
Configurable RISC-V softcore processor for FPGA
implementation

João Filipe Monteiro Rodrigues

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Doutor Pedro Filipe Zeferino Aidos Tomás
Doutor Nuno Filipe Valentim Roma

Examination Committee

Chairperson: Doutora Teresa Maria Sá Ferreira Vazão Vasques
Supervisor: Doutor Nuno Filipe Valentim Roma

Member of the Committee: Doutor Gabriel Falcão Paiva Fernandes

November 2019

ii

Declaração

Declaro que o presente documento é um trabalho original da minha autoria e que cumpre todos

os requisitos do Código de Conduta e Boas Práticas da Universidade de Lisboa.

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iii

iv

Acknowledgments

Em primeiro lugar quero agradecer aos meus orientadores, Professor Pedro Tomás e Professor Nuno

Roma, por todo o apoio que me deram ao longo destes meses. Tenho a agradecer o tempo que

dispensaram a ajudar-me a tentar resolver alguns problemas e a orientar e rever o meu trabalho.

Agradeço também ao Nuno Neves por me ter ajudado diversas vezes a tentar resolver problemas

relacionados com o Xilinx, por me ter disponibilizado alguns recursos que foram necessários para

desenvolver este trabalho e também pela gestão das máquinas utilizadas. Por fim agradeço à minha

famı́lia e amigos, em especial aos meus pais, que sempre me apoiaram ao longo destes 5 anos,

principalmente durante a realização deste trabalho.

This work was partially supported by national funds through Fundação para a Ciência e a Tec-

nologia under projects UID/CEC/50021/2019 and PTDC/EEI-HAC/30485/2017.

v

vi

Resumo

Ao longo dos últimos anos, o mercado dos processadores tem sido dominado por arquiteturas pro-

prietárias que implementam conjuntos de instruções que requerem licenciamento e pagamento de

comissões monetárias para que possam ser utilizadas. A ARM é um exemplo de uma empresa

que comercializa as suas microarquiteturas para que os fabricantes as possam implementar nos

seus próprios produtos e não permite que o seu conjunto de instruções (ISA) seja utilizado noutras

implementações sem estas serem licenciadas. O conjunto de instruções RISC-V surgiu com o obje-

tivo de permitir o desenvolvimento de hardware ou software sem custos, através da criação de um ISA

de código aberto. Deste modo, é possı́vel que qualquer projeto que implemente o ISA RISC-V seja

disponibilizado de forma aberta ou até mesmo implementado em produtos comerciais. No entanto,

as soluções RISC-V que têm surgido não apresentam os requisitos necessários para que possam

ser incluı́das em projetos, nomeadamente de investigação, por estarem mal documentadas ou não

oferecerem desempenhos adequados. Com este trabalho, pretendeu-se desenvolver um proces-

sador RISC-V que tenha como caracterı́sticas a adaptabilidade, flexibilidade e funcionalidades que

não estão hoje presentes nas soluções atuais. Como base do trabalho, utilizou-se um processador

não-RISC-V, o MB-Lite, que foi modificado para implementar este ISA e foi dotado de funcionali-

dades que até agora não suportava, tais como: caches, transferência de dados via PCIe, módulo de

comunicação em série (UART), contadores e temporizadores, e unidades funcionais multi-ciclo. A

solução proposta foi implementada e testada numa FPGA, de modo a verificar o correto funciona-

mento do sistema e a obter a sua caracterização experimental.

Palavras-chave: RISC-V, conjunto de instruções (ISA), arquitetura softcore, FPGA

vii

viii

Abstract

Over the past years, the processor market has been dominated by proprietary architectures that

implement instruction sets that require licensing and the payment of fees to receive permission so

they can be used. ARM is an example of one of those companies that sell its microarchitectures

to the manufactures so they can implement them into their own products, and it does not allow the

use of its instruction set (ISA) in other implementations without licensing. The RISC-V instruction

set appeared proposing the hardware and software development without costs, through the creation

of an open-source ISA. This way, it is possible that any project that implements the RISC-V ISA

can be made available open-source or even implemented in commercial products. However, the

RISC-V solutions that have been developed do not present the needed requirements so they can be

included in projects, especially the research projects, because they offer poor documentation, and

their performances are not suitable. With this work, the main goal was the development of a RISC-V

processor that has as characteristics the adaptability, flexibility, and features that are not yet present

in the current solutions. As the base of this work, it was used a non-RISC-V processor, the MB-Lite,

that was modified to implement this ISA, and it was improved with new functionalities, such as caches,

data transfer through the PCIe bus, a serial communication module (UART), counters and timers, and

multi-cycle functional units. The proposed solution was implemented and tested on an FPGA in order

to validate the system’s correct operation and to obtain its experimental characterization.

Keywords: RISC-V, instruction set (ISA), softcore architecture, FPGA

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xv

List of Figures . xvii

Acronyms . xxi

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Contributions . 3

1.4 Thesis Outline . 4

2 RISC-V specification and implementations 5

2.1 RISC-V ISA . 6

2.1.1 Base Integer Instruction Set . 6

2.1.2 Extensions . 8

2.2 RISC-V Cores . 10

2.2.1 PicoRV32 . 10

2.2.2 Rocket Chip . 11

2.2.3 ORCA . 13

2.2.4 Potato . 14

2.2.5 PULPino . 15

2.2.6 VexRiscv . 17

2.2.7 SweRV . 17

2.2.8 Discussion . 18

2.3 Other non-RISC-V softcores . 22

2.3.1 Non-RISC-V softcores review . 22

2.3.2 MB-Lite . 23

2.4 Summary . 27

xi

3 Proposed Architecture 29

3.1 Architecture Overview . 30

3.2 RISC-V support . 32

3.3 Memory Structure . 33

3.3.1 Instruction memory . 35

3.3.2 Data memory and cache implementation . 36

3.4 Multi-cycle Functional Units . 38

3.4.1 Integer Multiplier . 38

3.4.2 Integer Divider . 40

3.5 Hazards . 41

3.5.1 Data Hazards . 41

3.5.2 Control Hazards . 41

3.5.3 Structural Hazards . 42

3.5.4 Dependencies Handling . 42

3.6 Peripherals . 46

3.6.1 UART for Standard Input/Output . 46

3.6.2 Cycle Counter . 49

3.6.3 Timer . 50

3.6.4 Support for more memory-mapped peripherals 51

3.7 Data Transfer (PCI Express) . 52

3.8 Adaptation for other FPGA vendors . 55

3.9 Summary . 56

4 Software Tools 57

4.1 Development Workflow . 58

4.1.1 Software Requirements . 58

4.1.2 Support Files . 59

4.2 Developed Libraries . 61

4.3 Summary . 65

5 Implementation and Experimental Results 67

5.1 Prototyping framework . 68

5.1.1 Area and timing constraints analysis . 70

5.1.2 Power analysis . 71

5.2 Benchmarks results . 72

5.3 Discussion . 75

5.4 Summary . 75

6 Conclusions 77

6.1 Future Work . 79

xii

References 81

A Implemented RISC-V instructions 85

B Board Support Package 89

C Makefile 93

D RISC-V assembly code example 95

E Design Implementation 99

xiii

xiv

List of Tables

2.1 RISC-V ISA Extensions [11]. 8

2.2 Integer Multiplication and Division instructions [11]. 10

2.3 Reviewed RISC-V Cores comparison. 21

3.1 Address Map. 34

3.2 Control signals for each supported multiplication instruction. 39

3.3 Control signals for each supported division instruction. 40

3.4 UART Module Address Map. These are the addresses where the input and output data

signals are mapped as well as the FIFO’s status signals. The processor can read the

status of each FIFO to know if there is something to read from the RX FIFO or if the TX

FIFO has free space. 49

3.5 Cycle Counter Address Map. The 64-bit value should be obtained by reading the upper

and the lower 32 bits individually. 50

3.6 Timer Address Map. The 64-bit value should be obtained by reading the upper and the

lower 32 bits individually. 51

3.7 Raw bit rate and bandwidth values for different generations of the PCIe standard. 52

5.1 XCVU9P FPGA resources. 68

5.2 Resources usage and operating frequency of the different configurations of the devel-

oped processor. 71

5.3 Power results for each implementation. 72

5.4 Number of clock cycles and time duration for different tests with different number of disks. 73

5.5 Number of clock cycles and time duration for different tests with a different number of

elements. 74

5.6 Vector-vector division: number of clock cycles and time duration for different vector sizes. 74

5.7 Vector-vector multiplication: number of clock cycles and time duration for different vec-

tor sizes. 74

A.1 List of the implemented RISC-V instructions. 86

A.2 List of the MicroBlaze instructions implemented by the MB-Lite softcore. 87

xv

xvi

List of Figures

2.1 The RISC-V base instruction formats [11]. The registers are always in the same posi-

tion in all formats. The immediate is encoded in different ways depending on the format.

