SVE and RVV approaches, it is clear that this proposal is more

straightforward and achieves the objective of removing overhead inside the loop. With the presented

pseudo solution, it remains to develop further and to materialize into a closing solution. To be able to

do that, the following section focuses on that by defining an adequate form to represent memory access

patterns and in addressing the concept of data streaming.

2.3 Streaming Paradigm
To be able to apply streaming mechanisms to this work, methods of representing the memory access

pattern are fundamental. Not only is it crucial to be able to express memory accesses, as it is essential

to do it efficiently and effectively. In standard ISAs, describing memory accesses is achieved by di-

rectly describing the pattern with a set of standard instructions, before effectively issuing the load/store.

However, other solutions can be devised that attain similar solution with a lower overhead.

As an example Figure 2.8 compares the visual and C language representation of two memory access

patterns. These two examples show that while a easily visually represented memory access pattern, as
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Figure 2.8: Visual and Loop memory access representations side by side. At the top, an uncommon memory
access that loads a square in diagonal pattern. At the bottom, a common rectangular access.

the diagonal pattern, is not easily converted to a simple C for loop; in contrast, the rectangular example

is easily representable in both C language and visually. As this chapter unfolds, an alternative method to

represent memory accesses will be devised. In detail the for loop structure is the base of such pattern

description method.

2.3.1 Memory Access Pattern Descriptors

Describing memory access patterns allows doing more efficient memory accesses, particularly on

occasions where the access pattern is complex (but still regular). As proof, recent works advocate that

the usage of descriptors enables the compiler to organize memory transfers more efficiently by match-

ing data movement to the capabilities of the underlying hardware [16]. Furthermore, in the context of

GPUs, a technique for improving memory performance is sustained on the analysis and characterization

of memory access patterns in loop bodies, which achieved significant speedups [34]. These works mo-

tivate the use of efficient memory access pattern descriptors by allowing for better organized memory

accesses and increased performance.

A) Simple Pattern Description

To allow such a description of memory access patterns, we can start by defining a core component

of the description. To do so, we can refer to the works of López-Lagunas et al. [35] where a stream

description is achieved through defining a tuple of parameters (Start Address, Offset(), Stride, Span,

Skip, Type, Element_Count), defined as follows :

• Start Address is the memory address of the first element of the data stream.

• Offset() represents a user-defined function that computes the displacement of the next stream

record from the base address.

• Stride is the spacing between two consecutive stream record elements. The units for the spacing

are in data elements.
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• Span indicates how many elements are gathered into the stream record before the skip displace-

ment is applied.

• Skip is the displacement in data elements that is applied between groups of Span elements.

• Type indicates how many bytes are in each data element. For example, 8-bit data is associated

with a type value of one, 16-bit of data associates a value of two and so on.

• Element_Count indicates how many stream elements are in the data stream.

While this description provides a way to describe many memory access patterns, it is considerably

complex while limiting the set of memory access patterns that can be efficiently described. Neves

et al. works [3, 18, 36], proposed an alternative representation that makes use of a hierarchy of simpler

descriptors. The representation methods were iterated throughout the authors works, the latest and most

optimized version is detailed here. The authors show that by combining simpler descriptors in a multi-

dimensional tree, it is possible to describe virtually any regular memory access pattern, independently

of their complexity. The key idea is to provide a affine representation of the address sequence, for any

n-dimensional pattern. Neves et. al propose that any address sequence can be represented with the

following model:

y(X) = ybase +

dimy∑
k=0

xk × stridek, with xk ∈ [αk, βk], X = {x0 . . . xdimy
} (2.1)

Where each stream access y(X) is described by the base address ybase, and dimy pairs of sizes

(xk) and strides (stridek). With this representation, it is possible to describe any pattern, however, more

complex and irregular patterns would result in an unreasonable number of descriptors.

To create a memory access descripition, Neves et al. proposed the specification in Figure 2.9. This

Figure 2.9: Descriptor specification proposed by Neves et al. [3].

descriptor specification is composed of a context header, base descriptor and modifier chain parts. The

base descriptor contains the stream identification, the base address, number of configured dimensions

and the number of modifier chains. Particullarly, each dimension is described by the pairs size xsize

and stride xstride, in similarity with the representation model in Equation 2.1.
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While this is sufficient to describe any pattern by using N dimensions, this would lead to an enour-

mous usage of dimensions that would not be possible in any real implementation. However, Neves et al.

proposes that a modifier chain can be used to add non-linear (e.g. dimension size changes) modifica-

tions to the base descriptor. The authors propose two types of modifiers: a field modifier descriptor and

an indirection descriptor. In detail, the field modifier descriptor can be used to modify a field of the base

descriptor, an example that better explains the usage of field modifiers is depicted in Figure 2.10. In this

Figure 2.10: Example of a triangular matrix access represented using the base descriptor and one field modifier.
Retrieved from [3].

example, a 2-D pattern is configured with 1 (row, xsize0) by N (columns, xsize1) of size. The modifier will

increase the size of the first dimension (the target xsize0), the applied modification will increase xsize0

by the modifier stride (1). This increment is repeated N (modifier size) times, and modifies at the same

time and rate as the second dimension iterates.

Furthermore, the indirection descriptors allow for diferent descriptions to be linked through a data-

indexation dependency e.g. B[A[i]]. Finally, the context header is used for stream management, and

does not affect the representations.

Neves et al. work shows that a multiple memory access patterns can be represented by relying on

the presented descriptor specification, Figure 2.11 depicts some of the representable patterns.

In addition to this work, other solutions that employed descriptors were proposed. Specifically, S.

Paiagua et al. proposed a data streaming accelerator framework that made use of stream descriptors,

being able to increase the available memory access bandwidth by relying on streams [37].

2.3.2 Scalar Stream-Based ISA

Although streaming is not a widely used concept in the CPU Instruction Set Architecture, there is one

work that employs streaming to address the inefficiency in memory accesses. In fact, works such as

Imagine Stream Processor [38], RSVP [39], Q100 [40], Stream-dataflow acceleration [41], VEAL [42],

CoRAM++ [43] employ stream abstractions but none target general-purpose out-of-order cores and

the associated speculation mechanisms. Besides, there is also the Memory Access Dataflow [44], a
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Figure 2.11: Multiple examples of representable pattern using Neves et al. proposed pattern description methods
[3].

reconfigurable front-end/memory-fetch engine for accelerators and SIMD units, which is not an extension

to the ISA. It is an in-core stream mechanism that is not part of the ISA, and it directly interferes with the

core capabilities (e.g., control of the core power).

Additionally, Wang et al. [4] proposed a stream-based memory access specialization for general

purpose processors. The authors identified the structure of the memory access patterns in the Cortex-

Suite [45] and SPEC CPU 2017 [46] benchmark suites, realizing that much improvement is extractable

by employing streams. Figure 2.12, presents the main results of the authors’ work, showing that, on

avaregar, more than half of dynamic accesses across both benchmark suites can be considered as

streams, with the simplest affine streams being the most common.

Additionally, Wang et al. leverage the concept of streaming to remove some of the overhead from the

loop body [4]. By decoupling the memory access from the CPU core, a limited form of decoupled access

execute architecture is achieved, which is able to hide some of the latency involved in the memory access

process [17, 47]. In terms of results, the work achieved speedups in the order of 1.67x in comparison

with a baseline OOO core. While the baseline OOO core provided with a stride prefetcher achieves

1.22x in speedup. It is noteworthy that this work makes use of streams with scalar registers and does
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Figure 2.12: Memory access pattern decomposition percentage in CortexSuite and SPEC CPU 2017 benchmark
suites [4].

not consider vectorial or SIMD architecture extensions.

In this work, Wang et al. identified the following three opportunities are possible to attain [4]:

• Stream-based prefetching: With the knowledge of the access patterns and the relation to the con-

trol flow, it is possible to infer the timing of the prefetching based on how far ahead the prefetcher

is related to the core execution. Thus leading to more effective prefetching.

• Stream-decoupling: By following the principle of the decoupled access execute [47], a streaming

engine can generate memory requests, removing the logic from the core and allowing the core to

focus on the processing instructions. There are several potential advantages of doing so, includ-

ing diminishing the latency of memory accesses, coalescing the memory accesses from related

streams, and even reducing the amount of cache pollution.

• Specialized cache policies: Various cache policies could take advantage of the knowledge of the

memory access pattern. Wang focuses on bypassing the cache hierarchy based on each stream

footprint. To be able to explore these opportunities, Wang et al. proposed Stream-ISA extensions

and potential microarchitecture support.

The ISA extensions focus on allowing the configuration and control of the streams. In specific, a

stream_cfg instruction enables the configuration of new streams. This instruction is responsible for

defining a stream through the following parameters: type, pattern, dependencies, and starting address.

Additionally, a stream_step iterates the stream, doing so iterates all the dependent streams. Conse-

quently, a register can be read multiple times before a step instruction changes the state of the streams.

Finally, a stream_end instruction deallocates the corresponding streams, terminating the access. This

work also implemented compiler support to the ISA extensions. The compiler support is separated

into three phases: recognizing stream candidates, then selecting the qualified candidates, and finally

generate the code.

Additionally, the proposed set of microarchitecture extensions contains changes to the core and the

creation of a stream engine. From these extensions the following sum up the architecture changes:

• Inside the core, the changes include an iteration map that maintains the count of each stream

iterations. In specific, the iteration map is controlled by the "stream_cfg" and "stream_step" in-

structions.
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• The stream engine is responsible for generating the memory accesses and the management of

each stream.

• A set of queues is included to allow decoupling between the stream engine and the core pipeline.

2.4 Summary
As stated throughout this chapter, the modern vectorial extensions (RVV and SVE) leave space for

improvement, both in terms of latency, as in removing instructions that do not contribute to the data

processing. It was not yet merged the concepts of SIMD execution with memory access decoupling. By

doing so, it is believed that it is possible to decrease the processing times inside the CPU. Additionally,

it is possible to increase the number of previously vectorizable codes, as the memory addressing is

executed outside the instruction window. Finally, the work of Wang et al. [4] shows that this is a promising

research path.
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3 Pattern Description and Stream Fundamen-

tals

Taking into consideration the state of the art in SIMD instruction set extensions and streaming mech-

anisms, it is clear that new scalable streaming vector extension should be devised and explored to

improve the performance of modern high-perfomance computing systems. However, before defining the

instruction set extension proposed in this thesis, it is first necessary to define the concept of a stream, in

the context of this thesis, and the associated mechanisms to allow manipulating (by loading and storing)

data.

A stream is a continuous flow of data, typically one having a constant or predictable pattern at the

moment it starts executing. Hence, while the pattern, length or even data-type may not be known at

compile-time, it must be defined through a set of variables which value can be computed when the

stream is marked to start executing. Additionally, the streams are guaranteed to process (load/store)

sequentially and in-order. A basic example of a streaming access to a 2-D, matrix-like, memory pattern

is shown in Figure 3.1.

Figure 3.1: Example of a simple 2-D memory access with streaming. In the left, the stream configuration with two
dimensions. On the right, the representation of the pattern in memory, alongside with the delivery of data to the
processing core.

To represent a stream of data, the concept of a descriptor is herein used. Hence, as in Nuno Neves,

et al [36] a descriptor must describe a pattern of memory accesses including starting address, word-

length (in bits) and size. However, additional fields can be added to represent more complex patterns

(e.g., 1-D, 2-D, 3-D, etc), such as multidimensional strides. Descriptors can also be made hierarchal or

dependent to allow representing more complex memory access patterns (e.g., diagonal, hexagonal).

However, there is a natural balance between the complexity of a single descriptor and its capacity to

easily represent different patterns. Hence, while simple descriptors require more complex hierarchical

structures to achieve complex memory access pattern representations, more complex descriptors use

more space, which must be encoded into a limited set of instructions.

Hence, this work adopted a similar solution to Nuno Neves, et al [36], although simplifying some

structures to more closely resemble the structure of typical for loops.
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To explain the adopted memory access representations. this chapter starts by presenting simple

(linear) memory access patterns, before introducing descriptors modifiers that allow representing more

complex structures.

3.1 Introduction to linear patterns - Dimensions
In section 2.3, different techniques to describe memory access patterns were presented, each

with different complexities and allowing to cover different application scenarios. However, while on

application-specific systems complex and specially tailored solutions can be used, for general-purpose

computing, the used techniques must target the general use case and represent a good balance be-

tween pattern complexity and coverage. Hence, this chapter focus on tailoring these techniques towards

integration in an arbitrary ISA extension. To do so, it is worthy to recall that one single linear dimension

can be described by a set of three parameters, namely offset, size, stride. Particularly, the offset

parameter represents the base address in single dimension descriptions. However, for multidimensional

descriptions the base address depends on the offsets and strides of all dimensions. Additionally, it

is also necessary to know the data-type of the memory access, thus the parameter data-type is also

present in the first dimension of any description. These parameters are what makes a descriptor, the

minimal representation for a stream.

Figure 3.2 such pattern is represented. As it is clear, by using the three aforementioned parameters,

Figure 3.2: Linear memory access. In top, a visual representation of the pattern. In the bottom left, a C loop
representing the memory access. In the bottom right, the respective stream representation.

it is trivial to represent such pattern. As it is expected, by adding more dimensions, it is simple to

describe multi-dimensional memory accesses. To clarify, Figure 3.3a shows a simple 2-D memory

patterns alongside the respective stream representation. As stated before, higher dimensionality can

be represented by adding more dimensions, even so, in these examples only up to two dimensions are

shown as it simplifies visualization. In detail, each additional dimension can be configured by adding

one descriptor on top, using three parameters, offset, size and stride. Any 2-D description based on two

linear descriptors is represented by the following function:

i ∈ {0 . . . Ei}, j ∈ {0 . . . Ej}; Y (i, j) = Oj + (Oi × Si) + (Sj × j) + (Si × i); (3.1)
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Where, Ex, Ox and Sx represent, respectivelly, size, offset and stride for a given dimension x. Generally,

the offset of dimension j is the base address of the description, however, the base address of any stream

description is obtained from all the dimensions’ offsets and strides (e.g. BA = Oj + (Si ×Oi)).

To achieve more intricate memory patterns, it is possible to cascade up to 8 descriptors, the maxi-

mum number of descriptors will be discussed later, as it is constrained by the hardware implementation

complexity. In order to support descriptions that need more than 8 descriptors would require one de-

scription to be coupled with another, however, it is highly unlikely that any application that would require

such description complexity would highly benefit from vectorization.

(a) Non-strided (unitary stride) pattern. In the top, a visual rep-
resentation of the pattern. In the bottom left, a C loop repre-
senting the memory access. In the bottom right, the respective
stream representation.

(b) Non-unitary strided pattern. In top, a visual representation
of the pattern. In the bottom left, a C loop representing the
memory access. In the bottom right, the respective stream
representation.

Figure 3.3: Description of regular 2-D examples, with unitary and non-unitary strides. Alongside with the respective
C language equivalent and a visual representation of the pattern.

Other more complex patterns can be represented by pooling only over a pattern of elements. As an

example, Figure 3.3b pictures a possible rectangular access with non-unitary stride. At this respect the

adopted memory access pattern description closely follows the solution adopted by Neves et al. [18].

However, due to encoding ISA restrictions an arbitrarly number of arguments cannot be used, as it would

increase the number and complexity of the configuration instructions.

3.2 Complex accesses - Modifiers
To describe more complex patterns, a set of modifiers will be introduced, which allow manipulating

each of the fields on a given n-D pattern. To illustrate this issue Figure 3.4. It is direct to infer that by

Figure 3.4: Lower triangular memory access. In the top, a visual representation of the pattern. In the right, a C loop
representing the memory access.

relying solely on linear patterns, it is difficult, to define such access. In fact, by analyzing the behavior
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of the corresponding C Loop, it is observed that for each outer loop iteration, the inner loop parameters

are modified. The described behaviour can be achieved using a new descriptor named modifier, which

is able to modify a parameter of a dimension descriptor.

As a starting point, the triangular access was decomposed into two parts: a bi-dimensional stream

that is already describeable and a non-linear behaviour that is necessary to simplify the overall descrip-

tion, and depicted in Figure 3.5. To create a modifier with capabilities to modify the another dimension’s

Figure 3.5: Lower triangular memory access deconstructed into a bi-dimensional access and a non-linear behavior.
In the top, a visual representation of the pattern. In the bottom, a stream representation of the linear pattern.

properties, the following parameters are explicit candidates:

• Target: The parameter to modify. One of offset, size, and stride.

• Behavior: The type of modification, one of increment and decrement. In the lower triangular

example only the increment is needed.

• Displacement: The constant ammount of increment or decrement that can be applied - e.g. a

displacement of two with increment behaviour will increment the target parameter by 2 in each

modifier iteration.

• Size: The total number of iterations for which the target parameter is modified. In more irregular

patterns, it can be of use to define a modifier that stops at a given iteration.

By relying solely upon these parameters, it is now possible to completely define the lower triangular

pattern. To clarify, Figure 3.6 presents the final description that conveys the addition of a modifier, which

for any outer loop iteration, will modify the size parameter of the inner loop. In specific, the modifier

described here operates always with a non-changing configuration, hence the specific nomeculature

being static modifiers.

Note that there is a first configuration pass on the outer dimensions before the start of the inner

dimension (in agreement with a for loop mechanism), i.e., the modifier will be applied every time dimen-

sion 1 (outer) is iterated and, in the first time, it is applied right before the inner dimension iteration. Each

modifier is coupled with a single dimension, which means that it is iterated at the same time as said

dimension, however, the modifier will target, i.e. modify, the dimension immediately below. Additionally,
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Figure 3.6: Lower triangular memory access fully described by the usage of dimensions (linear) and dimension
modifiers (non-linear). In the left, the correspondig C loop. In the right, the stream representation of the memory
pattern. This figure details the connections between the modifier and the respective target.

to constrain the maximum complexity of a stream description, only one modifier can be coupled with

each dimension, meaning that the maximum sized description can be composed of 8 dimensions and 7

modifiers. The first dimension cannot have a modifier, as there is no dimension below.

To keep track of the ISA description capabilities, Figure 3.7 summarizes the set of introduced de-

scriptors.

Figure 3.7: Descriptors summary containing linear descriptors and static modifiers.

3.3 Indirection accesses - Indirection Modifiers
In processing kernels, it is common to find the use of indirect memory accesses, such as using one

array to index another’s data. Many applications, particularly those leading with sparse or graph data,

are characterized by indirect memory access patterns, such as B[A[i]] or C[B[A[i] + k]] (see also the

example in Figure 3.8). Consequently, this functionality must also be present in order to achieve com-

prehensive descriptors. Hence, by coupling both memory accesses together, it is simple to describe

Figure 3.8: Indirection memory access. In the left, a visual representation of the indirection pattern where the linear
memory access starting in A produces pointers to index the memory access with offset B. In the right, a C loop
representing the memory access.

the indirect patterns, since the access B[A[i]] can be described as ∗(B + A[i]). Thus, the description
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needs to use the values of A[i] to modify the parameter offset of the pattern B dynamically. This can be

achieved by relying on the previously defined static modifiers, only with the difference that the source

value (displacement) is now dynamic. In particular, considering that the displacement value is now ob-

tained from a stream, the incrementation and decrementation behaviours would limit the overall potential

of the description. As a consequence, there five different behaviours in a dynamic modifier:

• Add: Adds the dynamic displacement to the target.

• Sub: Subtracts the displacement to the target.

• Inc: Adds the displacement to an incrementing counter from the previous iterations, then sums the

value of the counter to the target.

• Dec: Analogous to the incrementing process, only it decrements.

• Set: Sets the target value to the value given by the origin stream.

In sum, a dynamic modifiers is composed of 4 parameters: target, behaviour, origin stream and size.

Taking into account that the size may directly depend on the origin stream total size, this parameter is

not always necessary and may be derived from the origin stream. Particularly, in the case where the

origin stream description is composed of static or dynamic modifiers, it may be very difficult to calculate

the origin stream size, in this case it is advisable to allow the size parameter to be derived.

By putting it all together into a pattern description, the result for a given pattern B[A[i]] is depicted

in Figure 3.9. As a note, the indirection modifier is executed the same number of times as stream A,

Figure 3.9: Indirection memory access separated into accesses A and B. In the top, the representation of he linear
memory access with offset A. In the bottom, the linear memory access with offset B. The connection of the streams
is done through the indirection modifier.

and each time it iterates, the value offset of the stream B is summed to the value given by stream A.

Additionally, by choice, the innermost dimension of the stream B was defined with size 1. However, that

is not a requisite, and the dimension is open to different configurations.

Finally, to showcase some possible descriptions, in Figure 3.10 some of the potential of dynamic

modifiers is depicted. To simplify the representation, all streams assume a origin stream with infinite data
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Figure 3.10: A showcase of possible, yet very complex, memory access patterns. Each pattern is represented with
the respective stream configuration. All the configurations specify the data in the not represented source streams.
Values marked with X represent undefined but reasonable values. In the left, a representation of a linear pattern
with increased size. In the middle, a linear 1x5 access that is modified in horizontal offset and horizontal size. In the
right a 2x2 pattern that is indexed using a pair of (x,y) coordinates.

that is meaningful for the example at hand. To guarantee that an overview of the available descriptors

was not lost, in Figure 3.11 it is presented the summary of the defined descriptors.

3.4 Multi-decriptor organization
Returning to the works of Neves et al., presented in section 2.3, it was proposed a descriptor organi-

zation in which dimensions were already linked by being in the same descriptor. In spite of its inherent

flexibility, such a method is not adequate for this work. In the work of Neves et al [36], each descriptor

can define up to N dimensions. However, it is not possible to describe N dimensions with a single

instruction, as the encoding space is limited. Taking this into account, it would be more suitable that

the placement of each descriptor was determined implicitly with the usage of multiple consecutive in-

structions. In the other hand, there is no need to use a descriptor organization so complete and flexible,

as the majority of the patterns found in high-performance computing applications are regular, or can be

represented by a set of more than one stream. Hence, this work defines a new descriptor organization

that is more simple, although deliberately less capable.

The new organization method herein proposed is thus based on a list organization. In the such
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Figure 3.11: Descriptors summary containing linear descriptors and dynamic modifiers.

organization, each list node can be composed of up to one dimension and one modifier. The first node

(head node) corresponds to the lower level loop, i.e. the inner loop, while the tail node is relative to the

outer loop. Additionally, the first node must only be composed by a dimension (no modifiers allowed).

Additionally, any node that is composed of a modifier needs to have a lower level node with a dimension.

To clarify, in Figure 3.12 a set of possible and not-possible lists is depicted. It should be noted that the

Figure 3.12: A set of possible combinations for the list nodes. On the top, the allowed combinations. On the bottom,
the combinations that are not allowed to be used.

majority of these limitations are derived from the modifiers concept, in which a modifier must modify a

target dimension. Hence, any modifier that has no lower-level dimension cannot be employed.

To allow for the descriptors to be ordered, an ordenation method is needed. Leveraging on the list

concept, any node in a list is connected to at least one other node. Additionally, in a unidirectional

list, any node connects to the following (with exception on the last). Consequently, if a dimension is

inserted into an empty list, the following dimension will be implicitly connect to the first one. Hence, by

filling a list with the consecutive dimensions will result in a list with the dimensions implicitly ordered

and connected. In particular, the modifiers are linked to the dimensions, as such any modifier is only

connected to the previously defined dimension. Undoubtedly, all instructions in a CPU start in order, so
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it is always possible to guarantee the descriptors order. Additionally, modifiers and dimensions must be

distinguishable; fortunately, the format of each descriptor is different. Hence, by defining the descriptors

and modifiers in order, it is simple to construct a tree that relates each node and its components.

In fact, it would be possible to link any ammount of modifiers to one arbitrary dimension, however,

allowing only one modifier is not currently considered as an application porting limitation and simplifies

possible implementations.

3.5 Summary
This chapter introduced the fundamental concepts of streaming and pattern description on top of

which an instruction set will be devised.

The core element of a stream description is the descriptor, to describe streams with an higher level of

memory access complexity, multiple descriptors can be chained into a complex description. Particularly,

a descriptor can have three forms, a dimension, a static modifier, and a dynamic modifier. While a

dimension describes a linear access with a specific size, stride and offset, the usage of a modifier

allow for these parameters to be changed in a per-iteration basis and with resource to the data from

other streams. Thus, by chaining up to 8 dimensions and 7 modifiers, it is possible to describe a

vast assortment of HPC applications. While it is always possible to extend these capabilities, such

as, allowing more descriptors, creating more complex modifiers or improving the descriptor chaining

flexibility, we also need to consider the microarchitecture standpoint where more features and more

complexity may correspond to challenging implementations that are not possible or viable.
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Part I

Instruction Set Achitecture



4 Instruction Set Architecture Design

The process of designing the ISA extension is the most crucial part of the work, as the supporting

microarchitectures will be affected by any mistake on the ISA definition. Consequently, the product of

this chapter is based on state-of-the-art ISA architectures and extensions (Chapter 2). In the effort

of creating a consistent ISA extension, the following set of requirements was defined before the ISA

definition:

• RISC: The instruction set must have reduced size, but be comprehensive and generic.

• Scalability: The instruction set must be tailored for the scalability shown by the vector registers.

Particularly, never constraining the maximum vector-length.

• Coherent: The extension should follow the principles of the base ISA.

Before it is possible to define an ISA extension, we must choose the base ISA for the extension.

From the abundance of available instruction set architectures, only x86, Arm and RISC-V are viable

candidates. First, the x86 ISA is the dominant ISA in the personal computer industry, as well as on

datacenters and supercomputers. Secondly, the Arm ISA dominates the mobile device industry, and

is now trying to make an important presence in datacenters. Finally, RISC-V is an open-source ISA

that is very trending amongst computer technology industry leaders. Comparing RISC-V with x86 and

Arm, one promptly concludes that due to the open-source nature of RISC-V, any future implementation

would leverage from the absence of legal restrictions. Additionally, due to the more simple and less

overloaded set of instructions, it is easier to develop work on top of RISC-V. Finally, RISC-V is very

popular among academics, the target of this work. Additionally, previous studies compared side-by-side

implementations of the Arm and RISC-V ISAs, by comparing, respectively, an ARM Cortex-A5 and a

Rocket scalar core. Lee et al. [48] claim that the RISC-V implementation achieved a higher performance

despite the lower usage of chip area. This final result cements the affirmation that RISC-V is, in fact,

fit for realistic implementations. In summary, all the arguments point to RISC-V as being a suitable

candidate for this extension base ISA.

Admittedly, the scalable vectorial extensions RVV and SVE (see section 2.2) are great candidates on

which to apply the streaming concept of this work. However, at the time this work started, there were no

available tools for SVE and RVV was still a minor draft. Also, none of them was created with streaming

into consideration. Consequently, a new ISA extension was designed and is presented throughout this

chapter.

At this respect, the architectural stated (register organization) is first presented, followed by the def-

inition of the data processing and data transfer instructions. Subsequently, the stream configuration
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interface is detailed, which consists of the set of instructions that allow the configuration and manage-

ment of streams. Finally, the encoding of the instruction set is outlined, followed by a summary of the

chapter.

4.1 Architectural State
Since the extension is vectorial, it is necessary to define a set of vectorial registers. Moreover,

some instructions will certainly require scalar registers (e.g. Loads and Stores). To cope with this, the

considered scalar registers correspond to those defined by the base RISC-V ISA [27].

4.1.1 Vectorial Registers
By inspecting the state-of-art SIMD and vectorial architectures (Sections 2.1 and 2.2), it is clear that

the number of vectorial registers is 32 in any state-of-the-art SIMD extension. Additionally, this number

of registers has been used historically for the majority of the instruction sets. With 32 architectural

registers, the encoding of an operand takes 5 bits, making of almost half of the encoding space for

a three-operand instruction in a 32-bits encoding space. While it is possible to use 64 architectural

registers (6 bits for encoding), there are no reports that the encoding limitations would be worthwhile

for any possible performance increase, while considering a 32-bit encoding space. On the other hand,

having only 16 registers could significantly limit the instruction set architecture capabilities. In detail, the

RISC-V ISA reserves two opcodes in the 32-bit encoding space for custom intruction set extensions.

As such, this extension will be limited to the two custom opcodes, and therefore, it is optimal to use 32

vector registers. In fact, this ISA could use a encoding space with 64-bits instructions, however, that

would force any implementation to implement 64-bits instructions, which can be restrictive for future

works.

From the 32 vector registers, the proposed ISA extension does not hardwire any register to any value

to maximize the available registers (also following SVE and RVV standards). The vectorial registers are

named from "u0" to "u31".

Configurable Length

The length property of the registers is not limited in maximum size, in order to not affect scalability.

Naturally, a minimum value is defined corresponding to the maximum width of the elements supported by

the architecture (i.e., byte, short, int, float, double, etc). On the other hand, the maximum vector length

must be a multiple of the minimum length. However, much like in SVE, the vector maximum length can

be made available to the application by reading from a read-only CSR, and the working length can be

configured through another CSR. Configurable Width and Type

Each vector register is partitioned in multiple vector elements. The available element widths are byte

(8-bits), half-word (16-bits), word (32-bits), double-word (64-bits). Consequently, the minimum vector

length is 64-bits. Additionally, the element width is configured independently for each vector register.
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To support the configuration of the vector width, each vector register is extended with the necessary

control bits. In a case where a vector is not completelly filled with data, e.g. edge cases and stream

terminations, the vector register must hold the number of the valid (filled) bytes, specifically, this field is

named valid index.

The data type ( signed, unsigned, floating-point ) could also be configured for each vector; however,

following both SVE and RVV compute instructions specify the data-type [6, 7], the datatype is specified

by the compute instruction.

To illustrate the different configurations of vector registers, two possible vector setups are depicted in

Figure 4.1.

Figure 4.1: Vector register architecture with configuration examples. At the top, a vector register diagram emphasiz-
ing the vector length, element size, width configuration, and valid index components. At the bottom, two examples
with fixed vector length and two diferent element width configurations.

4.1.2 Streaming Registers

Each time any stream is configured, the data must be facilitated to the consuming instructions.

Hence, the corresponding instructions must be capable of distinguishing the source of data (vector

registers or stream). To solve this problem, two options were available:

• Explicit selection: Each instruction specifies the source of data through their encoding.

• Implicit selection: Each stream of data is associated with a specific vector register ("u0" to "u31"),

and by reading/writting to such register is equivalent to reading/writting to the corresponding

stream.

On the one hand, the major downside of the explicit selection is the need for additional bits in the in-

struction encoding, as well as the requiring of adding additional behaviours (e.g., by raising an exception)

whenever reading/writting from an non-configured stream. On the other hand, explicit behaviour benefits

from not needing to shadow the vector registers with the streams, virtually allowing for 32 vector register

and 32 streams. Hence, the proposed ISA extension is based on an implicit selection, where there is no

distinction between streaming registers and vectorial registers.
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4.1.3 Predicate Registers

The predicate registers are necessary to allow lane execution control. In this extension, the predicate

register file is composed of 16 predicate registers (p0-p15). However, only 8 (p0-p7) are useable in

memory and arithmetic instructions. In detail, the remaining registers (p8-p15) can be used to configure

the first 8, or to allow for context saving. This balance was validated by analyzing compiled and hand-

optimized codes, having the benefit of mitigating the predicate register pressure [7,28].

Using only eight predicates also takes up less encoding space for the actual instructions (3 bits,

versus 4 bits with 16 registers). Also, the predicate register p0 is always hardwired to 1 (all valid lanes

execute), removing the need to preconfigure the register in non-conditional loops.

4.2 Arithmetic Instructions and Predication Mechanisms

4.2.1 Instructions overview

The proposed ISA extension features a total of 26 integer, 15 floating-point and 19 memory (including

streaming) instructions, to a total of 82 instructions (and around 450 variants), considering predicate ma-

nipulation and branching instructions. Since the majority of instructions is not much different from typical

ISAs (apart from its encoding), in this section we focus on explaining only its principle. Consequently,

only three different instructions are detailed. The first instruction is the add and the variant adde (add

elements). Followed by the instruction sll (shift left logical). These instuctions and the respective vari-

ants are representative of all the instructions formats. All of the added arithmetic and logical instructions

are based on similar instructions from the state-of-the-art SIMD and vectorial ISAs (sections 2.1 and

2.2). In fact, this extension is a work-in-progress and the instructions provided are close to the minimum

necessary to provide a proof-of-concept.

A) Arithmetic Instruction Add - add, adde

There are two variants of the add instruction:

Vertical add The add variant follows an instruction format with two source operands, one destination

operand and one predication operand. It executes the normal vertical add between the two source vector

registers, writing the result to the destination vector register, as depicted in Figure 4.2. Additionally, the

datatype of the instruction must also be defined. In this case, the instruction can operate on signed

and unsigned values, as well as floating-point ones. The possible combinations of datatype and data

width are represented in Table 4.1. In the RISC-V ISA there is no support for half-precision and byte-

precision floating-point representations. When an invalid combination in Table 4.1 is used, an exception

is raised accordingly. The datatype must encoded in the instruction bits. The support of floating-point

processing is dependent on the implementation of the floating-point extension ("F" extension). The
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Figure 4.2: Vertical add variant operation. Each element of the first source register is added to the respective
element of the second source register. The resulting value is saved in the respective element of the destination
register. AThe example assumes that the vector register length is 128-bits and the element width is a word (32-bits).

extension presented here supports floating-point if the "F" extension is also implemented. Consequently,

the available floating-point status flags are the ones described in the "F" extension [27].

Table 4.1: Possible combinations between datatype and data width for the add instruction. There are no available
representations for half-precision and byte-precision floating-point.

Datatype

unsigned signed floating-point

B X X —

H X X —

W X X X
Width

D X X X

Horizontal add The adde (add elements) variant follows an instruction format with one source operand,

one destination operand and one predication operand. It executes the reduction operation depicted in

Figure 4.3,saving the result either on one scalar register or on the first element of a vector register

(depending on the instruction variant).

Figure 4.3: Horizontal add variant operation. All the elements of the source register are summed. The resulting
value is saved in the first element of the destination vector register. The destination can be saved to a 64-bit scalar
register if one is provided. The example assumes that the vector register length is 128-bits and the element width
is a word (32-bits).

B) Logic Instruction Shift Left Logical - sll

There are two variants of the shift left logical instruction. The first variant uses the elements of

a vector register as shift ammount source (sll). The second variant uses one scalar register as shift

ammount source (slls).

sll - shift ammount from vector The sll (shift left logical) instruction follows an instruction format with

two source operands, one destination operand and one predication operand. The source and destination
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operands must all be vectorial registers. The operation executed by this variant is depicted in Figure 4.4.