Each bit is labeled with its position in the immediate value, imm[x]. 7

2.2 Example of a Rocket Chip instance [8]. Core - Rocket or BOOM generator, with an op-

tional FPU. Caches - Cache and TLB generators with configurable sizes and policies.

RoCC - The Rocket Custom Coprocessor interface to implement coprocessors. Tile -

A tile generator for cache-coherent tiles. It allows defining the type of cores and accel-

erators. TileLink - A generator for networks of cache-coherent agents and controllers.

Peripherals - Generators for AMBA-compatible buses. 12

2.3 The Rocket Core pipeline [8] with 5 stages: Program Counter, Instruction Fetch, In-

struction Decode, Execute, Memory, and Write-Back. It is also represented the Floating-

point unit and the RoCC interface after the Write-Back stage. 13

2.4 ORCA pipeline [18] with 4 or 5 stages. On the Fetch stage it is represented the interface

to the instruction memory. The Decode stage features two register files, one for each

operand. The Forward and Ex/Mem stages can be merged, and here there are three

units: ALU/BR/SLT unit to perform arithmetic, logic, branches and shift operations;

CSR unit; and LD/ST unit with access to memory interfaces to load and store data.

The Write-Back stage (WB) stores the data on the destination register. 14

2.5 Potato block diagram [19]. The pipeline has 5 stages: Instruction Memory (the same as

Instruction Fetch), Instruction Decode, Instruction Execute, Data Memory, and Write-

Back. The Instruction Memory and Data Memory stages have access to the Wishbone

Interface, where the memories and peripherals are connected. 15

2.6 RI5CY block diagram [9]. RI5CY has a pipeline with 4 stages: Instruction Fetch, In-

struction Decode, Execute, and Write-Back. It offers support for the RV32I, multipli-

cation and division extension, compressed instructions, floating-point operations, and

several custom instructions. As external interfaces, it has an instruction cache, debug

access and data memory interconnection. 16

2.7 ZERO-RISCY block diagram [9]. This core was designed to be efficient and area-

optimized, providing a 2-stage in-order pipeline with support for the RV32IEMC. It offers

external access to instruction and data memories and a debug interface. 16

xvii

2.8 SweRV pipeline [24] with 9 stages. The decoder features two instructions pipes on its

output, allowing the simultaneous issue of two instructions to the execute stage. The

number of pipeline stages of each functional unit is represented, as well as the divider,

which has a latency of 34 cycles but is not pipelined. 18

2.9 The MB-Lite architecture. The pipeline consists of 5 stages: Instruction Fetch, Instruc-

tion Decode, Execute, Memory, and Write-Back. The core itself is connected to the

external memories and the Register File, also present in this diagram. Some signals

and logic are not represented to simplify the figure. 26

2.10 The MB-Lite memory map address decoder. In this example, the connections between

the core and three external peripherals are represented: the data memory, a generic

slave, and a Wishbone IP connected through the Wishbone Adapter. The memory map

address decoder uses the data memory interface to establish the connection between

the peripherals and the core, according to the memory map set by VHDL generics. . . . 26

3.1 Processor Architecture schematic with simplifications. The new units and signals are

represented in orange. A dependency handler unit was included on the ID stage to

detect hazards. The EX stage features a multi-cycle pipelined divider and a multiplier.

The Register File was modified to support two write ports since the EX stage can now

write directly to the destination registers. The MEM stage features a buffer to store

instructions that are waiting for their request to be processed. By using an Address

Decoder, it is possible to connect different peripherals such as the data cache or the

UART module, not represented here. 31

3.2 Memory stage instructions buffer. Based on the occupation of this queue, the processor

will continue issuing new memory instructions in case of having free space. Whenever

the buffer is full, the pipeline stalls waiting for the acknowledgment of the instruction

that is being processed. 32

3.3 MicroBlaze instruction types [31]. 32

3.4 Memory layout resulting from the compilation of a C program. 33

3.5 Connections between the core and both the instruction memory and the data cache. . . 34

3.6 Connections between the Core, the Instruction Memory (implemented with a True-Dual

Port RAM IP), and the AXI Block RAM Controller IP. 35

3.7 2-way set associative cache structure. Each way is comprised of 16 lines with 256 bits

each, the tag, a valid bit, and a dirty bit which indicates if the line was changed and it

needs to be updated on the main memory before it is replaced. 36

3.8 Cache AXI4 master interface Finite State Machine. This state machine is responsible

to control the interface that translates the cache read and write requests to AXI4 and

vice-versa. 37

3.9 Connections between the Core, the Data Cache, and the MIG. 38

xviii

3.10 The Multiplier Unit. This unit uses a Xilinx IP to execute the multiplication operations.

There is always a signal extension in the operands because the multiplier is configured

to do sign operations. When the instruction corresponds to an unsigned multiplication,

the extension bit is zero. The output value can be the upper or the lower 32 bits of the

result, and the signal low high is used to select the correct part. Since the multiplier

is pipelined, it is necessary to have a shift register to store the control signals of each

operation. 39

3.11 The Divider Unit. This unit supports the division of 32-bit integer signed/unsigned

operands, and its output can provide the remainder or the quotient. It uses a multi-

cycle pipelined divider from Xilinx with a latency of 30 cycles, and it is configured to use

the Radix-2 division algorithm. A shift register with the same latency is used to store

the control signals during the division operations. 40

3.12 Example of an incorrect branch prediction, where the instructions that entered into the

pipeline are removed and the correct program counter is fetched. 42

3.14 Example of dependencies handling. For each instruction is shown its execution stage

over time. On the first column, the registers involved in data hazards are underlined

and written in red, as well as the cycles when the instruction stalls on the ID stage due

to dependency conflicts. 43

3.13 Representation of the scoreboard unit. It is responsible for informing the ID stage when

data and structural hazards occur, by marking the destination registers in use and

storing the state of each multi-cycle functional unit. 44

3.15 Scoreboard state at clock cycle 3. Register R1 is marked on the scoreboard with the

multiplication latency. The position of this instruction inside the multiplier is also stored. 45

3.16 Scoreboard state at clock cycle 12. At this moment, the dependency of R1 was already

solved. Instructions 3, 4, and 5 are being processed at the EX stage, so the destination

registers were marked, as well as the corresponding functional units. 45

3.17 Scoreboard state at clock cycle 42. The divider and the multiplier units are empty,

so none of the registers are marked with latencies. Instruction 6 left the ID stage

and because it is a load request, its destination register, R10, has its memory bit on

scoreboard set to ’1’. 46

3.18 Scoreboard state at clock cycle 50. The memory load request received a hit on the

previous cycle, so the mark on the scoreboard relatively to the register R10 was removed. 46

3.19 Representation of a serial transmission. 47

3.20 UART module. The FPGA’s TX and RX signals are connected to this module which

is comprised of the UART Address Decoder, the TX and RX FIFOs, the TX Controller,

and the TX and RX modules. 48

xix

3.21 TX Controller Finite State Machine. The control waits for some content stored in the TX

FIFO by checking the signal FIFO TX EMPTY in the IDLE state. When the FIFO is not

empty, the controller sets the FIFO TX RD EN to high to get the next byte to be sent.