In logical operations, the data is always interpreted as being unsigned. Therefore, there is no need to

Figure 4.4: Shift left logical vector variant operation. Each element of the first source register is shifted by the am-
mount given by the scalar source register. The resulting value is saved in the respective element of the destination
register. The example assumes that the vector register length is 128-bits and the element width is a word (32-bits).

specify the datatype.

slls - shift ammount from scalar The slls (shift logical left scalar) instruction follows an instruction

format with two source operands, one destination operand and one predication operand. However, in

this variant the second source operands is a scalar register. The operation executed by this variant is

depicted in Figure 4.5.

Figure 4.5: Shift left logical scalar variant operation. Each element of the first source register is shifted by the am-
mount given by the respective element of the second source register. The resulting value is saved in the respective
element of the destination register. The example assumes that the vector register length is 128-bits and the element
width is a word (32-bits).

4.2.2 Valid index and mismatched widths
The three different operands configuration are representative of all the arithmetic and logical instruc-

tions in the extension. Even so, we still need to discuss the influence of predication in the execution of

the arithmetic and logical instructions. Some valid index and the width configurations, may lead to some

unwanted problems and limitations, as presented next.

A) Valid index considerations

The first concern is based on the execution of instructions when there is less data in a vector than

it’s total size. When a instruction is executed with non-complete vectors, two problems can arise. First,

the operation result may be left undefined in the elements respective to the invalid portion of the source

vector. Secondly, the operation result may be undefined or an execption raised in the event of two source

operands with different valid elements. For the first question, the valid index specifies the number of

elements that are valid and the number of invalids. Consequently, the only elements to be calculated

are the valid ones additionally, the valid index is copied to the destination register.

The second question comes with a more profound concern, having mismatched number of elements

in both source operands would not normally occur in a well-structured code. Indeed, a programer error
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can lead to this, and consequently, it would be wise to launch an exception. However, unique and not

expected cases could also trigger the discussed event. To give additional flexibility to the programming

and execution, there will be no enforcement regarding mismatched valid indexes. To guarantee the

coherence and validity of the instructions, the lower of the valid indexes will be used to constrain the

execution and define the resulting valid elements. In particular, there is the hipothesis of using the

higher of both valid indexes, where the elements that are valid in one operand but not in the other are

merged to the destination. However, this behaviour could prove difficult to debug in an application, and

therefore it is not adviseable.

B) Handling mismatched widths

The second concern is related to the handling of the instructions that have operands with mismatched

widths. In this case, there is no chance of being an event expected by the programmer. Consequently,

either a programmer error occurred, or possibly the processor is executing in deep speculation. In

both cases, the current specification handles this issues by raising an illegal or undefined instruction

exception. However, it could be better to create a specific exception for this case, as it can be difficult

to understand why different widths, that are not part of the instruction enconding, would cause an illegal

instruction exception.

4.2.3 Predication mechanisms
To maintain control over each element execution there needs to be predication mechanisms in-place,

as described next.

A) Lane control

The core concept of predication is to control the execution in each execution lane. To specify how

this works, let us use the instruction add in the vertical variant (Figure 4.2) as an example. The pred-

Figure 4.6: Example of predication, based on the vertical add instruction. Each element of the predicate register
(P) will condition the execution of the operation. When the predicate does not allow the execution the resulting value
is unchanged. The example assumes that the vector register length is 128-bits and the element width is a word
(32-bits).

icate register conditions the execution of each lane of the predicated instruction. In specific, when the

predicate blocks the execution, the resulting value is not updated in the vector register. This type of

predication is named in SVE as merging predication. In contrast to zeroing predication, where the result

is set to 0. The latter is currently not implemented and is left for future versions.
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Table 4.2: Possible comparisons achieveable. By combining the instruction PNOT the number of available compar-
isons is doubled.

Comparison
PEQ PLT PELT

- == < <=Logical
Modification PNOT ! = >= >

B) Predicate configuration

To configure a predicate register, specific instructions are provided, which work by applying a condi-

tion test to the data (e.g. less or equal, greater than), such as: PELT (equal or less than), PEQ (equal)

and PLT (less than). The instruction PNOT (negate) can be used in conjuction with any of PELT, PEQ

or PLT to duplicate the total available comparisons (with only PELT, PEQ, PLT and PNOT), covered in

Table 4.2.

To provide a more comprehensive set of comparisons, the instructions PAND (logical and) and POR

(logical or) are also part of the instruction set. By using these to combine the values of two predicate

registers, it is possible to cover the majority of regular comparisons.

In some situations it might be necessary to copy or exchange the predicate information, such as

moving predicate data from the lower registers (p0-p7) to the higher registers (p8-p15). To support this,

a PMOV (move) instruction and a PEXCH (exchange) are defined. In detail, the exchange instruction

writes to two different registers in the same cycle, and thus can be considered a complex, almost CISC,

instruction. However, any out-of-order CPU as well as an in-order with a renaming mechanim can

execute this instruction in the rename stage, by swaping the rename target of both architectural registers.

And thus, can be considered viable in the RISC paradigm. Additionally, a vector register, as well as a

predicate register, can change in element size while maintaining part of the data. The instruction PCONV

(convert) supports width conversion for the predicate registers. The details of such an instruction are

detailed alongside the vector register convert instruction, in section 4.3.

To add even more capabilities to the predicate configuration instructions, each instruction can be

predicated with a lower predicate register (p0-p7). To exemplify this and to cement the comparison

instructions, Figure 4.7 provides an example where the instruction PLT is used to create a new predicate

that is also dependent on the state of both source and destination predicates.

Figure 4.7: Example of predication in the creation of a predicate. Using the less than comparison between vectors
to form a new predicate. Each element of the predicate register (P) will condition the execution of the operation.
When the predicate does not allow the execution the resulting value is unchanged. The example assumes that the
vector register length is 128-bits and the element width is a word (32-bits).

40



C) Iteration control

In addition to the control of the execution of each lane, a loop can leverage from ending when certain

data-based conditions are met (e.g. end loop if a value is lower than some constant). To be able to end

the loop or run some sub-routine based on the data values, two predicate-based branch instructions are

defined, namelly: B.AND (Branch AND) and the B.OR (Branch OR). The B.AND instruction executes

a jump when all the relevant elements of the predicate register are set to 1. In opposition, the B.OR

instruction executes a jump when at least one element is set to 1. To achieve the reverse behaviours

of NAND and NOR, the PNOT instruction must be combined with the B.AND and B.OR instructions,

respectively. These instructions are always predicated with a lower predicate register (p0-p7). Figure 4.8

illustrates the behaviour of the B.AND instruction, where the operand .gotolabel is the jump target.

Figure 4.8: Branch on AND (B.AND) instruction exection. The jump ocurs when all the valid elements of the
predicate are true. Each element of the predicate register (P) will condition the execution of the operation. When
the predicate does not allow the execution the respective value is not taken into account in the AND operation. The
example assumes that the vector register length is 128-bits and the element width is a word (32-bits).

4.3 Data transfer instructions
Although this work is heavily based on applying the streaming concept to vector register architec-

tures, some programs may still need to use common load/store mechanisms in order to transfer data to

and from memory. To allow this, a set of load and store instructions are required. Additionally, there is

a need to define instructions that allow data movement between registers (vector and scalar) and allow

the conversion between data elements width.

4.3.1 Vector load and store

When loading or storing data to/from a vector register, it is not possible to infer at compile time how

much data will be loaded. To avoid unauthorized data accesses, the load and store instructions are

provided with a size operand. The size operand specifies the number of vector elements that will be

transacted to or from memory. Also, it is possible to calculate this value based on the implemented

vector-length, readable from a CSR. Additionally, when loading data, the width must be specified in the

instruction. The store instruction uses the width configured in the vector register.

Even so, if the vector register is not wide enough to fit all the elements specified by size, it is important

to allow the program to be able to maintain a coherent state. For this, one of the operands: size and

base address, must be updated with the number of elements processed. Consequently, two variants of
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the instruction are provided: LOAD_A (STORE_A) and LOAD_S (STORE_S), where the address and

size are updated, respectively. In the variant where the size is updated, the operand size is set to the

actual number of processed elements. In the address updating variant, the address is incremented with

the number of bytes processed. To clarify, in Figure 4.9 an example of the LOAD_S instruction is given.

Notice that in the case where the requested elements are lower than the vector length, some invalid

elements exist in the last portion of the vector. In this specific case, the valid index is different from the

size of the vector (in elements). Here it is set to 3, the number of valid elements.

Figure 4.9: Load instruction example with address operand update. The element width, requested size and the
memory address are defined by the instruction, via operands and encoding. The number of elements loaded is given
by the minimum between the vector register size (in elements) and the requested size. Any non loaded element is
invalid, and the vector register valid index is set acordingly. The example assumes that the vector register length is
128-bits.

4.3.2 Moving data between registers

Besides the memory transactions, it is necessary to allow the transaction of data between vector

registers and between scalar and vector registers. The register transaction instructions are divided

into three categories: Scalar-Vector, Vector-Vector and Width Conversion. While the first two are self-

explanatory, the width conversion is a vector-vector transaction where the target register has a different

element width.

A) Scalar to/from Vector transactions

Let us start by focusing on getting data from an to the scalar registers. Since a vector register can fit

multiple scalar-sized elements, only one element can be transacted. The first question that can arise is

which element, and how to index that element. Due to the unknown size of the vector registers, it may

not be simple to index an element of the vector. Consequently, it is only wise to allow the first element

to be populated, as it is the only guaranteed element to exist.

Vector-Scalar Move With this, a Vector to Scalar transaction will only move the first element of a

vector register to the given scalar register. However, due to the scalar registers being 64-bits in width,

the element data will be moved to the 64-bits register, with no conversions or extensions. The process

of adequating the data to a different datatype must be done with the base ISA instructions.
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Scalar-Vector Move When moving data from a scalar register to a vector register, the process is the

same; any data conversion must be done with the base ISA instructions. In this case, the element width

is specified in the instruction. As a note, if the data in the scalar register is represented with more than

the requested element width, the data in the element will be different from the source.

Besides this, the data can also be replicated to all the vector register elements. A specific instruction

(dup), allows the data to be replicated. This instruction uses predication, allowing more control to the

replication process (e.g. replicate values with interleaving).

B) Vector to Vector transactions

Moving data between vector registers is a quite simple process. The source register contains the

data and the element width specification, and the destination register will become a complete copy of

the source register. This behavior is consistent both when either (source or destination) corresponds to

a vector register, as well as when it corresponds to a stream.

The vector-vector move instruction contains two variants, a direct variant and a transpose variant,

both allowing predication. The direct version copies the data directly to the corresponding destination

element when the predicate allows the execution, whereas the transpose version swaps all elements.

To exemplify, Figure 4.10 shows the relation between the source elements and destination elements.

Figure 4.10: Move transpose instruction example. Each source element is copied to the simetric destination
element. The predicate conditions the copy of the elements. In cases where the vector register has odd number of
elements the central element is not swapped. The example assumes that the vector register length is 128-bits and
elements with a width of 32-bits. The type parameter is set to "movt" for move and transpose, and "mov" for move.

Particullarly, when the source operand is a stream, it might be important to be able to move the

data without iterating over the stream. Effectively, this allows a streaming register to behave as a non-

streaming register momentarily, bringing more flexibility into the vector/stream register paradigm. This

behaviour is achieved by setting the update flag in the instruction that disables streaming on that instruc-

tion.

C) Width Conversion

The width conversion instructions are present in every modern ISA, including the RISC-V base ISA.

In this extension, the possible width conversions and the respective type (narrowing, widening) are

summarized in Table 4.3. In the cases where the is no need for conversion (same width), the vector

move instruction should be used. Additionally, there is no conversion between different datatypes (e.g.

float to unsigned word). In general, the datasets are already in the correct datatype and do not require
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conversion inside the vectorizeable processing kernel. Any dataype conversion must resort to the base

ISA and standard extensions instructions.

Table 4.3: Allowed conversions and respective type. The direction of the conversion is represented by the symbols
↓ (narrowing), → (none), and ↑ (widenning). In the cases where the width is not changed, the usage of a regular
vector move instruction is recommended.

Unsigned/Signed Floating-point

Src.

Dest.
Byte Half Word DWord

Src.

Dest.
Word DWord

Byte → ↑ ↑ ↑ Word → ↑

Half ↓ → ↑ ↑ DWord ↓ →

Word ↓ ↓ → ↑

DWord ↓ ↓ ↓ →

Width conversion instructions generate a problem related with the conversion between widths when

the vector registers have the same size, without losing any elements. To solve this issue, let us break

the problem into two parts: narrowing and widening.

Element Widening The supported widths: Byte, Half, Word, and DWord have known powers of two

size, respectively, 1, 2, 4, and 8. Taking this into account, a conversion from Byte to DWord will need

eight times the size of the source register (see Figure 4.11). In other words, one register with byte

configuration needs to be converted to eight vector registers.

Figure 4.11: Conversion example with the initial element width of 8-bits (Byte) and the final element width of 64-bits
(DWord). The contents of the source register occupy eight destination registers. The example assumes that the
vector register length is 128-bits.

Although some ISA extensions make use of this behaviour, namely RVV and NEON, it should not

be considered compatible with a genuine RISC instruction set. In addition, it is not a simple or ele-

gant solution. To avoid this mechanism, it is possible to process the widening conversion in multiple

iterations/instruction, instead of one heavy instruction.

To guarantee that each instruction knows what portion of the source vector it is converting, three

options are on the table:

• Use an operand value to index the data transfer. This operand is updated with the first index for

the next conversion.
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• Use the instruction encoding to index the operation. Encode the portion of the vector that is to be

converted.

• Shift the data of the source vector register after each conversion.

The first option requires an additional register to be used in the instruction and could lead to non-

standard cases where the requested portion of the vector is not a real vector portion. The second option

could lead to data swaps and consequently to the loss of coherency. Although it is a valid approach, the

conversion process should not allow strange and non-standard behaviours.

For the last option, to better explain how the process of shifting the data works, the example in

Figure 4.12 shows a conversion from the width Word to the width DWord.

Figure 4.12: Shifted conversion example with the initial element width of 32-bits (Word) and the final element width
of 64-bits (DWord). The contents of the source register are shifted after the conversion. The final block of data
is invalid after the conversion; alternativelly, new data may be loaded from the associated stream. The example
assumes that the vector register length is 128-bits.

In this case, the number of destination register space is the double of the source space. Therefore,

to fully convert the source registers, two iterations are needed. In this example, the first step is to

copy the left-most elements of the source register, and then, all the source elements are shifted to the

left. Consequently, the ending state of the source register will contain two valid elements and the other

two that can be either invalid (vector register), or two elements loaded from the stream, as shown in

Figure 4.12. This is an initial decision that could lead to a negative impact in performance and still needs

evaluation. In sum, by shifting the data, the final state of the source register allows for subsequential

conversions that will iterate over the register contents automatically.

Element narrowing The element narrowing conversion works in a similar way to the widening. When

a narrowing is executed, the number of source registers space is higher than the destination space.

Consequently, the shifting must be done in the destination register to accommodate the data from mul-

tiple source registers. The narrowing process starts by shifting the left-most elements of the register to

the right; therefore, a portion of the data will be discarded. Then, the source data is converted into the

left-most position of the destination register. As before, it is possible to interact directly with the stream,

where the converted data can be saved to the stream immediately, however, this is also needs further

testing to access the performance impact.
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Figure 4.13 shows a conversion example from word-sized elements to half-word ones.

Figure 4.13: Shifted conversion example with the initial element width of 32-bits (Word) and the final element width
of 16-bits (Half). The contents of the destination register are shifted before the conversion. The final block of data
is discarded after the shift. The newly converted data may be automatically stored into the associated stream. The
example assumes that the vector register length is 128-bits.

4.4 Stream Description Interface
This section explores the subset of stream configuration instructions. Having the memory pattern de-

scriptors defined (chapter 3), it now is necessary to define instructions that can represent those patterns

in a simple but efficient way. This section refers to the already defined pattern descriptors to define the

stream configuration instructions. In addition to these, more instructions allow to dinamically configure

the state of a stream (e.g. resume, suspend, etc..).

4.4.1 Basic Stream Definition

To start, let us pick a tri-dimensional description (Figure 4.14) and from there arrive to a complete

stream configuration set of instructions. The example in Figure 4.14 is made of 3 dimensions. From

Figure 4.14: Example with a tri-dimensional pattern. In the left, a visual representation of the tri-dimensional
pattern. In the right, the associated pattern descriptors.

which, the first dimension (dimension 0) can be used to describe a linear pattern that starts in "A" and

as a size of 5, with an elemement stride of 1.

Single-dimension streams To describe only the first dimension, a configuration instruction must pro-

vide the offset, size, and stride parameters. Additionally, a instruction must also set the data width

("Width") and the transaction direction ("Dir"). Consequently, it is possible to create a instruction with the

following format:
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ss.sta.<Dir>.<Width> Vd, Rs1 (Size), Rs2 (Offset), Rs3 (Stride)

Assuming that the destination vector register is u1, and that we are loading data composed of word-sized

elements, the instruction becomes (a1-3 contain the dimension configurations):

ss.sta.ld.w u1, a1, a2, a3

By executing this instruction, a stream description is started (hence the instruction opcode ss.sta). How-

ever, it is necessary to end the description in order for it to be processed. In the case where only one

dimension completely describes the stream, the use of the "ss" opcode without the ".sta" or other modi-

fications is recommended. When using only the "ss" opcode, the stream is configured immediately and

does not wait for further information. To clarify, the instruction would result in:

ss.ld.w u1, a1, a2, a3

Multi-dimension streams Even so, one dimension is not enough to describe the tri-dimensional ac-

cess. Therefore, additional instructions are needed. Considering the list organization proposed in sec-

tion 3.4, to add a higher level configuration, it is necessary to decribe the remaining configurations.

Notice that, as described in chapter 3, a dimension that is defined after another, is implicitly an outer

dimension. With this in mind, to define the dimension 1 in Figure 4.14, we only need to provide another

instruction that targets the same stream/vectorial register. Additionally, considering that the complete

description is not supposed to terminate (dimension 2 is not yet defined), the instruction will only ap-

pend a configuration instead of terminating the configuration. When appending configurations to the

stream description, the instructions use the opcode "ss.app" (append). With this, the following format

concretizes the stream append instruction:

ss.app u1, a4, a5, a6

Note that, when appending a configuration the direction of the transaction and the element width are

not repeated, this information is only necessary for the first configuration. The registers a4-6 contain the

configuration of the dimension 1.

To define the last dimension and terminate the stream description, the instruction with the opcode

"ss.end" is added. This behaves similarly to the append instruction; However, this sets the current

dimension to be the last in the configuration. Any additional append or end configuration instruction

to the same stream will be treated as an error, and an exception is be raised. In the case where an

instruction starts defining a new configuration, the previous configuration is discarded and the new one

begins. To cement the description of the terminating dimension, the following format corresponds to the

end instruction:
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ss.end u1, a7, a8, a9

The registers a7-9 contain the configuration data of the dimension 3.

To summarize, the example given in Figure 4.14 can be defined by executing the instructions in

Listing 4.1.

Listing 4.1: Configuration code example for a tri-dimensional access. The configuration parameters are detailed in
Figure 4.14. This example assumes a word-sized elements loading scenario.

1 ; Dim 0: a1 = A, a2 = 5, a3 = 1
2 ss.sta.ld.w u1, a1, a2, a3
3 ; Dim 1: a2 = 5
4 ss.app u1, zero, a2, a2
5 ; Dim 2: a4 = 25
6 ss.end u1, zero, a2, a4

4.4.2 Streams with Modifiers

In addition to the linear dimension-based pattern descriptions, in chapter 3 two types of modifiers

were defined, which encoding is described next.

A) Static Modifiers

The most simple type of modifiers were named static due to the non-linear but constant behaviour. To

specify how the static modifiers can be configured with instructions, let us remember the lower triangular

example sumarized in Figure 4.15. In this example, the two dimensions are defined by the instructions

Figure 4.15: Example with a lower diagonal pattern. In the left, a visual representation of the pattern. In the center,
the C for loop representation of the pattern. In the right, the associated pattern descriptors.

already specified. The first dimension must be defined with the instruction stream start and the second

dimension with the instruction stream append. However, to constrain the stream to only fetch the lower

triangle a static modifier must be introduced before ending the stream configuration.

To start the definition of a modifier instruction, let us identify the necessary information that the

instruction must provide. First, this instruction must be distinguished from the previous append or end

dimensions. And second, the mode, size, target, and displacement must be provided. With all this, the

format for the modifier instruction is:
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ss.<type>.mod.<target>.<mode> Vd, Rs1 (Size), Rs2 (Displacement)

The type is one of "app" (append) or "end", and defines if this modifier terminates the stream description.

The target, mode and displacement, who were detailed in chapter 3, define the impact of the modifier in

the targeted dimension.

B) Dynamic Modifiers

The dynamic modifiers are similar to static modifiers. With the exceptions that: an already config-

ured stream gives the displacement value, and slightly different modification modes are available. The

corresponding instruction format is:

ss.<type>.ind.<target>.<mode> Vd, Rs1 (Size), Vs2 (Source Stream)

In this format, the ".ind" parameter is set, which represents indirection (the displacement value is ob-

tained from an indirect source). The target and mode paramenters were already detailed in chapter 3.

4.4.3 Stream State Manipulation
When executing, the processor may need to swap context (e.g. exception handling). In those cases

the utilization of the streams and vector registers may be limited by the previous context. In order to

momentarly disable the configured streams, a set of control specialized instructions are provided.

These instructions allow the state configuration of each stream at any point of the code. Namely,

the available instruction allow for suspend, resume, and terminate a stream. Particularly, the suspend

instruction will momentarly disable the automatic iteration of a stream until the resume instruction is

executed. During the suspended period, the streaming register will be disabled (no consumption or

production), all will work as if no stream was configured.

In addition, a load and store instructions allow for moving data to and from a suspended stream. This

instructions will force the stream to load one vector of data into the coupled register (or store), this only

works for a suspended stream.

With a suspended stream, all the instructions that would consume or produce data from/to the stream

will use the data from the standard vector registers, while the stream is suspended. When a stream is

suspended and a new is to be configured, the suspended stream needs to be terminated beforehand.

Otherwise, an exception is raised.

4.4.4 Stream Cache Control
Considering that the streams can target large memory spaces, the streaming mechanism can have a

negative impact on the cache, namely by polluting the cache. To prevent this, the streaming mechanism

could be configured to get the data from a specific cache or directly from memory. To allow the cache
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level configuration, a specific instruction was defined. This instruction specifies the target cache level for

an individual stream.

4.4.5 Stream-dependent Execution Flow Control
The last set of instructions that target the configuration and management of streams are related with

the conditional repetition of loops with account for the stream state. These last instructions provide to

the programmer a way to conditionally jump when a stream is at a given state. In general, SIMD/vectorial

extensions are used to accelerate loops. Knowing that a stream is terminated/complete is sufficient for

the great majority of the looping situations. With this into account, two branch instructions are proposed.

One instruction branches when the stream has completed (s.c) and the oposite one banches when the

stream is not completed (s.nc). The format of both intructions is the following:

b.<condition> Vd, <.gotolabel>

4.4.6 Flow Control with Inter-loop Constraints
It is common, for a code to process data in an inner for loop and only write to memory at the end of

that loop, as Listing 4.2. In this example, UVE is limited to accelarating the inner loop, even if it is possible

to describe both X and Y accesses in two streams, it is not possible to distinguish the terminations of

the loop "j". In fact, it is possible to consecutivelly load and store the Y array, however, that would lead

to a negative impact in performance due to the unnecessary memory accesses.

Listing 4.2: Code example of inner loop processing with outer loop memory access.

1 register float aux = 0;
2 for(int i=0; i<N; i++){
3 for(int j=0; j<M; j++){
4 aux += X[i][j];
5 }
6 Y[i] = aux;
7 aux = 0;
8 }

Vector Length Control To control the exact number of instructions the inner loop needs to execute.

However, due to the scalability nature of UVE, this is not achieveable. Even so, at executing time the

vector length is known and can be read from the processor state registers. While knowing the vector

length is a clear advantage, it is also possible to improve the control over the execution by configuring

the vector length at runtime, as such, there is a clear need of vector length control instruction. This

is done with the "setvl" instruction, which accepts a requested vector length and returns the available

vector length to the destination operand. The available vector length is the minimum-value between the
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requested and the implemented vector lengths. This is not valid when the requested vector length is

zero, in this case the available vector length is the implemented vector length. This removes the need

for a "getvl" instruction.

The configuration of a stream can be prepended with the "setvl" instruction that will set the vector

length in all transactions of that stream, where the vector length is set to the mininum of the implemented

and requested vector lengths. In short, the "setvl" instruction presents the following format:

so.c.setvl Rd(Final VL), Vs1(Stream), Rs2(Requested VL)

Vector/Dimension-Coupled Streaming Having full control over the vector length, while an improve-

ment, lacks simplicity and would lead to intricate and unnatural codes. Hence, a complementary solution

is proposed, as motivated in the two examples in Figure 4.16. Figure 4.16a) represents a code where

Figure 4.16: Examples of dimension-coupled streaming. In part a (top), the code transverses the memory region
horizontally, the data that corresponds each iteration of the innermost loop is accumulated and stored after each
outer loop iteration. In part b (bottom), the memory is accessed vertically and all of the innermost accesses are now
executed before storing.

the knowledge of the innermost loop boundaries is used to synchronize between the accumulation and

store, i.e. all the data from the innermost loop is loaded and accumulated first, then stored to X. It

requires for X to be configured as a single element store stream, where the accumulation instruction

output would write to. In the pseudo code portraing the vectorial execution, the innermost while con-

dition is dependant on knowing if the stream A is processing the dimension j (innermost dimension),

this indicates that the stream passes the processing status to the processing core. Additonally, for this

example to work as expected, the vector length must be a multiple of the innermost loop access size

(Nc), otherwise, data from iteration "i+1" would be loaded and processed in iteration "i", leading to in-

correct behaviour and data loss. To circumvent this, we propose a vector-coupled behaviour that can

be enabled for any dimension of any stream. The vector-coupled behaviour, depicted in Figure 4.17, al-

lows for a multi-dimensional stream to be logicaly divided, from the data organization view, onto multiple

streams with lower dimensionality, e.g. it automatically turns a bi-dimensional stream (with dimensions

51



"i" and "j") into multiple "i" linear dimensions "j", while maintaining the stream processing unchanged.

To activate vector-coupling, the instruction "ss.cfg.vec" is put after the target dimension configuration.

Figure 4.17: Distinction between vector-coupled and non vector-coupled streaming. The leftmost figure represents
the organization of a 2-D memory access in the resulting vectors, here all the elements are placed consecutivelly
inside the vectors. In contrast, in the vector-coupled stream figure the vectors are aligned with the inner dimension
of the stream. Vector-coupling gives the streaming process knowledge of the data destination format.

The fundamental side-effect of the vector coupling instruction is that the last vector of the vector coupled

dimension is flaged as that dimension termination, this flag can be captured by a new branch instruction.

Both "b.de.#" (branch on dimension # end) and "b.nde.#" (don’t branch on dimension # end) instructions

can capture the dimension termination flag for dimension # and branch accordingly. For comparison,

the branch on stream complete, introduced in subsection 4.4.5, corresponds to the case where the

outermost dimension flag is compared.

Figure 4.16b) depicts the same processing as before with a vertical (trasposed) memory access.

In this example, the processing is executed in bands, this showcases that another processing pattern

can be handled by resorting to dimensional coupling. In fact, this example makes use of the execution

time vector length knowledge as well as dimension coupling in dimension "i". In sum, the tools/instruc-

tions introduced in this chapter are absolutelly necessary to tackle a large but not specialized set of

benchmarks.

4.5 Encoding Space Management
As in all instruction sets, each instruction is encoded with encoding space limitations. On the one

side, more operands and parameters make more powerful instructions possible. On the other side, the

processor needs to decode all the instructions; therefore, there is a limitation of complexity. Additionally,

simpler and smaller instructions generally execute faster.

In this thesis, it was chosen for this extension to target the 32-bit encoding space of RISC-V. It

occupies the two major opcodes reserved for custom extensions (see also Figure 4.18, which illustrates

the RISC-V opcode map), namely custom-0 and custom-1. These were chosen to avoid interfering with

the standard RISC-V extensions. The stream configuration instructions were given the full custom-0

Figure 4.18: RISC-V base opcode map, inst[1:0]=11 [27].
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opcode. This is due to the stream configuration instructions taking up the majority of the enconding

by using up to 4 operands (20-bits of encoding). The group of streaming configuration instruction in

custom-0 opcode is named StreamSet.

Consequently, the custom-1 opcode contains all the other instructions, such as arithmetic, logic, and

predicate. This group instruction is named StreamOps. Table 4.4 summarizes the encoding map for the

proposed extension.

Table 4.4: Encoding map of the StreamOps (custom-0) and StreamSet (custom-1) instructions.

inst[30:29]StreamOps 00 01 10 11
0 Arithmetic Misc Emptyinst[31] 1 Predicate Vector/Stream Config Logical Branch

inst[30:29]StreamSet 00 01 10 11
0inst[31] 1 Stream configuration (ss, ss.sta, ss.app, ss.end)

The encoding was limited to 32-bits by following an initial consideration that this extension would

be able to target embedded and HPC processors. Consequently, the usage of 32-bits was essential

to support embedded platforms. However, after carefull considering, including the requirement to add

additional instructions, a 64-bits encoding would be more appropriate for HPC applications.

4.6 Summary
This chapter summarizes the proposed ISA, which is directed towards minimizing the number of

loop instructions, as well as for providing the means to explore the stream paradigm and to support

unlimited vector sizes. In Figure 2.6, the desired ISA removed the overhead instructions to the absolute

minimum. To turn the conceptual pseudo-code to the a real implementation, Figure 4.19 presents both

the pseudo-code and a possible implementation of the UVE extension. As displayed, there is a direct

correspondence between the pseudo-code instructions and the UVE instructions. To recall the differ-

ences between the Arm SVE ISA and the UVE ISA, Figure 4.20 shows the comparison between both

and focus on the improvements achieved by the Unlimited Vector Extension. The UVE ISA reduces the

number of instructions in the part of the execution where the great majority of the time is spent (inside

the loop). This optimization is especially relevant for long and time consuming loops, representing a

large percentage of the application execution time, as well as in cases as the indexing and loop control

operations otherwise require a relative high number of instructions. The downside is that, while the UVE

stream configuration (loop preamble) may take more execution time than in SVE code, this configuration

time may be negligeble in large loops. In summary, the Unlimited Vector Extension uses less instruc-

tions than SVE, and therefore can be considered a more efficient vector instruction set extension. The

UVE instructions used in this chapter and the remaining available UVE instructions are summarized in
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Figure 4.19: Concretization of the SAXPY example with UVE. On the left, the pseudo code defined in Figure 2.6. In
the right side, the concretization of the aforementioned pseudo-code with the UVE ISA. The equivalence between
the registers and the C variables counterparts are shown in the box placed to the right.

Figure 4.20: Comparison of the SAXPY example between SVE and UVE. On the left, the SVE code already defined
in Figure 2.6. In the middle, the respective UVE code. In the right, the limit of the instructions ratio when the number
of processing elements (n) tends to infinite.

Table 4.5.
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Table 4.5: Instruction set instructions, organized by type.

Instructions Group Instructions

Arithmetic Add, Subtract, Multiply, Divide, AddElements, Multiply and Accumulate, Absolute,
Increment, Decrement, Negative

Logic AND, NAND, OR, NOR, XOR, NOT

Shift Shift Left Logical, SLL scalar, Shift Right Logical, SRL scalar, Shift Right Arith-
metic, SRA scalar

Misc Minimum, Minimum Element, Maximum, Maximum Element

Predicate (Manipulation) Zero, One, Vector, Move, Move and Transpose, Exchange, Convert

Predicate (Logic and Comparison) NOT, AND, OR, Equal or Less Than, Equal or Less Than Scalar, Equal, Equal To
Scalar, Less Than, Less Than Scalar

Branch Dimension [Not]Complete, Stream [Not]Complete, Predicate-Based(AND, OR)

Vector Manipulation Load, Store, Duplicate, Move, Move and Transpose, Move Scalar To Vector, Move
Vector To Scalar, Convert

Stream State Suspend, Resume, Break, Manual Load, Manual Store

Stream Configuration Set Vector-Length, Get Vector-Length, Config Vectorial, Stream Start, Stream
App, Stream End, Simple Stream
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5 ISA Evaluation and Discussion

Accessing the performance of the instruction set through simulation brings a more realistic comparison

than a side-by-side assembly comparison. To access the performance of the instruction set, an ISA

simulator is used. The instruction set simulators are an integral part of a today’s processor and software

design process; they have an essential and undisputed role within the architecture exploration and early

system verification [49, 50]. Admittedly, it is also possible to go further and model the entire system;

however, doing this would require us to model the streaming supporting mechanisms. In this chapter,

the required tools to simulate the extension are presented, alongside an overview of the modifications

applied to these tools.

This chapter is divided into three sections. The first section describes the compilation tools that allows

the code to be compiled with this extension semantics. The second section presents a cycle-based

simulator with the capability to simulate the instruction set alongside a supporting micro-architecture

model. The final section depicts benchmark results and performance evaluations of the UVE vector

extension from the instruction set point-of-view.

5.1 Compilation Tools
In the space of C/C++ compilers, only two are worth considering for programming support to this

extension. On the one hand, the GNU Compiler Collection (GCC), which is an official compiler for the

GNU and Linux systems [51]. On the other hand, the Clang/Low Level Virtual Machine (LLVM) which

is a newer and more modularized compiler [52]. Both these C/C++ compilers now support the RISC-V

ISA; however, that was not the case at the initial development phases of this work. Consequently, the

choice was to extend on top of GCC, who supported the RISC-V ISA earlier.

To support a new extension, the new architectural state and the set of new instructions must be

added to the compilation toolchain. After this, it is possible to create C/C++ intrinsic functions that allow

the compiler to generate the extension instructions based on the provided C/C++ intrinsics. Taking it

further, it is even possible to extend the compiler into vectorizing the code and produce instructions

accordingly. Due to the GCC source code complexity and to time constraints, the later was left for future

work. Hence, at this stage only assembly support is provided.