Then, the TX VALID signal is enabled and the transmission of each bit starts in the TX

module. The controller is kept in the TX DONE stage until the TX DONE signal is set

to high. 48

3.22 The cycle counter block diagram. This 64-bit counter uses an accumulator and it is

compatible with the processor’s memory interface. The selection of the required result

part is made by the input address. 50

3.23 DMA Subsystem for PCIe diagram. The AXI4 DMA interface between the host and the

FPGA with multiple channels is represented on top of the diagram. On the bottom, the

diagram shows the interfaces used for the PCIe traffic to bypass the DMA and access

the user logic directly using an AXI4-Lite interface or an AXI4 Master interface. 53

3.24 DMA/Bridge Subsystem for PCI Express IP configuration on Vivado Block Automation.

This IP was configured to use 16 lanes and a maximum link speed of 8 GT/s, which is

equivalent to the PCIe 3rd Generation. The AXI bus supports 512-bit words, running at

a frequency of 250 MHz. The DMA is configured as an AXI Memory Mapped device. . . 54

3.25 Data flow between the host and the processor’s memories. 54

4.1 Memory structure configured on the Linker Script. 60

4.2 Binary generation workflow. 60

5.1 Simplified diagram of the proposed system. This diagram is an overview of the con-

nections between the main blocks inside the FPGA and the host processor. 69

5.2 Vivado post-implementation device view showing the critical path with 200MHz clocks. . 70

5.3 RAW hazard every time each element result is stored 75

E.1 Block design implementation of the proposed system created using Xilinx IP Integrator. 100

xx

Acronyms

ALU Arithmetic and Logic Unit.

ASIC Application Specific Integrated Circuit.

AXI Advanced eXtensible Interface.

BAR Base Address Register.

BRAM Block Random-Access Memory.

BSP Board Support Package.

CSR Control and Status Registers.

DMA Direct Memory Access.

DRAM Dynamic Random-Access Memory.

DSP Digital Signal Processing.

EX Execute.

FF Flip-flop.

FPGA Field Programmable Gate Array.

FPU Floating-Point Unit.

GPIO General-Purpose Input/Output.

I2C Inter-Integrated Circuit.

ID Instruction Decode.

IF Instruction Fetch.

ISA Instruction Set Architecture.

JTAG Joint Test Action Group.

xxi

LRU Least Recently Used.

LUT Look-up Table.

LUTRAM LUT Random-Access Memory.

MEM Memory.

MIG Memory Interface Generator.

PC Program Counter.

PCIe Peripheral Component Interconnect Express.

RAW Read after Write.

ROM Read-Only Memory.

RTL Register Transfer Level.

SIMD Single-Instruction Multiple-Data.

SoC System on Chip.

SPI Serial Peripheral Interface.

UART Universal Asynchronous Receiver/Transmitter.

WAR Write after Read.

WAW Write after Write.

WB Write-Back.

xxii

1
Introduction

Contents

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Contributions . 3

1.4 Thesis Outline . 4

1

Over the years, the CPU market has been dominated by INTEL and AMD, in what concerns

their x86 architectures, and by ARM, which is not a manufacturer but develops processor’s designs

mainly for mobile devices and microcontrollers. Those ARM designs are licensed to the manufacturers

who integrate them into their products or use them to develop and sell their own System on Chips

(SoCs). These processors are typically closed-source, and even their instruction sets cannot be used

to develop third-party architectures without permission and the payment of royalty fees. All these

limitations make the development of new processors more expensive and increase the difficulties to

have a significant market share.

In 2010, the development of a new Instruction Set Architecture (ISA), called RISC-V, was driven

at the University of California, Berkeley. RISC-V has the purpose of creating an extensible and open-

source instruction set, not only for academic use but also for commercial products. Under this as-

sumption, it is sometimes referred to as the “Linux” of processors. As a consequence, RISC-V has

received significant support from the open-source community, with the adaptation and development

of programming tools, such as a GCC compiler with GDB support [1], LLVM toolchain [2], GNU MCU

Eclipse [3], C libraries (newlib, glibc) [1], an official ISA simulator (Spike) [4], and a simulator in QEMU

[5]. In terms of operating systems, it has already support for the Linux Kernel, FreeBSD, and ports

of Debian. The RISC-V Foundation controls the RISC-V evolution, and its members are responsible

for promoting the adoption of RISC-V and participating in the development of the new ISA. In the list

of members are big companies like Google, NVIDIA, Western Digital, Samsung, or Qualcomm. Cur-

rently, NVIDIA and Western Digital are working on their RISC-V microcontrollers [6, 7] to incorporate

them in their commercial products, as an alternative to their current ARM solutions.

With the RISC-V development, it is expected that the actual paradigm will change through the

creation of a universal and open-source software ecosystem with the contribution of everyone. The

main goal is to support multiple implementations, giving the freedom to the companies, universities, or

research centers to develop their own hardware solutions, knowing that this software layer exists, and

it can be used without restrictions. In the future, if successful, RISC-V may be present in processors

of different platforms, such as computers, smartphones, and in other types of microcontrollers.

1.1 Motivation

This thesis was developed under the ambitious premise of creating the means to the development

of a massively parallel processor using the RISC-V instruction set. The main goal of that targeted

ambition was the implementation of a multicore system with several RISC-V cores. When the existing

RISC-V core implementations started to be studied in order to select the one to serve as the base of

that work, multiple faults were identified in the available solutions, related to the lack of documentation,

low performance, or no support for Field Programmable Gate Array (FPGA) implementations.

The initial approach for that project considered the Rocket [8] core, developed by the authors

of RISC-V. The first step was the FPGA implementation, but it was realized that the existing imple-

mentable versions were developed for simulation purposes related to existing commercial projects.

2

Another option that was taken into consideration was the Pulpino [9] SoC. Once again, the perfor-

mance and the maximum operating frequency were insufficient since it was developed for RTL simu-

lation or Application Specific Integrated Circuit (ASIC) implementations. Other cores available at that

time were analyzed, and they will be presented in the next chapter, together with the Rocket and the

Pulpino.

Based on that, the idea of developing a new RISC-V core that is easily modified and mitigates

those implementations problems arose. It seemed to be a fundamental step to allow the development

of future projects that include multiple RISC-V cores, with particular attention being given to the multi-

core systems and support for FPGAs implementations. A non-RISC-V core with a robust architecture

was selected to be modified and used as the base of this work.

1.2 Objectives

The main goal of this work is the development of a RISC-V softcore processor to be implemented

in an FPGA, using a non-RISC-V core as the base of this architecture. The main objectives can be

summarized in the following points:

• Implementation of the RISC-V ISA on a non-RISC-V processor;

• Hardware support for the RISC-V Integer Multiplication and Division Extension;

• Creation of hardware support to allow the integration of caches and external memories in the

processing structure;

• Development of peripherals (UART module, timer, and counter);

• Give support for high throughput data transfers from the host CPU to the developed core via

PCIe;

• Implementation of the developed architecture in a Xilinx Virtex UltraScale+ VCU1525 FPGA

board;

• Development of tools to help the software development for the proposed processor;

• Evaluation of the implementation results in terms of resources, operating frequency, and power

requirements.

1.3 Contributions

The work that was conducted in the scope of this thesis allowed the development of a new RISC-V

processor with new features when compared to the current solutions. Beyond that, the proposed so-

lution was focused on solving the problems and limitations identified in the other RISC-V cores that

were analyzed in this thesis, especially in terms of the adaptability and flexibility, allowing future modi-

fications according to the applications needs and requirements. The software support was also taken

3

into consideration, and several tools and libraries were developed to make the software development

easier. The complete system was developed, ensuring support for FPGA implementation.

1.4 Thesis Outline

This thesis is divided into 6 chapters. The remaining of this document is organized as follows:

• Chapter 2 presents the RISC-V ISA and the existing extensions, followed by the conducted

analysis and comparison of several RISC-V cores. In the end, a reference to other non-RISC-V

cores is also done.

• Chapter 3 describes the development process related to the proposed architecture and its fea-

tures, as well as the decisions that were taken across the work.

• Chapter 4 presents the developed software tools to interact with the processor, including the

developed libraries to access the peripherals, compilation scripts, and practical examples to

demonstrate how they can be used.

• Chapter 5 includes the implementation process of the developed system in an FPGA, and it also

presents the set of experimental results that were obtained.

• Chapter 6 contains the conclusions of this work and ideas that can be developed in future work.

4

2
RISC-V specification and

implementations

Contents

2.1 RISC-V ISA . 6

2.1.1 Base Integer Instruction Set . 6

2.1.2 Extensions . 8

2.2 RISC-V Cores . 10

2.2.1 PicoRV32 . 10

2.2.2 Rocket Chip . 11

2.2.3 ORCA . 13

2.2.4 Potato . 14

2.2.5 PULPino . 15

2.2.6 VexRiscv . 17

2.2.7 SweRV . 17

2.2.8 Discussion . 18

2.3 Other non-RISC-V softcores . 22

2.3.1 Non-RISC-V softcores review . 22

2.3.2 MB-Lite . 23

2.4 Summary . 27

5

This chapter begins with the analysis of the RISC-V ISA specification, focusing on the base integer

instruction set, the existing extensions, and how they work. A particular emphasis will be given to the

Integer Multiplication and Division extension which is implemented in the processor developed in this

thesis.

Then, several existing RISC-V cores are studied and compared. It is essential to understand

what are the functionalities and drawbacks of each one to understand what is missing in the existing

solutions and what is important to implement in a new solution. This analysis is essentially focused

on the FPGA support, the documentation quality, and how easily they can be adapted and modified.

Finally, as a consequence of the current state of the existing RISC-V processors, other non-RISC-

V cores are referenced.

2.1 RISC-V ISA

RISC-V includes a base integer ISA with 32, 64, and 128-bit variants (RV32, RV64, and RV128, re-

spectively). The RV128 variant will be implemented thinking in the future, when an address space

larger than 64 bits will be needed [10]. Additionally, it supports optional extensions giving the flexibility

to use what is necessary to implement in a specific application. Currently, the RISC-V Foundation has

not ratified the standard ISA in the latest release of the ISA Manual [10]. However, in the newest draft

release [11], some of the modules suffered significant changes, and others are already ratified, includ-

ing the Base Integer Instruction Set, RV32I, and the Multiplication and Division extension. Currently,

the RV32I features fewer instructions than what was set in the original version, and this means less

complexity and resources when it is time to implement them in underlying processor architectures.

Based on that, the version “20190608-Base-Ratified”, published in June of 2019, was followed across

this work [11].

As long as this processor implements the RV32I extension and offers support for integer multipli-

cation and division, it is necessary to know what are the instructions that should be supported and

implemented, in order to define the hardware requirements such as the memory size, the register file

structure, the Arithmetic and Logic Unit (ALU), the multiplier, and the divider.

2.1.1 Base Integer Instruction Set

The RV32I uses 32 32-bit wide registers (x0-x31) to store integer values, where x0 is a read-only

register holding the value zero. The source registers, rs1 and rs2, as well as the destination register,

rd, are always in the same position in every instruction. In the base ISA, there are 6 formats of 32-bit

long instructions: R, I, S, B, U, and J. S and B formats are similar, the only difference is how the

immediate term is organized within the instruction. The same happens with U and J formats. Figure

2.1 summarises the 6 instruction formats.

6

Figure 2.1: The RISC-V base instruction formats [11]. The registers are always in the same position
in all formats. The immediate is encoded in different ways depending on the format. Each bit is
labeled with its position in the immediate value, imm[x].

Currently, the RV32I (version 2.1) instruction set features 40 instructions [11], and it was designed

to reduce the hardware resources, providing support for small implementations. At the same time,

this ISA is recognized as a compilation target and is supported by several operating systems. The

previous versions of the RV32I included Control and Status Registers (CSR) instructions to access

timers and counters in unprivileged code [10]. Currently, these instructions are not mandatory, and a

dedicated extension was created. The set divides the instruction into the following five groups:

• 21 Integer Computational Instructions:

Arithmetic (addition, subtraction, and bitwise shifts), logical (bitwise Boolean operations) and

comparison (arithmetic magnitude comparisons) instructions.

• 8 Load and Store Instructions:

Load byte (signed and unsigned), Load half-word (signed and unsigned), Load Word, Store

byte, Store half-word and Store word.

• 1 Ordering Instruction:

The FENCE instruction is used to order memory accesses by other cores and/or external de-

vices.

• 8 Control Transfer Instructions:

Both conditional branches and unconditional jumps are supported. Branch instructions com-

pare the values in two registers and assume the conditional branch range, given by the 12-bit

signed immediate, leading to a branch range of ± 1K instructions. Furthermore, there are two

jump instructions: JAL and JALR. JAL (jump-and-link) changes the Program Counter (PC) to

anywhere in a range of ± 256K instructions. JALR uses rs1 and a 12-bit signed immediate to

do an indirect jump to the address in rs1 plus the immediate.

7

• 2 Environment Call and Breakpoints instructions:

System Instructions are used to invoke the debugger or to make system calls. The EBREAK

instruction is used to stop the execution and return to debugger control. The ECALL instruction

is used to make a call to the environment system.

2.1.2 Extensions

One of the RISC-V main goals is to be suitable for all types of applications, starting from low-end

applications, with hardware restrictions, where the base integer instruction set is enough, but also

reaching high-performance processors which might require, as an example, floating-point operands

or support for division and multiplication operations. This goal can be achieved by defining extensions

to the instruction set, which can be implemented or not, according to the requirements and needs

of each architecture. Since the extensions are independent, they can be developed in parallel, and

they can be created by third parties, without affecting the base ISAs. Table 2.1 features the list of

all extensions under development by the RISC-V Foundation and it is possible to observe several

extensions already ratified, such as Integer Multiplication and Division, Control and Status Register

instructions, single, double and quad-precision floating-point. The extensions marked as Draft are in

an early stage of development and changes are expected in the future. In this group are included

Single-Instruction Multiple-Data (SIMD) instructions and Vector operations, which are essential for

data-level parallelism.

Table 2.1: RISC-V ISA Extensions [11].

Extension Description Version Status
Zifencei Instruction-Fetch Fence 2.0 Ratified

Zicsr Control and Status Register (CSR) Instructions 2.0 Ratified
M Standard Extension for Integer Multiplication and Division 2.0 Ratified
A Standard Extension for Atomic Instructions 2.0 Frozen
F Standard Extension for Single-Precision Floating-Point 2.2 Ratified
D Standard Extension for Double-Precision Floating-Point 2.2 Ratified
Q Standard Extension for Quad-Precision Floating-Point 2.2 Ratified
C Standard Extension for Compressed Instructions 2.0 Ratified

Ztso Standard Extension for Total Store Ordering 0.1 Frozen
Counters Performance Counters and Timers 2.0 Draft

L Standard Extension for Decimal Floating-Point 0.0 Draft
B Standard Extension for Bit Manipulation 0.0 Draft
J Standard Extension for Dynamically Translated Languages 0.0 Draft
T Standard Extension for Transactional Memory 0.0 Draft
P Standard Extension for Packed-SIMD Instructions 0.2 Draft
V Standard Extension for Vector Operations 0.7 Draft
N Standard Extension for User-Level Interrupts 1.1 Draft

Zam Standard Extension for Misaligned Atomics 0.1 Draft

8

By taking in consideration the main objectives of this thesis, a particular attention is worth giving

to the Integer Multiplication and Division Extension. This extension allows multiplication and division

between two operands stored in two registers. In particular, we focus only on the 32-bit instructions

(RV32M), since there are also instructions for 64-bit operands, but they were not used in this work.