To support the new instructions, the assembler tool was extended. To aid in the process of creating

new instructions, a fully automated system was created. This system is given a set of files that describe

the new instructions, and the available registers, from which the appropriate toolchain supporting files are

generated, and the cross-compilation tools are then built. Figure 5.1 contains a flowchart that details the

work-flow of the automated process. To define instructions in the toolchain is not a simple process. This
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Figure 5.1: Flowchart detailing the steps in the automated process of extending the compilation tools with the new
instructions. The first process involves the creation of description files that specify the instructions and auxiliary
files that specify available registers and specific expansion rules. From the description, the new instructions and
registers are converted to appropriate formats and used in the toolchain compilation.

involves creating appropriate representations of instructions for the toolchain code and understanding

the underlying mechanisms of the assembly process. In detail, when handling branch/jump instructions,

there are special considerations that must be provided to the address relocation process where the jump

labels are matched with the final instruction addresses.

The implementation of instructions at the assembly level allows for the usage of inline assembly and

extended assembly directives. These directives allow the programmer to embed assembly instructions

inside the C/C++ code. In fact, with extended assembly directives, the C/C++ code is able to interact

directly with the assembly code. The compiler also automatically prepares the data and registers to be

used in assembly. Figure 5.2 gives an example where the malloc function is vectorized using extended

assembly directives. The extended assembly syntax is extremelly useful in the integration of assembly

Figure 5.2: Extended assembly directives support, exemplified with the memcpy code. The compilation process
will match the C variables with the assembly extended operands.

code alongside C code. In detail, the C code variables are available for usage in the assembly, with all

the conversion details being left to the compiler. The ending portion of the extended assembly function

allow the programmer to specify wheter a C variable will be used as either destination or source operand.

In detail, the code in front of the first colon (":") represents registers that will be destination operands.
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Similarly, after the second colon (":") the source operands are defined. Each operand is defined as

[ref ] ”mode” [cvar] where the "ref" is the identifier to be used in the assembly code, the "cvar" is the

C variable name and the "mode" specifies how that variable should be interpreted. Particularly, the "r"

mode specifies that the variable should be put in a scalar register. Finally, the last colon (":") is for

definition of the registers (or memory) that were modified inside the assembly code, in this example the

memory was modified. The extended assembly is extensively documented in [53].

5.2 Simulation Environment
The simulator used through this work is gem5 [54]. In the space of computer architecture simula-

tors, there are many levels of simulation accuracy that make a tradeoff with simulation execution time.

Figure 5.3 synthesises the positioning of various simulators in the speed/accuracy tradeoff.

Figure 5.3: Accuracy and speed positioning of computer architecture simulators [5].

Whereas the RTL simulation is the most accurate level of simulation, it requires that the system is

completely implemented. This is not suitable for a work that needs to modify the instruction set, the

CPU architecture, and the memory system, particularly considering that the objective of this thesis is to

propose and make a first evaluation of the UVE instruction set extension. On the other side, the binary

translation level is only accurate at the instruction simulation level and does not contain any perfor-

mance assessment of an implementing system. This would be useful for this part of the work; however,

the complete work also simulates an implementing microarchitecture. Considering all this, the gem5

simulator sits right between the RTL accuracy and the binary translation speed. The gem5 simulator is

a computer systems simulator that simulates system architectures and supports microarchitectures with

cycle-by-cycle precision. To support ISA only simulation, a simplistic CPU model (atomic) is available.

This model does not include any microarchitecture modelling. In fact, the model only executes instruc-

tions sequentially and maintains an architectural only register file. There are no considerations into

memory access or instructions latency and throughput, as there is no underlying realistic CPU model. It

can be further extended to support custom instruction set architectures and microarchitecture models,

being the perfect candidate for this work [5,54,55].
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The gem5 simulator is an open-source project that is developed by a large number of developers.

Unfortunately, the documentation is not extensive enough, and there is a lack of code commenting. This

resulted in a prolonged and severe process to understand the majority of the code. To implement UVE,

the simulator instruction set architecture framework was extensively modified. The gem5 simulator and

the carried modifications are written in C++ and Python programming languages. Figure 5.4 contains

a simplified overview of the modifications to the gem5 simulator. The figure represents the gem5 mod-

Figure 5.4: Overview of the modifications to the gem5 simulator. The choice of representation is a simplistic
pipelined processor structure, due to the close relationship between the gem5 instruction set organization and the
aforementioned processor structure. The modifications/additions are shown in grey background. The stream state
and configuration block guarantees is not part of the instruction set modifications. It is represented to indicate the
connections between the standard pipeline blocks and the streaming mechanisms.

ifications through a view of a simplistic pipelined processor organisation. The choice of representation

is due to the close relationship between the gem5 internal organisation, at the instruction set level, and

the represented pipelined. The modifications are explained in the following paragrahps. To support the

modified architectural state, the vectorial and predicative registers were specified in gem5. Also, the

added configuration registers were added. Finally, supporting the vector register scalability involves the

specification of the vector register length, this involves allowing the configuration to be changed for each

simulator execution and set the configuration registers accordingly.

The instruction set was added to the gem5 simulator. The gem5 simulator contains a decoding

mechanism that interprets the bits of the machine instructions and selects the appropriate simulation

code. Each instruction is written in a domain-specific language (DSL), in which the syntax is a mix

between the Python and C++ languages. This DSL allows templating of the instructions in order to

reuse code. However, the gem5 simulator was not prepared for scalable registers with the element

width as a part of the registers. This resulted in extensive modifications to the code source. In detail,

the DSL interpreting mechanism was modified, which involved the usage of regular expressions [56]

when modifying the instruction set parser. The instruction set parser is based on Lex & Yacc [57],

and the modifications required the basic understanding of how the parser works, and mainly how the

interpretation code is structured. The mechanism of parsing the registers was modified to support
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the new vector registers, alongside with the width and valid index register information. To provide the

registers with the width and register information, the vector and predicate register classes were modified

with new specific methods and properties.

The process of defining new instructions is not a simple one. Each templated instruction is expanded

by the parser to the decode, header, and exec sections. First, the decode section contains the code to

decode a machine instruction into a C++ function. Second, the header definitions of the C++ functions

that simulate the instruction behaviour are contained in the header section. Finally, the exec section con-

tains the implementation of the functions that simulate the behaviour of the instruction. These sections

are output to a set of C++ files and then compiled. To produce the output for all these sections, a system

of format, template and programmatic (insts) blocks are in place. These blocks are then filled by hand

with code that will be expanded to the respective sections. Each instruction implemented extends on a

base C++ class. In order to inherit the methods of the parent class. To better clarify the complexity of

this process, Figure 5.5 depicts the process and components of creating one instruction. Although the
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FormatsInsts Base ClassTemplate

Dynamically create a
InstObjParams object. 

(serves as base object for
the parser expansion)

Base class;
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Template files contain the C++
templated code. Any portion of
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variant).

Legend (Output Sections):

Exec

DecodeHeader

Figure 5.5: The process of defining and expanding one instruction with the gem5 instruction set parser. Each
output section is shown in color and positioned in the block that contains the templating code.

usage of the ISA definition DSI presents an excellent opportunity to reuse code, not all instructions can

share the same template. Thus, the process of defining new templates, formats, insts and base classes

must be repeated multiple times, such as for every instruction that uses different operands. Addition-

ally, the presented organization is a complex one and therefore, not easy to understand without proper

documentation, which unfortunately is lacking in gem5.

UVE relies on a streaming engine, closely related to a prefetcher. However, for instruction set level
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simulation, it is not possible to define a microarchitecture component. Hence, to obtain results and val-

idate the instruction set part, the supporting microarchitecture was implemented (decribed in Part II),

and the results obtained. Even though the ISA has not been simulated independently, this chapter uses

results that are exclusively related to the instruction set, and are not affected by the underlying microar-

chitecture or streaming engine configuration. Naturally, the vector length parameter is not specified

by the instruction set, but affect the instruction set results, such as the number of issued instructions.

Hence, to assure the validity of the results, all the comparisons between vectorial extension use exactly

the same vector length, which is herein set to 512 bits.

5.3 Performance Evaluation
UVE is a vectorial extension with streaming that reduces overhead instructions inside the accelerated

loop bodies. To show the impact of UVE, SVE is used as a comparison. The SVE extension is the most

developed state-of-the-art technology in vectorial extensions. Additionally, the gem5 simulator and the

compilation tools were available and give the needed support for the SVE extension. In contrast there

is still no implementation of the RISC-V V extension in gem5, which compromises the comparison of

results. Regarding Intel AVX-512, it is based on a completely different paradigm (CISC), which makes

the comparison invalid. Hence, such results were excluded from this report.

The comparison between the SVE and UVE extensions is mainly affected by the differences in the

number of unnecessary (overhead) instructions, as already seen in Figure 4.20. Hence, with a reduced

number of address indexation and memory access intructions it is expected that UVE has a significantly

lower number of instructions. In fact, UVE also requires that stream configuration instructions are added,

however, these are not looped through, hence do not affect significantly the results.

5.3.1 Memcpy performance evaluation

The memcpy example (depicted in Figures 5.2 and 2.7) can be considered the most simplistic usage

of an extension that interacts with memory. I.e. memcpy is the less demanding example in terms of

instruction set implementation, as it only loads and stores words from memory in a very simple pattern,

and making no computations. Hence, as it is the less demanding case of memory addressing com-

plexity it should represent one of the worst cases (in performance differences) regarding other vectorial

extensions that do not employ streaming.

The obtained results are shown in Figure 5.6. The memcpy kernel can be executed with any arbitrary

size, i.e. the number of elements to copy can be chosen arbitrarily. The results shown in Figure 5.6 were

obtained with size 512 B. This is a small size, considering that it is only eight times higher than the vector

registers length, resulting in 8 loop iterations. Even so, small bursts are where the vectorised code would

give fewer benefits.
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Figure 5.6: Comparison of the number of instructions executed with Memory copy. Procedure that copies a source
zone of memory to a destination one. (MEMCPY) kernel. The copied memory is of size 512 B. The UVE move
series represents the number of move instructions executed by UVE. The address calculation and iteration series
contains all the arithmetic instructions that calculate addresses or control iteration counters. The RISC-V, Arm, and
SVE kernels are compiled with full optimization (O3). The UVE kernel was hand optimized with assembly. Both
UVE and SVE are configured with 512-bits of vector length.

Analysing the results between the RISC-V and Arm implementations, the latter uses less instructions.

This is due to the difference in the optimization methods. In the Arm side, the software made use of

the quadword (128-bit) registers, present in the aarch64 ISA, which led to a lower number of reads.

However, the store instruction is segmented in two 64-bit stores. In the RISC-V side, the store and load

instructions are even. The number of branches is much higher in the RISC-V side due to the compiler

handling of the possible edge cases. The Arm pre-fix memory instructions leads to a lower number

of address calculation instructions. These instructions calculate the memory address and execute the

access in a single instruction whereas RISC-V does each operation in a separate instruction. In sum,

RISC-V and Arm are very different approaches in terms of the ISA, which does not directly imply that

one performs better than the other in a real implementation.

However, the real comparison for the context of this thesis regards the difference between SVE and

UVE. As a note, the UVE move instruction is necessary as the used UVE code uses streaming and not

standard load/stores instructions. In terms of memory transactions, the values for UVE are only relative

to the configuration instructions, as the streaming mechanism executes the memory transactions. For

the number of branches, the minimum theoretical value is given by the size of the data divided by the

vector length, which is 8. However, there are configuration processes involved, which require UVE to

issue 16 branch instructions. On the SVE side, the number of branches increases due to the compiler

handling of the code. Finally, the differentiating result is shown in the address calculation and iteration

series. The reduction in instructions is more than 2 times, between the SVE and the UVE results. It is

necessary to remember that this case is only at 512 B of data size. To showcase the potential, Figures

5.7a and 5.7b show the results for the sizes 4 kB and 16 MB. The results show that the reduction in

address calculation and iteration control is high and increases with higher data set sizes. In addition, the

memory load and store instructions are constant and low for the UVE extension. However, the UVE move

instruction is now needed to control the data flow. This results in a two to one ratio between the memory

instructions in SVE and the UVE move. When observing only the address calculation instructions, the

ratio of instructions ranges from 258% (512 B, Figure 5.6) to 27120% (16 MB). This improvements are
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(a) Size 4 KB. Equals to 64 vector registers in length. (b) Size 16 MB. Equals to 262144 vector registers in length.

Figure 5.7: Number of instructions comparison in the execution of the memcpy kernel. The instructions are catego-
rized in 5 series. The UVE move series represents the number of move instructions executed by UVE. The address
calculation and iteration series (ACLI) contains all the arithmetic instructions that calculate addresses or control
iteration counters. The SVE kernel is compiled with full optimization (O3). The UVE kernel was hand optimized with
assembly. Both UVE and SVE are configured with 512-bits of vector length.

washed out by the remaining instructions. Effectivelly, by comparing the total number of instructions

between UVE and SVE, a reduction of 300% is observed.

5.3.2 Strided memory transactions performance evaluation
To further explore the potential of UVE, the memcpy example was adapted to use a specific stride.

I.e. the elements to transfer are spaced with a given value. In addition to this, the data is also processed

and reduced, i.e. the data output is accumulated to a register instead of stored in memory. Figure 5.8

shows the generic form of the example kernel, named paimpac (product-accumulation impact).

Figure 5.8: Paimpac code.Left: variant with kernel complexity one /(accumulation). Right: variant kernel with
complexity 4 (accumulation of a power of 4, requiring 3 multiplications). The dest variable is the kernel output.

The kernel was first benchmarked with unit stride and the lowest complexity (accumulation only). The

results are depicted in Figure 5.9. For larger input sizes, the instructions ratios remain stable and seem

similar to the largest case in Figure 5.9. These results show that the proposed UVE is able to reduce the

number of instructions by up to 28x, 24x and 2.5x when comparing with the Armv8, RISC-V and SVE

instruction sets. These results also show that the RISC-V ISA is more instruction efficient than the Arm

ISA, due to a lower number of integer processing instructions. In the vector extension comparison, the

SVE ISA is less efficient than the UVE ISA, as seen in the memcpy example. In fact, although UVE uses

more data processing instructions due to the simpler set of instructions, the reduction in the number

of memory access and data indexing instructions allows to attain a more efficient kernel encoding. In

particular, even for the smallest input size (27 elements) it is significantly more efficient than the SVE

counterpart.

The kernel was also benchmarked while tuning the kernel complexity and the element stride. Adjust-

ing the stride will test the capabilities of the ISA in dealing with non-contiguous memory accesses. This

test will have more impact in non-scalar implementations, due to the need to merge the data into the
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Figure 5.9: Instructions ratio comparison for the paimpac kernel. Each sub-graph depicts the ratio of instructions
at a different number of single-precision floating-point elements. The instructions are categorized in 6 series. The
integer instructions are directly related with memory address calculation and loop control. The Float/SIMD overhead
instructions are data preparation instructions. In oposition, the Float/SIMD instructions are data processing instruc-
tions. The UVE stream instructions are the stream configuration instructions in the UVE code. The Arm, SVE and
RISC-V kernels are compiled with full optimization (O3). The UVE kernel was hand optimized in assembly. Vector
length is set to 512-bits.

vector registers. Additionally, rising the kernel complexity will increase the number of working instruc-

tions. Hence, this test is interesting to evaluate the complexity of the available instructions. The results

of the explored dimensions are presented in Table 5.1. As expected, by tuning the elemente stride, the

Table 5.1: Paimpac kernel benchmarking with varying kernel complexities and element strides. The Arm, SVE and
RISC-V kernels are compiled with full optimization (O3). The UVE kernel was hand optimized in assembly. UVE
and SVE at vector length 512-bits.

Stride at Complexity 1 Stride at Complexity 4
Size ISA 1 2 4 1 2 4

Arm 13.0 13.0 13.0 12.4 12.4 12.4
RISC-V 11.2 11.2 11.2 11.0 11.1 11.127

SVE 1.5 3.7 3.7 1.4 3.1 3.1
Arm 28.0 28.0 28.0 20.6 20.6 20.6
RISC-V 24.0 24.0 24.0 18.3 18.3 18.3222
SVE 2.5 7.5 7.5 2.0 4.9 4.9

scalar ISAs do not suffer any changes in performance. In oposition, the SVE results show a decrease

in performance between 2.6 and 3 times, at complexity 1. UVE is not affected by the change in stride,

as the streaming mechanism will handle the different strides withouth the affecting the execution of the

code. On the other hand, by executing the kernel with complexity 4, the instructions ratios decrease.

This is due to the lower complexity of instructions in the UVE extension.

5.3.3 SAXPY benchmark

The SAXPY benchmark was also evaluated for the sake of completeness, and for comparison with

the theoretical result given in Figure 4.20. The obtained results are summarized in Figure 5.10. The

instructions ratio, at the top of the chart, shows that UVE is effectivelly more instruction efficient than

the SVE ISA. However, the compiler generated assembly includes more Arm instructions than the ones

used in the comparison (Figure 4.20). Consequently, due to the compilater ineficiencies, the simulation

ratio of instructions is higher than the theorectical one. Another comparison to note is the highly efficient
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Figure 5.10: Instructions ratio comparison for the SAXPY kernel. Each sub-graph depicts the ratio of instructions
at a different number of single-precision floating-point elements. The instructions are categorized in 5 series. The
integer instructions are directly related with memory address calculation and loop control. The Float/SIMD over-
head instructions are data preparation instructions. In oposition, the Float/SIMD instructions are data processing
instructions. Arm, SVE and RISC-V kernels are compiled with full optimization (O3). The UVE kernel was hand
optimized in assembly. UVE and SVE at vector length 512-bits.

use of instructions in UVE, where two thirds of the instructions are processing data. Finally, in spite of

the higher ratio of instructions in the RISC-V results, the UVE extension is more instruction efficient due

to the fact that it is a vectorial extension. In addition to this, the UVE vector extension code susbstitutes

directly the less instruction efficient portion of the RISC-V code, which is the loop.