These instructions use the integer registers to store the results directly instead of using special reg-

isters for these type of operations, reducing the latency caused by moving the results from those

registers to integers ones. The instructions which comprise this extension are present in Table 2.2.

Multiplication Instructions:

Four multiplication instructions are available, one of which is used to obtain the lower 32 bits of the

result and the remaining three allow to obtain the upper 32 bits, according to the sign of the operands.

If both lower and upper bits are required, the instructions MULH[S][U] and MUL should be executed

sequentially, assuring that the operands registers are preserved. In the architecture level, both oper-

ations can be executed using just one multiplication operation, reducing the latency to get both parts

of the result.

Division Instructions:

There are two instructions for division, signed and unsigned, and two instructions to obtain the re-

mainder. In these instructions, rs1 stores the dividend and rs2 stores the divisor. The division should

round the quotient towards zero, and the remainder should have the dividend’s sign, according to the

C99 standard. When the quotient and remainder are needed, both instructions should be executed

or, as an alternative, the micro-architecture could implement a mechanism to store both results, since

a division is an arithmetic operation that takes several clock cycles to get the result. In the RISC-V

ISA, it was decided to not trigger any exception when we try to divide by 0. To detect these situations,

a branch instruction should be inserted right after the division to check and change the program flow

if it is required.

9

Table 2.2: Integer Multiplication and Division instructions [11].

Instruction Meaning

mul rd, rs1, rs2 rs1 x rs2 multiplication and returns the lower 32 bits

mulh rd, rs1, rs2 rs1 x rs2 (signed x signed) multiplication and returns the upper 32 bits

mulhsu rd, rs1, rs2 rs1 x rs2 (signed x unsigned) multiplication and returns the upper 32 bits

mulhu rd, rs1, rs2 rs1 x rs2 (unsigned x unsigned) multiplication and returns the upper 32 bits

div rd, rs1, rs2 rs1 / rs2 signed division

divu rd, rs1, rs2 rs1 / rs2 unsigned division

rem rd, rs1, rs2 Remainder of div

remu rd, rs1, rs2 Remainder of divu

2.2 RISC-V Cores

The number of processors based on the RISC-V ISA has increased over time. Currently, there are

processors to be used as simple microcontrollers, coprocessors, more advanced SoC with the capa-

bility to boot Linux and even more advanced implementations with multicore support and integration

of customized accelerators. Several of them were selected to be studied in this section and com-

pared based on their features, maximum operating frequency, FPGA support, resources usage, and

documentation. These are the RISC-V cores that will be analyzed and compared:

• PicoRV32;

• Rocket Chip;

• ORCA;

• Potato;

• PULPino;

• VexRiscv;

• SweRV.

2.2.1 PicoRV32

PicoRV32 [12] is a 32-bit RISC-V core written in Verilog and suitable for FPGAs implementation. It

supports the following ISA configurations: Integer Reduced (RV32E), Integer (RV32I), Integer Com-

pressed (RV32IC) and Integer Multiplication and Division (RV32IM). The core exists in three variants,

with different interfaces to connect peripherals. The picorv32 provides a simple native memory in-

terface to be used in simple applications. The second variant, picorv32 axi, features an Advanced

10

eXtensible Interface (AXI) Lite Master interface, useful for applications which use already AXI to con-

nect peripherals. The third one, picorv32 wb, provides a Wishbone master interface.

Each core can have three configurations: small, regular, and large. The small architecture uses

about 760 Look-up Tables (LUTs) on Xilinx 7-Series FPGAs, but it does not implement counter in-

structions, two-stage shifts, and detection of misaligned memory accesses and illegal instructions.

The regular configuration implements the features missing in the base configuration, requiring less

than 920 LUTs. Finally, the large configuration supports the multiplication and division extension,

compressed instructions, barrel shifter, custom instructions for interrupt request and a feature used

to implement non-branching instructions in external cores, not requiring more than 2020 LUTs. Re-

garding the timing evaluation, a maximum frequency of 714 MHz is achieved for the Xilinx Virtex

UltraScale+ board with the xcvu3p-ffvc1517-3-e FPGA.

Despite all the technical information available regarding its features and evaluation reports, there

is no description available of its internal architecture. It is hard to understand how the processor was

built by just analyzing the Verilog code even by the fact that the core was written in just one file without

comments. Beyond that, this RISC-V core is not pipelined, which is a disadvantage when compared

with other alternatives, as it will be seen further.

2.2.2 Rocket Chip

The Rocket Chip [8] is an open-source SoC generator created at the University of California, Berkeley.

It uses the Chisel hardware construction language embedded in Scala to generate cores, caches,

and interconnections, to produce a complete SoC in an object-oriented way. The Chisel can generate

fast cycle-accurate C++ simulators, low-level Verilog Register Transfer Level (RTL) for FPGA or ASIC

emulation or synthesis using standard tools [13]. The Rocket Chip is essentially a library of generators

that can be configured and connected in different ways, originating different SoC designs. It can

generate an in-order or an out-of-order core, Rocket and BOOM, respectively, which can be attached

to coprocessors using an interface named RoCC [8]. Figure 2.2 shows an example of a Rocket Chip

instance with all the generators and interfaces represented.

11

Figure 2.2: Example of a Rocket Chip instance [8]. Core - Rocket or BOOM generator, with an
optional FPU. Caches - Cache and TLB generators with configurable sizes and policies. RoCC - The
Rocket Custom Coprocessor interface to implement coprocessors. Tile - A tile generator for cache-
coherent tiles. It allows defining the type of cores and accelerators. TileLink - A generator for networks
of cache-coherent agents and controllers. Peripherals - Generators for AMBA-compatible buses.

The Rocket [8] configuration is a 5-stage in-order core, with support for the RV32I and RV64I ISAs,

and it can be configured to include the M, A, F, and D extensions. This core is highly parameterized,

offering the possibility to configure different modules, such as the number of floating-point pipeline

stages, optional extensions, and the caches and TLB sizes. It has a configurable branch prediction

with support for a branch target buffer (BTB), branch history table (BHT), and a return address stack

(RAS). The Rocket pipeline is represented in Figure 2.3.

With the RoCC interface, the Rocket is able to control external coprocessors and accelerators

(vector processors, crypto units, image processing units). The processor attached to the RoCC in-

terface accepts instructions from the Rocket’s Write-Back stage, and it also has access to the main

core’s data cache. According to the authors, Rocket can be thought of as a “library of processor

components” because several modules can be easily re-used in other projects [8].

The support for FPGAs implementations is also given, but it is primarily used for tests and sim-

ulations, achieving frequencies in the range of 25-100 MHz, depending on the configuration and the

FPGA used for implementation. Currently, Rocket is being used by SiFive, a company created by

12

several RISC-V authors, which produces silicon RISC-V processors based on Rocket, and it offers

tools to develop, test, and evaluate their designs.

Figure 2.3: The Rocket Core pipeline [8] with 5 stages: Program Counter, Instruction Fetch, Instruc-
tion Decode, Execute, Memory, and Write-Back. It is also represented the Floating-point unit and the
RoCC interface after the Write-Back stage.

BOOM [14] is an out-of-order core that implements the RV64G ISA. It was built to use the Rocket

Chip generator infrastructure, so several modules created for Rocket are also used by BOOM, includ-

ing the caches, the functional units, and the TLBs. To instantiate a BOOM core in a design generated

by the Rocket Chip SoC, the Rocket core tile is replaced by the BOOM core tile. Conceptually, BOOM

is a 10-stage processor, but some of them are combined. The stages correspond to the Fetch, De-

code, Register Rename, Dispatch, Issue, Register Read, Execute, Memory, Write-Back, and Commit

phases. Branch speculation is also supported by BOOM, and it works in the following way: each

instruction in the pipeline receives a tag that marks which branch is responsible for the instruction that

is being executed. If the branch was mispredicted, then all the instructions that depend on that branch

are removed from the pipeline.

BOOM is primarily optimized for ASIC, but it is also usable on FPGAs. It supports the FireSim flow

[15], an open-source FPGA-accelerated cycle-accurate hardware simulator that runs on FPGAs on

AWS EC2 F1 instances, running at 90+ MHz [16].

Unfortunately, Rocket Chip is not the best solution for someone who needs to modify and imple-

ment a RISC-V core on an FPGA, due to the lack of documentation about how to create a clean

project and how to modify the processor. Because it offers too many features, it is hard to understand

an manipulate, the generated Verilog is not directly suitable for FPGA implementation, and the exist-

ing FPGA implementations were only created to test commercial products offering very low operating

frequencies.

2.2.3 ORCA

ORCA [17] is an RV32IM RISC-V core written in VHDL and developed by VectorBlox to be the host

processor for a proprietary solution, although it can also be used as a standalone processor. Accord-

ing to its authors, ORCA was designed to be suited for FPGAs and to be highly parameterized. The

pipeline, present in Figure 2.4, can be configured to have 4 or 5 stages, by merging the Forward and

Ex/Mem stages, improving speed or area, depending on what is more important for each implemen-

tation. Beyond the number of pipeline stages, the forwarding paths available in the architecture are

13

also fully configurable, as well as the possibility to implement the M extension with hardware support,

the number of cycles to compute the shift operations and the use of data and instruction caches.

The memory interfaces are designed to support multiple FPGAs vendors. The connection to mem-

ory caches is made via AXI. On the other hand, uncached accesses can be made via AXI4-Lite or

using an auxiliary interface according to the used FPGA vendor, which can be configured as either

WISHBONE, Intel Avalon, or Xilinx LMB.

In terms of area and speed, the RV32I implementation requires about 1620 LUTs, and it can

achieve a maximum frequency of 109 MHz in an Altera Cyclone IV FPGA. For the same FPGA, the

processor version with hardware support for the multiplication and division extension uses about 2350

LUTs and the maximum frequency increases to 125 MHz.

ORCA is claimed to offer the advantage of being targeted for FPGAs with support for multiple

vendors, and its high degree of customization allows the easy creation of different core versions. On

the opposite side, there is a lack of documentation, and implementation samples for different FPGAs

are not available.

Figure 2.4: ORCA pipeline [18] with 4 or 5 stages. On the Fetch stage it is represented the inter-
face to the instruction memory. The Decode stage features two register files, one for each operand.
The Forward and Ex/Mem stages can be merged, and here there are three units: ALU/BR/SLT unit
to perform arithmetic, logic, branches and shift operations; CSR unit; and LD/ST unit with access
to memory interfaces to load and store data. The Write-Back stage (WB) stores the data on the
destination register.

2.2.4 Potato

Potato [19] is a simple RISC-V core written in VHDL with a complete implementation of the RV32I

subset and support for the CSRs instructions. Its pipeline has 5 stages, and its block diagram is

represented in Figure 2.5. The Wishbone bus interface is used to allow the connection of peripherals

and memories. In the source code, it is made available a SoC using Potato, to be implemented in

14

a Arty FPGA running at 50 MHz, with support for a 32-bit timer with compare interrupt, a Universal

Asynchronous Receiver/Transmitter (UART) module with configurable baud rate, a General-Purpose

Input/Output (GPIO) module, memories using Block Random-Access Memories (BRAMs), and an

optional instruction cache.

When compared with other alternatives, this core follows an interesting approach, by using a famil-

iar interface (the Wishbone bus) to connect different peripherals and memories, making the process

of adding new peripherals easy. Unfortunately, Potato is not documented, and implementations for

different FPGAs with resources usage and timing requirements are not provided.

Figure 2.5: Potato block diagram [19]. The pipeline has 5 stages: Instruction Memory (the same
as Instruction Fetch), Instruction Decode, Instruction Execute, Data Memory, and Write-Back. The
Instruction Memory and Data Memory stages have access to the Wishbone Interface, where the
memories and peripherals are connected.

2.2.5 PULPino

PULPino [9] is a 32-bit SoC written in System Verilog, developed in ETH Zurich, which can imple-

ment two types of RISC-V cores with the same external interfaces: RI5CY and ZERO-RISCY. This

SoC supports several peripherals through AXI, such as UART, Inter-Integrated Circuit (I2C), Serial

Peripheral Interface (SPI), 32-bit timers, as well a boot Read-Only Memory (ROM), and data and in-

structions RAMs. PULPino also offers a debug unit which provides external access to its memory and

peripherals via Joint Test Action Group (JTAG).

RI5CY [20], whose architecture is represented in Figure 2.6, is a 32-bit in-order 4-stage core

that implements the RV32I and the M and C extensions, Multiplication/Division and Compressed in-

structions, respectively. This core also supports the floating-point extension, by enabling an optional

IEEE-754 single-precision Floating-Point Unit (FPU). Additionally, RIS5Y implements several cus-

tom instructions, such as hardware loops, post-incrementing load and stores, ALU operations, and

packed-SIMD instructions.

ZERO-RISCY [21], which is now denominated as Ibex and it is maintained by lowRisc, is focused

15

on efficiency and area optimization, and it can be used as a processor for control applications. Figure

2.7 illustrates its architecture based on a 2-stage 32-bit in-order pipeline, which implements the RV32I

or a different version with just 16 integer registers called RV32E and the M and C extensions. Accord-

ing to the requirements and specifications of each implementation, the M extension can be disabled

and the RV32E can be selected, reducing its area and improving its efficiency.

The SoC and both cores are well documented; each one has its manual, which describes the

architectures, the offered features, the interfaces between components, the existing peripherals, and

the configuration options. However, even though a version of PULPino for FPGA also exists, PULPino

is mainly targeted for RTL simulation and ASICs, so the FPGA implementation can only be used as

an emulation platform because the performance is not optimized and the maximum frequency is not

higher than 40 MHz.

Figure 2.6: RI5CY block diagram [9]. RI5CY has a pipeline with 4 stages: Instruction Fetch, In-
struction Decode, Execute, and Write-Back. It offers support for the RV32I, multiplication and division
extension, compressed instructions, floating-point operations, and several custom instructions. As
external interfaces, it has an instruction cache, debug access and data memory interconnection.

Figure 2.7: ZERO-RISCY block diagram [9]. This core was designed to be efficient and area-
optimized, providing a 2-stage in-order pipeline with support for the RV32IEMC. It offers external
access to instruction and data memories and a debug interface.

16

2.2.6 VexRiscv

VexRiscv [22] is a 32-bit core whose pipelined architecture can be configured with 2 to 5 stages

(Fetch, Decode, Execute, Memory, Write-Back). It is descibed with SpinalHDL, an open-source high-

level description language regarded as a fork of Chisel. This processor supports the RV32IMCA

instruction set, and it is optimized for FPGAs of different vendors. VexRiscv was built using a software-

oriented approach to develop its hardware description, and so almost all the components are plugins,

such as the instruction and data caches, debug extension, multiplication and division, as well as the

number of pipeline stages, interrupts and exception handling.

Several configurations are supported, leading to different values of area usage and maximum

frequency. The smallest configuration (without any optional module) requires just 496 LUTs and

505 Flip-flops (FFs) and achieves a frequency of 324 MHz on a Artix 7 FPGA. The complete core,

called VexRiscv full max, with multiplication and division support, debug module, 16 KB of data and

instruction caches, and exceptions, makes use of 1758 LUTs and 1094 FFs, achieving 193 MHz on

the same FPGA.

The hardware description language that was used to build this core is not well known by the

community, creating barriers to understand and modify the code. Also, the core architecture is not

described in the available documentation.

2.2.7 SweRV

Western Digital also decided to develop a RISC-V processor named SweRV [23, 24], to be part of

some of their products instead of using a paid and closed-source solution. The SweRV is a 32-bit

core written in System Verilog with support for the RV32I and the M, C, Zifencei, and Zicsr extensions.