5.3.4 IRSmk benchmark
The IRSmk is a microkernel of the Implicit Radiation Solver (IRS) benchamark [58]. The IRSmk

kernel code is depicted in Figure 5.11. This kernel exploits the limitations on the UVE ISA in terms

Figure 5.11: IRSmk code and parameters. In the left, the IRSmk kernel with identification of the levels of the
possible vectorizations. In the rigth, the reference configuration parameters for cubes of size 25 and 100.. The
IRSmk kernel computates the accumulation of 27 multiplications of 54 different vectors.

of the number of streams. Due to having 54 vectors that are multiplied and accumulated, it would be

impossible to vectorize due to lack of available streams. Even so, it is possible to divide the accumulation

into two parts and compute each one separately. In the scalar and SVE ISAs, there is no such problem,

as the vector registers can be reused after the results are accumulated. The results of this benchmark

are shown in Table 5.2 for a cube size of 25, and in Table 5.3 for a cube size of 100. The results

again show that UVE provides a considerable reduction in instructions when compared to the comparing

setups. The Arm ISA uses fewer instructions than the RISC-V ISA due to the usage of the Arm quadword

registers, whereas RISC-V is limited to 64-bit registers. On the other hand, when comparing the different

vectorization levels in the UVE results, it is observed that the ratio between the MIDDLE and OUTER
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levels is almost unitary. This is due to the number of constant configuration instructions surpassing the

number of data processing instructions, i.e. the advantage of vectorizing more loops is overcome by

the increasing complexity of the configuration instructions. Hence, there is no advantage in allowing for

arbitrarily extensive levels of pattern description.

Table 5.2: IRSmk results at size 253. The overhead ratio relates to the number of overhead (nom-processing)
instructions. The instructions ratio relates to the total number of instructions. Both ratios use as reference the UVE
architecture with OUTER vectorization level.

Architecture Vectorization Level Overhead Ratio Instructions Ratio

RISC-V None 1885.86 37.34
Arm None 445.07 18.59
SVE INNER 313.79 7.14
UVE INNER 169.99 2.95
UVE MIDDLE 10.56 1.06
UVE OUTER 1.00 1.00

Table 5.3: IRSmk results at size 1003. The overhead ratio relates to the number of overhead (non-processing)
instructions. The instructions ratio relates to the total number of instructions. Both ratios use as reference the UVE
architecture with OUTER vectorization level.

Architecture Vectorization Level Overhead Ratio Instructions Ratio

RISC-V None 119727.93 38.49
Arm None 19571.73 16.99
SVE INNER 14545.31 5.59
UVE INNER 2716.09 1.47
UVE MIDDLE 40.94 1.00
UVE OUTER 1.00 1.00

5.4 Summary
The evaluation of the UVE instruction set, shows that UVE uses a significantly lower number of

instructions than SVE. In particular, a reduction in instructions of 400% was seen in the Computation of

the product of the Real Value A with each element of the Real matrix X added to the respective element

of the Real matrix Y (SAXPY) benchmark, while achieving 559% in the IRSmk benchmark.

Taking into account the presented results through this chapter, it can be concluded that the proposed

UVE extension is more efficient, however, the comparison could be more fair. Particularly, while the

UVE code was hand-optimized through extended assembly, the other codes (RISC-V, Arm, SVE) were

not. Even though, all the codes of RISC-V, Arm and SVE were compiled with optimization level 3, which

allows the compiler to do instruction scheduling, loop unroling and loop vectorization.

Despite these encouraging results, a CPU is highly dependent on a the actual implementation of the

instructions, much like a reduced CISC code (vs RISC) does not necessarily translates to a higher per-

formance. In the following chapters a possible supporting microarchitecture design and implementation

are discussed.

66



Part II

Microarchitecture



6 Microarchitecture support for data stream-

ing

The results of simulating the instruction set already show the potential for the proposed UVE exten-

sion. However, a realistic assessment can only be made by also considering the architecture details.

Therefore, to better evaluate the proposed solution, it was implemented in gem5 by considering realistic

processor models. Although both in-order and out-of-order processor models could be used for this, to

assure a valid assessment when targeting HPC applications, it was chosen to base this work on a more

complex (but also more relevant) out-of-order model.

The implementation involved multiple modifications to a standard processor (see also the functional

diagram presented in Figure 6.1), including: on the register file, on the decode, renaming, execute,

write-back and commit stages, as well as on the memory interface to provide support for the proposed

streams. Most of these modifications are due to the requirements to support the proposed stream man-

agement solutions, as most of the remaining instructions are usually already available in processors that

feature SIMD/vector extensions. The following sections detail the architectural changes to the processor

model.

Figure 6.1: Microarchitecture overview block diagram. The added and modified components are highlighted.

6.1 Stream Life-Cycle
The streaming engine manages the streams and the data transactions between the memory and

the processor pipeline. Despite being the central part of the streaming system, the streaming process

is distributed along the processor. In detail, the life-cycle of a stream spans across all the highlighted

components of Figure 6.1, such as: rename, register file, execution, streaming engine and queues. In

addition to these, the commit and squashing mechanisms (required to handle miss-speculation issues)

are also part of the stream life-span. The commit and squashing mechanisms are distributed throughout
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the processor and therefore not represented with a block in the diagram. Figure 6.2 succinctly describes

the progress of a stream inside the system. The chosen example executes an accumulation loop through

all elements of a memory array. When the stream configuration instruction is executed, the execution

Execution Core

ss.ld.w u1, size, offset, stride

.loop:
so.a.adde a0, u1, p0
b.nc .loop

Stream configuration

Accumulate all elements
of the stream into a0.

ss.ld.w u1,.. Stream configuration

Streaming Engine
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Figure 6.2: Load stream life-cycle inside the system. In (a), the example code used to describe the multiple phases
of the load stream. The code executes an accumulation through the elements of an array in memory. In (b), the
stream configuration phase, which starts the streaming process. In (c1) and (c2), the processes executed in the
background are represented. In (d1) and (d2), the processes of vector register consumption are depicted.

core will start a new stream in the streaming engine. After the configuration phase, the streaming engine

will start processing the configurations and creating the memory access addresses. The generated

addresses will then be used to fetch/store the data to/from memory. In the case where a load stream is

being used, the data is then fed to the register file and the instructions are allowed to execute.

6.1.1 Out-of-order stream configuration

The configuration process reveals the first problem regarding the implementation of the proposed

UVE on out-of-order processor architectures. If the stream configuration process is allowed to work

speculatively, there is no guarantee that the order of stream configuration is maintained. In particular,

consider the case where multiple instructions are required to fully describe one stream. Since different

instructions may have different dependencies that are satisfied out of order, the configuration order may

be changed during execution.

Hence, a solution must be devised that: 1) ensures that the configuration is performed in-order;

and 2) does not impose any large penalty while speculatively executing code out of order. To account

for this, the proposed solution is to make use of rename stage (which is performed in order) to mark

each stream configuration instruction with its order. Figure 6.3a exemplifies the process of reordering

the stream configuration instructions. In the rename stage, a set of counters is used to enumerate the

configuration instructions, while still in-order. Each counter is associated with a stream, which simplifies

the reordering logic. The execution core will send the instruction index alongside the configurations to

the streaming engine. The reordering of the instructions is carried in an ordered table which indexes

match the configuration instructions indexes.
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Figure 6.3: Out-of-order configuration reordering and stream renaming. In the left, the out-of-order configuration
reordering processing. In the right, a motivational example for the usage of renaming in the streaming registers.

6.1.2 Stream renaming
Each architectural stream can be renamed to a physical stream. To translate the architectural

streams to physical streams, the stream rename block is was created. By allowing stream renam-

ing, the processor can configure an additional stream before the previous one has finished. This allows

the processor to start prefetching the new stream, before the last one has completed execution (see

Figure 6.3b). The principle is the same as in the standard register renaming. In the standard register

renaming, some data dependencies are eliminated through the separation of architectural and physical

registers [59]. In the stream renaming, the dependencies are eliminated between subsequent stream

configurations.

It should be noticed that, dependencies within the same stream (related with data consumption) may

also occur. However this is solved with vector register renaming and will be discussed later.

6.1.3 Background stream processing
After the stream is configured (Figure 6.2b), the stream engine is ready to start processing it. The

background stream processing is depicted in Figures in 6.2 c1 and c2. This processing phase is clearly

distinguished in two portions. First, the generation of the memory addresses uses the stream state and

configuration to calculate the memory addresses (Figure 6.2c2). Second, the memory access manager

(Figure 6.2c2) uses the addresses generated in the first portion to address the memory hierarchy.

The address generation process is herein named pattern processing.

A) Pattern Processing

The pattern processing process starts by choosing one stream to process. The configured streams

are kept in the streaming engine memory. As a design decision for this particular microarchitecture,

only two streams (one load and one store) can be processed each cycle. There are multiple techniques

available to select the streams to be processed, e.g. random, round-robin, throttled. The random se-

lection strategy is not optimal, as the same stream could be iterated consecutively. Moreover, using a

real random seed could prove difficult. With the round-robin strategy, each stream receives the same

amount of weight, as this mechanism will circulate all the streams in order, also, it is a simple mechanism
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to implement. However, giving the same amount of importance to all streams is not optimal. Consider

the case where a stream is configured much before the consumption of the corresponding data. When

compared to a recently configured stream that requires new data as fast as possible, the first stream

processing can be delayed. An ideal mechanism would throttle down the streams with lower throughput.

For the sake of implementation time, a fully-fledged throttling mechanism was not implemented. Instead,

the round-robin strategy was chosen, but by taking into account the state of the stream queues, hence

skiping the streams that do not have space in the queues. Figure 6.4a summarises the stream selection

process.
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Figure 6.4: Stream pattern processing diagrams and state machines. In the top left (a), the stream selection round-
robin based diagram. In the top right (b) the address calculation diagram that is based on the pattern configurations
and the iterative state. In the bottom left (c), a overview of the dimensions and modifiers processing sequence.
In the bottom centre (d), the state machine relative to the configured patterns iteration. In the bottom right (e), a
contextualisation of the state machine (d) in the overall stream life-cycle.

Before going into details on the pattern processing itself, it may be useful to define the necessary

fields that represent a stream configuration and the corresponding state. Each stream is composed of

a memory access pattern. Each pattern is currently limited to support up to five dimensions and four

modifiers. In addition, the state of each stream must state if the stream is not configured, executing or

finished. Moreover, each stream state contains the current iterators of the modifiers and dimensions.

The address generation is carried by the state machine depicted in Figure 6.4b. Each memory ac-

cess can be simply represented by an initial address and a length (in bytes). The diagram in Figure 6.4b

depicts the calculation of a final offset based on the configured dimensions and the respective iterative

states. Even so, the initial offset must also be calculated. There are three situations where the initial

offset must be calculated with different methods. First, in the initial processing of a stream, the initial

offset must be calculated for the iterators set to zero (base offset). A second situation is encountered

when the memory addresses between address calculation are contiguous, i.e. the second iteration has

an initial address that points to one element ahead of the first iteration final address. In short, the last

final address can be used to calculate the new initial address. Finally, when the memory addresses
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are not contiguous, the initial address must be re-calculated from the dimensions and the respective

iterators.

Each new pattern processing starts by iterating from the outer dimension to the inner dimension,

similarly to a for loop. Each time a lower dimension ends, the iteration process will return to the above

dimension, maintaining coherence with a for loop. To speed up the processing of the pattern iterations,

multiple iterations are processed sequentially. However, not all addresses will be generated immedi-

ately, as this could lead to significant wait times for concurrent streams. Consequently, the processing

mechanism will only produce a limited number of iterations per execution. Figure 6.4d depicts an ex-

ample where two dimensions are processed. The pattern processing method has the following four

control steps: Start, Suspend, Resume and End Processing. These control steps allow the processing

to be split across multiple instances of the same. Figure 6.4e depicts the control steps inside the more

general stream life-cycle. By splitting the same stream pattern processing into multiple phases, multiple

streams can be processed in an interleaved style, which reduces the maximum latency between concur-

rent streams. Figure 6.5 represents the processing of two streams with split and non-split configurations.

Split Processing

u1 ready u2 ready u1 ready

Full Processing

u1 done

ss.ld.w u1

ss.ld.w u2

Config
Processing

Memory

u1 doneu2 ready

Figure 6.5: Stream processing methods comparison. Two streams are configured sequentially. With the full pro-
cessing, the stream u1 is completely processed before u2 starts. In contrast, split processing will divide each stream
in multiple processing steps, which allows interleaving between streams.

B) Special cases

Multiple distinct configurations can lead to memory access patterns with non-contiguous memory

addresses. The simplest example of this is a strided memory pattern. In this case, the distance between

elements is more than one element. Therefore, by using the proposed processing mechanism would

lead to incorrect memory accesses. In detail, in a case where the stride is 2, the memory addresses

would be correctly produced, but only half of the addressed data is needed.

One of the possible solutions to deal with non-contiguous patterns would be to would be to fetch all

the data and discarding the unnecessary ones. However, such a solution leads to a waste in memory

bandwidth. Another way is to process all the addresses and fetch the data element-by-element. In this

case, the processing cycles would be lower, but the bursting mechanisms would not be used and more

transactions would lead to poor performance. Still, none of these considerations took into account the

caching mechanisms of the memory hierarchy or the possible implementation of a caching mechanism

inside the streaming engine. Despite the stride or the efforts to use memory bandwidth more efficiently,
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when an address is requested to memory, a line sized data-block is loaded into the caches. Conse-

quently, there is no advantage in requesting one element at a time. Even so, it is possible to request

data directly to the memory (avoiding the caches); in this case, the streaming engine could benefit from

implementing a small caching mechanism, to improve performance in cases where the data is contained

to one location but the access order is complex. As a reminder, these were not implemented.

A second example where the memory accesses are not contiguous is related to multi-dimensional

patterns. In this case, when an outer dimension is iterated, the produced addresses may not be contigu-

ous. This case presents an excellent opportunity to suspend the processing and produce the memory

addresses. When a stream is multi-dimensional, the processing is splitted every time the innermost

dimension ends, being resumed when the stream resumes processing, this happens when the stream

selector chooses the stream for processing.

6.1.4 Memory access management
The memory access management controls all the streaming data transactions from and to the pro-

cessor. The memory management is composed by two queues (between the CPU and the streaming

engine), and the streaming engine memory controller. Figure 6.6a depicts the organisation of these

elements. When streaming data in the context of a load stream (memory to CPU), the first step (1) is to

use the addresses produced by the pattern processing to access and address the memory subsystem.

However, this process is rather complex due to three major problems:

• Virtual addresses translation;

• Out-of-order memory subsystem;

• Memory level selection.

Figure 6.6: Memory manager and queue structures when streaming load data. In the left (a), the memory controller
inside the streaming engine and the connections to the surrounding components. In the right (b), the organisation
of of the load queue, depicting the connections to the CPU and the streaming engine.

First, the addresses produced by the pattern processing are virtual, and thus need be translated to

physical memory addresses. However, this leads to a problem where contiguous virtual addresses may

not be contiguous in case of page crossing. Consequently, the memory controller needs to do the trans-

lation after the virtual addresses are ready. To translate the addresses, the streaming engine connects

directly to the CPU translation lookaside buffer (TLB). However, a further optimization is implemented.
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By noting that the n-th least significant bits of the address correspond to offsets within a virtual page

(e.g., n=12 for a 4KB page), it is possible to reduce the number of accesses to the TLB. Hence, the

memory controller keeps track of the last virtual address translation per stream and, if the next address

sits on the same virtual page, the previous translation is used.

The second problem takes into account the out-of-order nature of the memory subsystem, where

a requested portion of data may arrive before or after any other request. With this in consideration,

when a request is made it is possible to wait for it to be ready and only then issue the following request.

However, this would lead to a major inefficiency in getting data from the memory. Consequently, the

best approach is to execute multiple requests sequentially and then reorder the data upon arrival, as

depicted in Figure 6.7. To be able to reorder data, any memory request is identified and its respective

identifier is always attached to the same memory request, from start to finish. This identifier is also

saved in the memory controller and used to insert the data in the load queue. Finally, there are multiple

Figure 6.7: Data reordering when streaming load data. Depiction of the memory requesting, reordering and queue
insertion process. In the left, the addressed memory (already translated) is split into cache line aligned requests. In
the centre, the requests which arrive to the memory controller out-of-order. In the right, the elements are reordered
in the load queue. Each state transition is carried by the components identified by the vertical grey lines.

levels in the memory hierarchy, and so it may be beneficial to select the memory level for each stream.

As an example, the smaller caches could be polluted when streaming a larger stream, which would

hurt the CPU processing performance, especially in multi-threaded environments. To select the memory

hierarchy, each sream contains information on the cache level from which to get or store the data. This

level can be configured via the configuration instructions. One additional consideration to note is that

when addressing a cache, it is useful to take into consideration the size of the cache line and to align

the requests to that size. The memory controller will separate the initial memory request into multiple

requests that are aligned with the cache lines, thus improving the memory access performance.

After the data as arrived to the memory controller (following the memory request), the data is inserted

into the load queue. The queue organisation is represented in Figure 6.6b. Each data element that

arrives to the queue is inserted according to the identifier (stream sequence id), i.e. the data is always

reordered upon insertion on the queue. The process of inserting a data element into the queue starts

before the data is available. In fact, once the memory request is made, the CPU requests data from the

queue which marks a queue element as reserved, meaning that the respective element will receive data

from the streaming engine. However, the reverse can also happen if the data arrives before the CPU
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request. In this case the slot is marked as having data, and will be reserved and ready when the CPU

request arrives. The data can easily arrive before the CPU request when a stream is configured much

before the CPU starts to rename the consumption instructions.

After the slot is ready (reserved and full), it is time for the CPU to get the data. Due to the speculative

execution inside the CPU pipeline, it is necessary to provide speculative execution mechanisms inside

the queues, otherwise it would harm the CPU performance by forcing the CPU to be in non-speculative

execution. To allow for speculative execution in the load queue, a speculative iterator was created. This

iterator indicates which queue element is the next to be fed to the CPU. In addition to this, the same

iterator will advance when a consumption of data occurs and goes back on the event of mispeculation

(achieved by saving a non-speculative iterator, which advances only upon commit of the consuming

instructions). Taking into account that the CPU makes the queue slot reservation upon the renaming

stage, and that the data is put into the vector registers (inside the register file), in spite the data being

fed orderly to the registers, the instructions can still execute out-of-order. In other words, with the slot

reservation being an in-order operation it is expected that the consumption being also orderly does

not injure the overall performance. In fact, the additional latency of the in-order consumption can be

hidden by filling the queue in the background, i.e. while the CPU waits for the next element to be ready

to consume, other elements are becoming ready at the same time, thus removing the wait in further

consumptions. Admittedly, this is a point to improve in the queue architecture. However, by allowing

orderly consumption we can significantly simplify the speculation mechanism. To end, after a commit of

a consuming instruction happens in the CPU, the queue is notified and the element is removed from the

queue as it is no longer necessary. In fact, when the last element is committed, the stream is considered

as terminated.

6.1.5 Data buffering and consumption
The presented load queue organisation implies that each stream has it own queue. In fact, that

organisation was the one used in this work. However, it is recognised that it is not the most performing

in space utilisation. In fact, it may also not be the one that gives best processing performance. In spite

of this work using a simple implementation of a queue, it is useful to discuss other alternatives that could

improve the overall performance of the queues. Figure 6.8 depicts three different queue configurations

that we intend to discuss. The first configuration (Figure 6.8a) is the aforementioned simple configuration

where each stream has one independent queue. Considering that each vector register can only be

coupled with one stream, and consequently that stream is either not configured, a load stream, or a

store stream, it is simple to arrive at a unified version of the queue (Figure 6.8b), where the same queue

is shared by the load and store stream. This effectively reduces the queue size in half, while not affecting

the performance. However, it is still possible improve the performance figures.

Taking into account that not all codes will saturate all the streams, there may be gains in prioritising
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Figure 6.8: FIFO queues configurations comparison. In the top, the most basic configuration where each stream
has it own queue. In the bottom left, a unified queue where each load and store stream share the same respective
queue. In the bottom right, a more complex shared queue, where the same queue is share among all the streams.

the one stream over another. In the case of the queues, a higher priority stream would have more

stream slots available than the lower throughput streams. To allow for dynamic sizing of the queues, an

unified and shared queue is proposed, based on the design proposed by Crago et al. in the Outrider

architecture [19]. By using an indexing table it is possible to virtualise a wide buffer into multiple queues.

This design has a clear impact on the complexity of the queue logic. However it allows for more flexibility

on the total queue size and brings dynamic sizing to the queues, which in place gives the ability to do

dynamic throttling of the streams.

The consumption process happens when a new data processing instruction that reads from the

stream register passes through the renaming stage. When this happens, the load queue will be advised

of a new consumer. Before the execution of the named instruction, the load queue will have the data

in the vector registers which will be read by the instruction. However, when two subsequent stream

consumption instructions arrive at the rename, how does the load queue distinguish between the vector

registers of the two instructions. This problem was ignored until now, which simplified the overview of

the consumption process. The solution to this problem is vector register renaming. Here, the proposal is

to extend the standard register renaming methods and allow for source registers renaming. In common

architectures, only the destination registers are renamed, while the source registers are pointed to the

previously renamed destination registers. Figure 6.9 represents a typical renaming situation in a stream-

ing situation. Notice that the register u1, which is used as source operand twice, is always renamed. The

physical register (renamed) is then passed to the load queue, which will couple the vector register data

with the vector register identifier. This guarantees that each instruction receives the correct streaming

data.
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Figure 6.9: Vector register renaming upon consecutive data consumptions. The changes in the vector register alias
table and stream alias table are depicted in relation to the presented code. The load queue is updated with the
renamed vector registers that are tied to a stream.

6.1.6 Store streams

Although the store streams have been previously mentioned, there is no detail on how they work

and differ from the load streams. This subsection explores how the store streams work, specifically in

the queue, memory management and CPU production processes. The pattern processing component

bares no differences between the load and store processes.

When processing store streams two processes happen in parallel. On the CPU side, instructions

write data to the store queue (writeback stage). On the streaming engine side, the memory addresses

are generated. Both the data and the addresses are then needed by the memory controller to issue

the store requests to the memory hierarchy. These steps are represented in Figure 6.10a, where the

addresses are saved in the address queue while waiting for the data in queue to be ready for store.

However, the opposite can happen, where data is ready before the addresses, in this case the store

Figure 6.10: Memory manager and queue structures when streaming store data. In the left (a), the memory
controller inside the streaming engine and the connections to the surrounding components. In the right (b), the
organisation of of the load queue, with depiction of the connections to the CPU and the streaming engine.

queue will keep the data until there are addresses. Similarly to the load memory requests, the store

requests are also aligned with the cache line and the addresses translated in the TLB.

On the store queue side (Figure 6.10b), the logic is quite different from the load queue. In detail,

upon CPU writeback, the data is inserted into the respective queue slot. The reservation of the slot

happens in the rename stage, to guarantee that the queue has enough space before execution, and

stalling the pipeline if it does not. After the commit signal arrives from the CPU, the queue slot is marked

as committed and the data will be transferred to the streaming engine (if there are available addresses).

In contrast, when a squash signal is given, the queue must discard the squashed slot, and so the most

recent elements are discarded.
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6.1.7 Detection of stream termination
The streaming process ends when all the data as been consumed by the CPU (load streams) or

stored to memory (store streams). When loading data, the iterations will be controlled by the branch

instructions, which depend on the actual stream status (terminated or not). To give the stream status

information to the branch instruction, an additional flag is encoded to the vector register data. This flag is

set by the streaming engine when the stream has terminated. The stream branch instruction will reuse

the last register used by a stream consumption instruction. The stream branch will only consume a new

register if the last instruction that used the same architectural register is also a stream branch. The

stream ending detection on loading scenarios is depicted in Figure 6.11.

Figure 6.11: Stream life-cycle on the last stream element. The major components of the streaming process, when
consuming, are depicted alongside a possible life-cycle for the last element of data of a stream. The last element
carries the last flag which is enabled in the pattern processing block and carried to the stream branch execution,
where it is used.

When storing data, this same process is not replicable, as the production instructions will only com-

municate with the streaming engine after the commit. Here, the stream branch will communicate with

the store queue and access if the corresponding slot was marked as being the stream end. This marking

is handled by the streaming engine when the last address has been produced.

6.2 Speculative execution
This section aims to provide a more detailed view of the speculative execution inside the streaming

components. There are two main processes when streaming data, namely: the stream configuration

where the stream is allocated and configured with the memory access pattern; and the data production

(store stream) or consumption (load stream) where the actual data transaction occur. Figure 6.12 breaks

these processes into the respective pipeline stages. Notice that the commit and squash stages are

represented, however these are not actual stages and are distributed throughout the processor. In fact,

the squash event can occur before a instruction is in either of the pipeline stages (e.g. rename, issue,

execute, writeback).

6.2.1 Configuration
The stream configuration process starts in the rename stage where a reorder identifier is produced

and used to reorder the instruction in the execution stage, thus allowing for out-of-order execution while
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Figure 6.12: Speculation handling in multiple streaming phases. The streaming process phases (configuration,
consumption, production) are related with the various pipeline stages and pseudo-stages (commit and squash).
The depicted elements relate the speculation mechanisms inside the pipeline and the respective events in the
streaming components.

maintaining configuration coherency. When the instruction executes it is seen by the streaming engine

as valid, until a squash is triggered. In case a squash occurs, the streaming engine will clear the

configuration data given by the instruction and send a clear signal to the queues. This results in all

the in-flight memory transactions for that stream to be invalidated on arrival. Additonally, the stream

is marked as not configured in the streaming engine, and the respective elements in the queues are

emptied. When a commit occurs, there is no change to the streaming engine, as it previously assumed

a valid configuration.

6.2.2 Consumption
With consumption instructions (e.g. adds and subtracts), the rename stage will communicate a load

intent to the load queue. The rename stage is in-order, and consequently the load intent will also be

in-order. This way the data is guaranteed to be processed orderly. When the load queue is ready to

feed the requested data, it will communicate to the pipeline that the data is ready. This step involves

that the data is loaded to the respective vector register in the register file. The connection between the

data request and data feed is made through a identifier of the target vector register. This register is

allocated by the rename stage and filled by the streaming engine. When the filling process ends, the

scoreboard is updated, allowing the instruction issue. When an instruction is squashed, the data in the

queue is marked as unused (the speculation pointer is reversed). If the instruction is valid, the data will

be discarded from the queue, as it is not needed anymore.

The load queue speculation mechanisms are shown in Figure 6.13b. The load stream is considered

to have 5 slots of depth in this example, the initial state has 2 slots available, 2 reserved but without data

(RDIn) and one reserved and filled with data (RDCo). The position of the speculation pointer indicates

that the ready slot was already consumed by the processor. On the event of new data from the streaming

engine, the respective element is marked as filled, in this example an already reserved slot became
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Figure 6.13: Speculation mechanisms in the queues. In the left, the load queue speculation mechanism. In the
right, the store queue speculation mechanisms.

ready. This slot can now be fed to the CPU. When consumed, the speculation pointer advances. After

this, in case the speculation is valid, the already consumed slot is committed and therefore discarded.

This advances all the elements on the queue. Notice that the speculation pointer did not move. In case

of a squash, only the speculation pointer is reverted, and no queue elements are moved.

6.2.3 Production

For instructions producing data to the output streams, the speculation mechanisms are rather simpli-

fied. Here, the CPU has complete control of what executes speculatively. In fact, all the output addresses

can be executed speculatively, with no influence on speculation or security. In contrast for output streams

the only source of hazards is originates on the writing of output data, which must be delayed until the in-

struction is committed. To cope with this, the streaming system was designed following the CPU storing

mechanisms speculation structure.

The production instructions behave as depicted in Figure 6.12. In the rename phase, the CPU

announces a store (production) event to happen. This event will allocate a slot in the store queue, that

will be later used to actually store data. The slot reservation provides two essential capabilities. First,

in the case where the queue is full, the rename will be forced to wait for resources. This allows for

maintaining the data order in the out-of-order execution paradigm. It is also worth mentioning that the

streaming process will retain the data inside the queue until a commit or squash signal arrives. In the

event of a commit (Figure 6.13a:Committed) , the queue will announce to the streaming engine that the

data is ready to be stored. In the case of a squash (Figure 6.13a:Squashed), the queue slot will be

discarded, as the produced data is not valid.

6.2.4 Faulting memory accesses

Executing speculatively will use more data than the one loaded by the streaming engine, or try to

store more data than the produced addresses. This would ultimately result in invalid data loading and

the store queue becoming full. When loading data, if no more data is available we must allow the CPU
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to continue the execution as if it was valid. In this case, the queue will not give additional data to the

CPU, instead the queue will update the scoreboard as if the data in the register was valid, and the

execution proceeds normally while invalid. To keep control over the speculation, the streaming engine

and queues will only trigger an exception if a commit is made on invalid data. The real problem here

is how to distinguish if the invalid execution is created by the program or by speculative execution.

When in speculative execution, the commit will not arrive, and instead a squash is triggered, not causing

an exception. If the error is caused by the program, then the commit will trigger the exception, and

the program will be notified of the error. By acting only on the commit, we guarantee that the invalid

execution is correctly handled.

When storing, there are no concerns about the speculative execution. Therefore, if a commit is made

and there are no addresses in the queue, the streaming engine is checked to confirm if the stream is

executing or not. If it is not executing, then a program error was detected and the memory access is

invalid, causing an exception.

6.3 Summary
The presented microarchitecture design was implemented on top of the gem5 simulator. To support

the modifications, the file and code structure of the gem5 simulator was studied in depth. In detail,

the simulator had a complete out-of-order CPU model implemented which was modified and extended

to support the stream supporting microarchitecture. The majority of the out-of-order CPU blocks were

modified in some extent. In addition, new simulation objects were created to support the streaming

engine and related blocks. Figure 6.1 presents a simple overview of the modified code blocks of the

CPU model, and the created streaming engine blocks. To complement it, Figure 6.14 depicts a microar-

chitecure overview that is closer to a real CPU organization, this microarchitecture is based on an ARM

Cortex-A76 model with modified parameters [60]. The modifications are further detailed as follows:

• Rename: Added a stream rename unit; enabled vector register renaming to rename source

operands when streaming; scoreboard updated; connections to the queues and streaming engine

created.

• Register File: Added additional flags and control fields to the vector registers; connections to the

queues added.

• Issue, Execute, Writeback (IEW): Added connections to the streaming engine for stream config-

uration operations.

• Reorder Buffer: Created a connection to the streaming engine and queues to support the commit

signal; created support for the squashing signal to be sent to the queues and streaming engine.

In addition to these, the streaming engine and queues were also created from scratch. In short, the

implemented functions consinst in:
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Figure 6.14: Microarchitecture overview of the processor model. The various processor units and in-between
connections are depicted. Figure adapted and extended from [60].

• Streaming Engine:

– Configuration Module: Configuration reordering and validation; conversion of ISA level pat-

tern representation to streaming engine pattern representation.

– Pattern Processing: Address generation from stream (pattern) representation; control of

stream processing flow.

– Memory Controller: Management of address translation and memory requests; manage-

ment and forwarding of data to queues; reordering of memory requests and data.

• Buffering Queues: Enforce coherency between data requested by instructions and the streamed

data; decoupling between data request and access of the core pipeline; handling of speculation

on the streaming process;

In total, the modifications and additions to the gem5 simulator source code make up a total of twenty-

five thousands lines of source code. In addition to these, thirty thousand lines of code were also written
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to create supporting scripts, tests, tools, and utilities.

Parameter Tuning When creating a streaming engine and any support blocks some parameters were

decided based on simple tuning or by reasonable guesses. As an example, parameters such the latency

of calculating a memory address or the queue depth were coarsely tuned based on the latency of other

similar architectural components. By being on a high-level simulation, the lower level constraints (timing,

area and energy) do not impact the feasibility of the higher level simulation. However, during this work an

effort was made to choose reasonable parameters, optimize the data structures, and foresee eventual

hardware constraints. One example of this effort is the queue depth, were it could be set to any value to

increase performance. Even so, this work uses a size of 8 vector elements of queue depth, which value

was validated through a set of tests to present a good balance between hardware resources and system

performance. The tuning of this parameter could be improved by using queueing theory [24, Appendix D-

24], where the implementation could be tuned for a specific set of benchmarks or applications. Another

example is the number of addresses generated per cycle, in this case a maximum of one vector element

(64 addresses) per cycle was defined. In fact, this value can only be achieved in one dimension linear

and consecutive memory accesses, where the address calculation is straightforward. In more complex

cases the address throughput can be limited to one address per cycle.
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7 Results Overview and Discussion

To approach a realistic simulation, not only the simulator needs to be accurate but also the respective

configuration parameters. To ensure the obtain results are meaningful, CPU model was heavily based

on the one used by ARM in the SVE introductory paper [7]. We believe that by comparing this implemen-

tation with SVE while using the aforementioned model, the results achieve a scrupulous level of compar-

ison and validation. To further guarantee a valid model, a prefetcher was used in the L2 cache. Particu-

larly, the Access Map Pattern Matching (AMPM) [12] and Best-Offset Prefetcher (BOP) [13] prefetchers

were used as they were the most recent prefetchers with gem5 implementations. In particular, there are

newer and better prefetchers such as the Bingo spatial data prefetcher [61], however, the performance

improvements over the AMPM and BOP prefetchers are negligible (around 10% better). Specifically,

only AMPM for the evaluations was used, as the BOP implementation did not worked correctly in the

chosen gem5 version, the poor BOP results are depicted in Figure 7.2.

The used CPU model is displayed in Table 7.1. The model was used through all the following bench-

marks, except in the cases where the experiment aims to assess the sensitivity to parameter variation.

Table 7.1: CPU model parameters. The base parameters of this model were collected from the Arm SVE paper [7].
The vector size was set to 512-bits, which was the best performing vector size in the SVE paper.