Figure 2.8 shows the SweRV 9-stage pipeline, structured as a dual-issue, superscalar, and mostly

in-order pipeline, although with some out-of-order capability. According to the SweRV Manual [24],

the pipeline has 4 stall points: Fetch 1, Align, Decode, and Commit. The Fetch 1 stage stalls due

to instruction cache miss and if the remaining stages are full. The Align stage has 3 fetch buffers to

temporarily store the instructions when it is necessary to stall. The Decode stage can simultaneously

decode up to 2 instructions from 4 instruction buffers. Finally, in the Commit stage, up 2 instructions

are committed at the same clock cycle. The core also features a load and store pipeline with 3 stages,

2 execute pipes, I0 and I1, each one with 2 ALUs on EX1 and EX4, a 3-cycle latency pipelined mul-

tiplier, and a 34-cycle out-of-pipeline divider. Furthermore, it has a branch predictor and 4 interfaces

to instructions fetch, data accesses, debug accesses, and external Direct Memory Access (DMA) via

AXI4 or AHB-Lite.

The documentation is complete, focusing on several aspects, such as memory accesses (address

regions, memory protection, exception handling), power management (power states, power control),

performance monitoring (counters, events), and caches. The SweRV can achieve a frequency of 1

GHz for 28 nm nodes, but unfortunately, it is not suited for FPGA implementations.

17

Figure 2.8: SweRV pipeline [24] with 9 stages. The decoder features two instructions pipes on its
output, allowing the simultaneous issue of two instructions to the execute stage. The number of
pipeline stages of each functional unit is represented, as well as the divider, which has a latency of
34 cycles but is not pipelined.

2.2.8 Discussion

Seven RISC-V processors were separately analyzed, focusing on the architecture, the supported

RISC-V extensions, the offered features, and the implementation results. To simplify the comparison,

this information was extracted and resumed in Table 2.3. Throughout this section, the collected in-

formation will be used along the discussion, in an attempt to find the most suitable RISC-V softcore

processor to be used in research projects using FPGAs. The discussion is based on the following

criteria:

• Extensibility/customization;

• FPGA implementation support;

• Available documentation.

Extensibility/customization:

If a processor is being used in some project, it certainly requires a way to communicate with other

components such as memories, standard input/output, or custom IPs. To make this possible, the

core should support a communication protocol like AXI, Wishbone, UART, or SPI. The connection to

18

other peripherals is not the only topic related to the extensibility of a processor. A processor can be

considered extensible if its architecture is designed in a way that makes the configuration and the

modification simple. This characteristic can be achieved by dividing the design into well known and

defined components, using similar interfaces and conventions across the entire architecture, and by

adopting the use of generics to set the configurations.

From the set of processors previously reviewed, the ORCA and the VexRiscv support three differ-

ent interfaces: AXI, Intel Avalon, and Wishbone. This way, these two processors are compatible with

different interfaces used by different vendors. The PicoRV32 supports AXI and Wishbone, but it is

not compatible with Intel Avalon. The Rocket Chip, the PULPino, and the SweRV are only compatible

with AXI. The Potato only offers the Wishbone interface. These interfaces can be used to connect to

external memories, DMAs, accelerators, or other modules like UART, I2C, and SPI as it is done in the

PULPino.

In terms of the architecture, the Rocket Chip is the most extensible and modifiable processor be-

cause it supports multicore implementations with different types of cores, caches, and accelerators.

Due to the existing interconnections, which allow the development of the SoC in an object-oriented

way, each component uses a specific interface and can be easily attached and modified. The remain-

ing cores, except the SweRV, are also configurable. In general, they have different variants where

the type of interfaces, the supported ISA extensions, the caches, and the type of cores (specifically

in PULPino) can be configured. The SweRV was designed to be used in commercial projects, so the

available design is fixed when compared with the others, but nothing prevents it from being modified

since it is open-source.

FPGA implementation:

In research projects, the softcores are mainly used to be implemented on FPGAs. Therefore, their

design should be suitable for FPGA implementation, and whenever possible, with support for multi-

ple vendors. Sometimes, the developers provide support for FPGAs but only to perform tests and

simulations, mainly due to the fact that the architecture was developed without following the most suit-

able methodologies, causing bad synthesis results with high minimal clock periods and high usage of

resources.

Almost half of the analyzed processors have maximum operating frequencies under 100 MHz. The

Potato, which was developed for FPGAs, features a maximum frequency of 50 MHz. The PULPino

is mainly targeted for simulation and ASIC implementations, achieving a frequency of 40 MHz on

FPGAs. The existing implementations of the Rocket Chip for FPGAs are limited to 100 MHz since it is

also targeted to ASIC. On the other hand, the PicoRV32 is the processor with the highest frequency,

714 MHz in a specific Xilinx UltraScale+ device and a value between 250 and 450 MHz on the 7-Series

Xilinx FPGAs. The VexRiscv achieves a maximum operating frequency that can range between 193

and 336 MHz, according to the configuration, when implemented on the Xilinx Artix 7. Finally, the

ORCA processor, which was developed to support multiple vendors, is limited to 125 MHz on the

19

Altera Cyclone IV FPGA. The SweRV does not offer any implementation for FPGA.

Documentation and Support:

The documentation of a processor is essential to understand how it was developed, the internal

architecture, its features, its purpose, and how it can be used. The documentation can be a technical

report, a manual, the code comments, or a guide to help who is using the processor for the first time.

The existence of scripts to help the compilation process, tools to test processor, and project examples

are also valuable.

From the processors referred above, the SweRV from Western Digital has the complete docu-

mentation certainly because it will be used in commercial products. The PULPino is also well docu-

mented, having documentation for the SoC and both cores are available. The Rocket Chip offers a

good description of both cores, Rocket and BOOM, but on the other hand, the platform itself is not

well documented because it is not easy to understand how a process can be created. The remaining

cores, the PicoRV32, the ORCA, and the VexRiscv are poorly documented. The PicoRV32 internal

architecture description does not exist, and its code is not well organized. The VexRiscv core is not

described, and it uses an HDL language that is not very well known by the community.

Conclusion:

The platform with the best documentation is the SweRV, followed by the PULPino. However, when an

existing FPGA implementation is a requirement, the SweRV does not offer support, and PULPino is

not able to run on high frequencies. The cores with the best FPGA support are the PicoRV32 and the

Vexriscv. Nevertheless, PicoRV32 is not pipelined, and both are not well documented. The Rocket

Chip is the best solution when it comes to the extensibility, but it is not targeted to FPGAs, and the

documentation about the SoC is poor.

Hence, it is reasonable to conclude that, the existing RISC-V softcores are not suitable to be used

in research projects, since it was not possible to find a solution that reasonably meets all of these

three topics.

20

Table 2.3: Reviewed RISC-V Cores comparison.

Cores

Features PicoRV32 Rocket Chip ORCA Potato PULPino VexRiscv SweRVRocket BOOM RIS5Y ZERO-RISCY
Architecture 32-bit 32/64-bit 64-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit

RISC-V modules I, E, M, C I, M, A, F, D I, M, A, F, D I, M I I, M, C, F I, E, M, C I, M, C, A I, M, C,
Zifencei, Zicsr

Pipeline Type - In-order Out-of-order In-order In-order In-order In-order In-order Mostly in-order
Stages - 5 10 4/5 5 4 2 2/3/4/5 9

Hardware
Description
Language

Verilog Chisel VHDL VHDL System
Verilog SpinalHDL System

Verilog

FPGA support Yes Yes,
for simulation purposes Yes Yes Yes,

for simulation purposes. Yes No

Max. Frequency 714 MHz 100 MHz 125 MHz 50 MHz 40 MHz small: 324 MHz
full: 193 MHz

1 GHz for
28 nm nodes

FPGA
resources

usage

small: 761 LUTs
base: 917 LUTs

large: 2019 LUTs
- - 2350 LUTs - - -

small: 496 LUTs,
505 FFs

full: 1758 LUTs,
1094 FFs

-

Peripherals AXI, UART,
SPI AXI AXI, Avalon,

Wishbone
UART, GPIO

module
UART, I2C, SPI,

timers, JTAG debug
AXI, Avalon,
Wishbone AXI, JTAG

Suited for FPGAs Yes No Yes Yes No Yes No
Documentation Insufficient Insufficient Insufficient Insufficient Excellent Insufficient Excellent

21

2.3 Other non-RISC-V softcores

Currently, there are also available multiple non-RISC-V open-source processors that were developed

in the past decade. Several of them have what is missing in the current RISC-V cores: proper docu-

mentation, FPGA support with high operating speeds and low resources usage, and a design which

can be easily modified and adapted. Consequently, if we select one of these processors and modify

the architecture to implement the RISC-V ISA, in the end, it should be theoretically possible to obtain

similar results in terms of speed and area.