C
om

m
on

(U
V

E
an

d
S

V
E

) L1 instruction cache 64KB, 4-way set-associative, 64B line
L1 data cache 64KB, 4-way set-associative, 64B line, 12 entry MSHR
L2 cache 256KB, 8-way set-associative, 64B line

Decode width 4 instructions/cycle
Retire width 4 instructions/cycle
Reorder buffer 128 entries

Integer execution 2 x 24 entries scheduler (symmetric ALUs)
Vector/FP execution 2 x 24 entries scheduler (symmetric FUs)
Load/Store execution 2 x 24 entries scheduler (2 loads / 1 store)

Vector Size 512-bits

U
V

E

Queue Depth 8 x Vector Size
Total Queue Size 64 x Queue Depth (32 load, 32 store)
Stream processing units 2 (1 load, 1 store)
Address generation throughput max. 64 addresses/cycle/unit

Stream configuration latency 2 cycles
Address to request latency min. 2 cycles (4 cycles when translating)
Stream engine to register latency min. 3 cycles

All the simulations were executed in system call emulation mode. The gem5 simulator supports

full system simulation where the entire system and peripherals are simulated; however, at the time, no

support for full system simulation of the RISC-V instruction set existed. The system call emulation mode

emulates all the system calls made by the executed code and removes the need for an underlying kernel.

Taking into account that this work aims to create and evaluate a scalable SIMD vector extension, the
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detail of the system call emulation simulation is sufficient. To justify, the full system simulation allows for

a complete operating system to be run with the simulated processor. While, in system call emulation

that is not an option and any necessary calls to an operating system are forwarded to the host operating

system and thus not simulated. For this work, which defines a first iteration of the UVE extension, a

complete system simulation is considered to be out of the scope, and therefore there were no intents in

allowing for a full system simulation.

The following sections contain results for the executed benchmarks and the respective analysis.

7.1 MEMCPY performance evaluation
The memcpy (Memory Copy) benchmark executes a simple, uni-dimensional memory transaction

from a point in memory to another one. As memcpy is a memory-bound benchmark, it allows for the

comparison between the memory access performance of the different ISAs. This benchmark starts by

filing the source portion of the memory with random data, and then cleaning the caches by overwriting.

Then, the time is measured between start to finish of the transaction. Figure 7.1 shows the relative

execution times (speedup) versus the base ARM processor using NEON, for a given transaction size

with an AMPM L2 prefetcher or without any prefetcher. The UVE results are presented with 3 memory

connection configurations, each one representing the memory level from where the data is requested in

loads (bypassing the upper levels).
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Figure 7.1: Memcpy performance. Comparison between ISAs and memory connection with (AMPM, at the top) and
without (none, at the bottom) prefetcher. In each group of columns, from left to right: Arm result (as the reference
time); RISC-V result; SVE result; UVE results with different streaming memory connections.

In general, for the AMPM results, the UVE connected to the L2 cache has the higher speedup. Here,

the L1 and L2 caches make use of the AMPM prefetcher installed in the L2 cache. While connected to

memory there is no prefetcher. The direct memory access could be improved by increasing the data

queue size, and consequently allowing for a deeper prefetching. In similarity, if the streaming engine
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fetches data from L1 or L2, the L2 prefetcher will virtually increase the total prefetching depth, resulting

in better performance. As a concluding note on UVE, the connection to the L1 suffers from the additional

cycles of the L1 to L2 accesses.

For the SVE performance, it is close to the UVE speedups. As memcpy is a memory-bound bench-

mark, the SVE results are expected to be close to the maximum achievable bandwidth for the imple-

mentation, and consequently there is not much performance room for the UVE streaming prefetching

mechanisms.

When using no prefetcher, the differences between the UVE and SVE results are augmented. By

having no L2 prefetcher, all the implementations are slowed down with the slower memory access. In

this case, the UVE results are much better with the streaming engine connected directly to memory, as

this represent the lowest latency when loading the data.

To better compare the effects of using a prefetcher with the UVE streaming engine, Figure 7.2 rep-

resents the relative times for a set of prefetcher configurations. The prefetcher configurations are none,

stride, best-offset (BOP) and AMPM. The Arm and RISC-V results are hugely improved (2.6 times) by

using the AMPM prefetcher. Accordingly, the SVE (1.9 times) and UVE L1 (1.5 times) and L2 (1.5 times)

also improve with the AMPM prefetcher. Notice that UVE is the one that improves less with the addition

of the prefetcher, as the streaming engine is already prefetching. For UVE connected to the memory, it

shows that the prefetcher does not significantly affect performance, as it is not connected to the to the

L2 cache where the prefetcher sits. In detail, there is some effect on the performance, as the scalar

and floating-point loads are still using the prefetchers. However, this effect is meaningless for the longer

transactions.
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Figure 7.2: Memcpy benchmark, comparison between prefetchers and their effect on the ISAs. The speedup
reference value is given by the prefetcher disabled series, represented by the vertical line.

To complete the memcpy benchmark analysis, Figure 7.3 shows the memory utilization of the mem-

ory access bus, with AMPM prefetcher enabled. In the figure, the darker areas represent a higher bus

utilization. Notice that, since the amount of transaction data remains approximately the same, for the

same problem size, the lower the execution time, the higher the bus utilization. On the other hand, the
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lower average utilization between UVE L2 and the other UVE connections represents a higher efficiency

on the utilization of the bus. In general, for the same transaction size, UVE is more efficient and attains

a higher memory access performance than the counterparts.
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Figure 7.3: Memcpy benchmark, bus utilization with AMPM prefetcher enabled.

7.2 Non-unitary stride in memory transactions
As a consequence of such a data organization, the caching mechanism efficiency will have a reduced

efficiency. Hence, while on unit stride all elements within a cache line are used, with non-unit strides

only a few number of elements are used. To compensate the lower reusability of the cache line, the

prefetcher will preload data to the cache lanes, improving the hit ratio on the caches. Figure 7.4 depicts

the differences in memory access performance between the studied ISAs. In general, a stride increase

will give worst performance, which is clearly depicted in Arm, RISC-V and SVE results, and coroborated

by the fact that an higher stride will lead to a higher number of loaded lines per data element. Even

in the presence of a prefetcher, the prefetching depth is limited and will saturate more quickly as more

cache lines are needed.
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Figure 7.4: Memory transaction impact of non-unitary stride.

With UVE as the L1 cache is being bypassed, the latency between L1 and L2 cache missed accesses

is completelly removed which leads to overall faster accesses that are less affected by an higher stride.
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In the cases where the vectorial extensions process with a linear memory access, the processing

performance is maximized as well as the memory access. In fact, the UVE memory access could be

improved in smaller strides, as there should be a clear performance increase between stride 3 and stride

2. This limitation is imposed by the address generation/processing architecture, which processes only

one element address per cycle when the stride between two elements is higher than one.

7.3 SAXPY benchmark
The SAXPY benchmark is more compute-bound than MEMCPY. Due to the vectorial nature of UVE

it is expected that compute-bound applications show better performance in vectorial or SIMD architec-

tures. In addition, the improved memory access mechanism in UVE will allow for a potential advantage

in relation to SVE. Figure 7.5 depicts the results of SAXPY in terms of speedup to the Arm scalar ISA

and total bus utilization in percentage. As it was expected the UVE performance is much higher than

the counterparts. In particular, for the largest dataset UVE shows a performance increase of roughly

4 times to SVE and 8 times to Arm. In addition, UVE makes a better usage of the memory bus,and,

by decreasing the number of loop instructions, is also able to attain a higher performance in a compute

bound kernel. In facto, these results are highly correlated with those presented in subsection 5.3.3 and

Figure 5.10, where UVE showed to reduce the number of executed instructions by a factor of 4.
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Figure 7.5: SAXPY benchmark results. Comparison of performance and bus utilization between ISAs.

For this particular benchmark it is also worth analyzing the gem5 statistics related with processor

stage stalls. Figure 7.6 represents the blocked cycles during execution as well as their distribution.

In Arm and SVE the majority of blocked cycles are in the decode and rename stages, showing that

the performance is limited by a lack of available resources (registers, instruction queue entries) in the

pipeline. UVE also presents the same blocked cycles distribution, however, the total ammount of blocked

cycles is 7 times lower than SVE.

7.4 IRSmk benchmark
As introduced in subsection 5.3.4, the IRSmk microkernel makes high usage of the total number of

streams. In detail, the microkernel execution corresponds to 54 arrays being loaded and multiplied in

pairs, then accumulated into a final array. IRSmk is undoubtedly a memory-bound application.
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Figure 7.7 shows the obtained performance for the reference architectures (Arm, RISC-V and SVE),

and for three levels of vectorization with UVE (Inner, Middle, Outer), as detailed in subsection 5.3.4. The

IRSmk kernel is composed of three cascaded loops (i,j, and k) with k being the innermost loop. The

inner level only vectorizes k, while the middle and outer levels vectorize (k, j) and (k, j, i), respectively.

Also, three sizes were executed (25, 50 and 100), where each size represents the number of elements

in each dimension of the loop (i,j, and k).
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Figure 7.7: IRSmk performance results, comparison of UVE performance in relation to the reference architectures
(Arm, RISC-V, SVE). Three execution sizes are shown 25, 50 and 100.

As expected, the performance with the UVE extension is significantly better than the reference ar-

chitectures, mainly due to the application being memory-bound. In detail, at size 25 there is not much

advantage in vectorizing (UVE 3 to 7 times faster than Arm), as there is not much data to fully explore the

SIMD potential. On larger datasets (50 and 100), there is much room for vectorization, as shown in the

results for the size 50 (15 to 20 times faster than Arm). On the other hand, the UVE relative performance

at size 100 appears to be significantly lower. This is a consequence of the prefetching mechanisms

attaining a better accuracy in larger datasets, thus improving the performance of the reference designs.

Also, with a larger dataset more cycles are spent processing the same loop iteration, thus increasing

the prefetcher predicability. In conclusion, UVE shows up to 10 times better performance than SVE for

a size of 50, while showing up to 4 times better performance than SVE for a larger size of 100.

In contrast, as it would be expected, deeper vectorization (outer level) did not result in better perfor-

mance. When processing large data sets with simple and linear multi-dimensional memory accesses,

the outermost loops are iterated with a reduced frequency and hence do not significantly affect the per-

formance. As an example, for a size 100 the outermost loop is iterated only after 10000 iterations of

88



the innermost loop. Also, considering that an innermost loop iteration takes some time, due to memory

accesses and processing, there is no perceivable performance advantage in vectorizing the outermost

loop.

Figure 7.8 and Figure 7.9 show that UVE considerably improves memory access performance (around

7 times more bus utilization) and considerably reduces the ammount of cycles the pipeline was blocked.

The reduction in total blocked cycles is a clear result of the increased memory bus utilization. The results

in Figure 7.9 are only for the size 50, where the best performance results were obtained.
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Figure 7.8: IRSmk bus utilization for UVE and the reference architectures (Arm, RISC-V, SVE). Three execution
sizes are shown 25, 50 and 100.
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7.5 HACCmk benchmark
The HACCmk benchmark [62] is a microkernel based on the Hardware Accelerated Cosmology

Code (HACC) framework. While the HACC framework mainly uses N-body computation to simulate the

evolution of the Universe, the HACCmk is the kernel routine that calculates the short force evaluation

based on an O(n2) algorithm. This benchmark is part of the CORAL Benchmark Codes suite [63].

The short force evaluation kernel is characterized by an high compute intensity with unit stride mem-

ory accesses, generally resulting in a compute-bound application. Figure 7.10 depicts the results for

the HACCmk microkernel. The execution parameters, in particular the dataset size used in the results

were reduced in order to constraint the total simulation into the feasible range. Even so, it was validated

that the selected parameter would not meaningfully affect the comparison results. The HACCmk results

show a performance increase with both SVE and UVE over the Arm and RISC-V, which is supported by

the higher compute intensity. Having wider vector registers resulted in improved performace. However,

UVE shows a speedup of 2 times when compared to SVE, this is supported by the 2 times increase

in bus utilization. The low bus utilizations and high ammounts of blocked cycles mirror the difficulty of
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the pipeline in executing data processing instructions and, at the same time, handle memory address

calculation, and memory transactions.

7.6 Summary
Throughout the performance analysis of the microarchitecture, it is clear that UVE improves the

performance in both compute and memory intensive applications. Particularly, in memory intensive ap-

plications, such as IRSmk UVE shows a substantial speedup of at least 3 times in comparison with SVE.

In compute intensive applications such as SAXPY a speedup of around 4 times between UVE and SVE

was registed. The speedup between UVE and the scalar instruction set architecuters was considerably

higher. Specifically, UVE has higher performance due to the reduction in executed instructions com-

bined with improved memory access. Particularly, using streaming provides reduced latency and higher

throughput.
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8 Conclusions and Future Work

8.1 Conclusions
The Unlimited Vector Extension (UVE) explores two totally distinct and not yet combined state-of-the-

art industry and scientific computer architecture areas. On the computational side, the SIMD extensions

are becoming increasingly predominant in General Purpose Processors (GPPs), and new ISA exten-

sions are emerging to improve the performance, scalability and the implementations flexibility. In partic-

ular, with the emerging presence of scalable vector SIMD extensions, each processor implementation

can be tuned to achieve any desired SIMD performance level. Moreover, there is an increase of data

analysis, machine learning and artificial intelegence applications leaning on SIMD extensions to sig-

nificantly improve performance without resorting to external accelerators, which would imply additional

costs. On the memory side, recent works show that data streaming applied to a processor memory

structure improves memory access performance, both in latency and bandwidth. Moreover, streaming is

an excelent opportunity to decouple the memory access procedures from the computational operations,

moving the memory access logic to external co-processors.

UVE is a streaming scalable vector extension that merges both concepts into an instruction set ar-

chitecture containing a comprehensive set of 41 vector compute instructions (integer and floating-point),

execution control and vector manipulation instructions, and a set of specialized stream configuration and

manipulation instructions - a total of 82 instructions, resulting in 450 available instructions, considering

all variants. Moreover, a set of 32 vector/streaming registers are provided with support for individual

vector lane execution control through a set of 16 predicate registers. Furthermore, a version of the GNU

Compiler Collection (GCC) was extended to support UVE instructions.

By decoupling the memory access and loop iteration from the core pipeline, UVE can completely

remove the control and memory indexation instructions from simpler codes (e.g. SAXPY), while signifi-

cantly reducing the overhead instructions from more complex codes (e.g. IRSmk, HACCmk). UVE uses,

in average, half of the instructions than SVE for the same application kernel.

To evaluate the impact of using UVE in a realistic superscalar out-of-order architecture, a reference

CPU model based on ARM Cortex-A76 and implemented in a cycle-accurate architecture simulator

(gem5) was modified and extended. The modifications comprehend the implementation of the UVE

ISA, a stream processing and management module, and the integration of the stream module with the

out-of-order pipeline.

The conducted evaluation of UVE and the supporting microarchitecture, indicates that UVE is 3

times faster than SVE in memory-bound kernels (IRSmk) and 2 times faster in compute-bound kernels

(HACCmk).
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8.2 Future Work
With this work being a proof-of-concept it is clear that some idealized objectives were defered due to

the time constraints. The proposed future work is divided into two categories:

ISA: To make UVE a distributable and useful instruction set extension, it is necessary to improve the

specification through application porting analysis and testing, particularly it is essential that charac-

teristics such as the number of registers, the ammount of configurable descriptors and the available

descritpors are further tuned. To allow for easier application porting, the compiler support must also

be extended. In detail, intrinsics must be created to enable a higher-level programming style for UVE.

Furthermore, the compiler should be extended to support auto-vectorization. This, would require the

implementation of pattern analysis and extraction in the compiler front-end. Additionally, the resulting

patterns must be converted to pattern representation that is compatible with UVE. Clearly, this work in-

volves deep modifications to the compiler and may also result into changes to the extension. In addition

to the compiler modifications, it is possible to ease the porting of applications to UVE by integrating the

extension in already available SIMD libraries. Particularly, libraries such as libvolk [64], libsimdpp [65],

yeppp! [66], E.V.E. [67], and the appropriatelly named Generic SIMD Library [68], would significantly

improve UVE portability.

Microarchitecture: The microarchitecture implementation is fundamental in testing and evaluation of

the UVE extension. In particular, there some improvements to the current microarchitecture that were

left for future work. Namely, the processing module of the streaming engine has a simple but slow

processing algorithm, improving this would lead to faster and more efficient address processing. Also, in

the current implementation there is no internal reutilization of the memory requests, a possible approach

to improve request utilization would be to create a structure similar to a miss-status holding register

(MSHR) for the memory requests. Furthermore, there is currently no implemented coherence protocol

for loading and storing to the same memory address, also, there is no coherence protocol for coincident

loads and stores between the pipeline load-store unit and the streaming engine. Finally, the FIFO data

queues structure must be optimized to support dynamic scaling of individual stream queues and allow

for dynamic prioritization of streams. Considering all the proposed changes, the final microarchitecture

could be used as a reference design for future implementations. Moreover, there is also space for

exploring the performance benefits of UVE in lower performance and power architectures, such as in-

order cores. To further validate UVE and the streaming mechanisms the reference microarchitecture

or a relevant variant could make is way into RTL, further validating the performance, area and energy

of this solution. Moreover, as a future research path, changes to the streaming engine architecture

should be explored. Particularly, it is possible to create a distributed architecture where the streaming
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engine is scattered throughout the memory hierarchy, paving the way to achieving lower latency memory

accesses. Finally, as it became clear this work only scratched the surface of employing streaming in

vector architectures, particularly, the evaluation was only made in a single-core processor model, as

implementing the streaming mechanisms in multi-core heterogeneous systems is another work for the

future.
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