2.3.1 Non-RISC-V softcores review

Over the years, different researches were made to evaluate the existing cores based on different cri-

teria. In [25], the comparison and analysis of different processors were focused on the stability and

usability, the compiler, the ISA, the implementation, and the quality of the available documentation.

In [26, 27], some of the existing open-source processors were compared with commercial solutions.

The main goal was the development of a portable and customizable microprocessor for rapid system

prototyping, based on an existing core, which should be suitable for different research projects. It

was defined a list of requirements that a processor of this type should meet, such as the fact that

the processor RTL description should be open-source, reliable and with a high-quality design, config-

urable, small (in terms of resources), and it should follow a design methodology to make it easier to

understand and modify.

The list of analyzed processors includes the aeMB, the LEON3, the OpenFire, the OpenRisc

1200 [28], and the Plasma. These processors were compared based on synthesis results (area and

speed), toolchain results using different benchmarks, configurability, and design quality. At the end,

the list was reduced to just two cores, LEON3, and aeMB, where both candidates showed a similar

performance during the benchmarks. The LEON3 was better in terms of configurability and VHDL

code quality, but it was too large and complex, requiring time to understand it. As a result, it cannot

be quickly integrated into different projects. Hence, the aeMB was initially figured as a convenient

option. However, due to some implementation errors and the lack of documentation, the process of

modifying and improving the aeMB architecture faces several difficulties.

In this domain, another alternative can also be considered: the development of a processor from

scratch. For this purpose, the MB-Lite [26, 27] softcore represents a promising possibility when

focusing on the implementation of the requirements initially proposed and following the two-process

design methodology [29], by J. Gaisler. Furthermore, it proved to be a reliable alternative in the field of

the open-source softcores. It has a small size, but at the same time, it can achieve similar frequencies

as its competitors. The way the code is organized and commented, the modularity and the interfaces

it offers, along with the provided documentation and good practices followed during its development

contribute to make this processor an excellent option to use in research projects. Due to its particular

suitability to endure the objectives address by this thesis, the MB-Lite architecture and implementation

results will be presented with more detail in the next subsection.

22

The two-process methodology used by the MB-Lite suggests the usage of two processes per en-

tity: one process contains all the combinatorial logic, and the other contains the sequential logic,

instead of having just one with all the logic mixed. Thus the combinatorial process controls the state

and the outputs, based on the inputs and values stored in registers controlled by the sequential logic.

This method increases the code organization and the readability, the abstraction level, provides a uni-

form way to encode the algorithms, and it could even simplify debugging, due to the clear separation

between the sequential and the combinatorial logic.

In [30], the work was focused on the development of a new open-source core, the SecretBlaze.

The authors were worried about the fact that the existing processors are not protected against pow-

erful cryptanalysis techniques, called Side-Channel Attacks (SCAs). The SecretBlaze was developed

following the same methodologies used by the MB-Lite, and its design quality and modularity were

emphasized and recognized by the SecretBlaze’s authors. The SecretBlaze was implemented on

a Xilinx Spartan-3 FPGA, and it was able to achieve 90 MHz of maximum frequency. In terms of

resources, it required about 630 FFs and 1180 LUTs. These results are not so good as what the

MB-Lite can offer, as it will be seen later.

2.3.2 MB-Lite

The MB-Lite [26, 27] softcore was developed as part of T. Kranenburg’s Master Thesis, at Delft Univer-

sity of Technology. It implements the Xilinx’s 32-bit RISC MicroBlaze ISA, and it can execute programs

compiled by the standard compiler without modifications. However, not all the MicroBlaze instructions

were implemented to simplify the architecture. Some instructions that can be configured by compiler

parameters, such as the hardware multiplier and barrel shifter, can be added to the processor by

modifying the configuration parameters, according to the application requirements. As an alternative,

these units can be replaced by software libraries.

The implementation results reported for a Xilinx Virtex 5 FPGA board showed that a basic version

of the MB-Lite processor without multiplier and barrel-shifter is capable of achieving a frequency of

222 MHz, requiring 843 LUTs and 355 FFs. When the multiplier and the barrel-shifter are enabled, the

frequency reduces to 65 MHz, and the resources increase to 1450 LUTs. MB-Lite, when compared

to the original MicroBlaze, is faster and smaller, and it was also faster than almost all the softcores

analyzed by T. Kranenburg, losing only to the aeMB, which has a maximum frequency of 279 MHz.

The MB-Lite architecture, represented in Figure 2.9, is based on the MIPS processors, featuring

a 5-stage pipeline with a modular implementation design, and two separated instruction and data

memories. Each stage was carefully developed and described in separated components, following

the same hardware description methodologies and signals naming. The exception is the Write-Back

stage, which was implemented in the same component as the Instruction Decode, due to its connec-

tion to the Register File, but in this schematic, they were represented separately to show the traditional

view of the pipeline. The five pipeline stages are the following:

23

Instruction Fetch:

The Instruction Fetch stage is responsible for controlling the program counter and for fetching the

next instruction from the instructions memory. The program counter has three possible sources: dur-

ing the normal execution, the last program counter value is incremented; when a branch occurs, the

next program counter uses the branch target address; finally, when the reset signal is asserted, the

program counter is set to zero. When a hazard occurs, the program counter needs to remain un-

changed. The program counter value is directly connected to the instruction memory address port,

and it should be ready before the rising edge of the clock because the instruction needs to be available

in the next cycle in the Instruction Decode stage.

Instruction Decode:

The Instruction Decode stage determines all the control signals required for the execution of the

instruction in the following pipeline stages. Based on the operation code (opcode) the instruction

is identified, the registers addresses and the immediate value are decoded, the dependencies are

verified, and the control signals for the remaining pipeline stages are generated. Due to a specific

MicroBlaze ISA instruction, STORE WORD, which uses three register values (A and B for the address

and D for the value to be stored), the MB-Lite requires a true dual-port 32x32-bit register file to be

able to read three operands at once.

The reset, flush, and stall signals should be evaluated to determine if the instruction can be issued

in the next cycle. When the reset signal is asserted, the current program counter and the instruction

are changed to zero. There is also a mechanism to detect hazards between the current instruction and

previous ones. This mechanism stores the current program counter and the instruction, and being

decoded inserts a NOP instruction to stall the pipeline. If the instruction decode stage receives a

flush order from the execute stage when a branch is executed, the current instruction must be cleared

before the next clock cycle.

As it was previously said, the connections between the Write-Back stage and the Register File are

implemented in this stage to store the execution results or the values loaded from the data memory

in the destination registers. In this way, the VHDL code is simplified because the Register File signals

are all defined in the same component.

Execute:

The execute stage is responsible for performing the aimed ALU operation and for obtaining the branch

result according to the branch conditions. Before the execution of the operation, the operands should

be selected. They are obtained either from the register file, the program counter, the immediate

value encoded in the instruction, or from the forwarding values coming from the Write-Back stage,

the Memory stage or the previous ALU result, depending on what is the most recent value. The ALU

24

offers support for arithmetic and logical operations, branch evaluation, and it can also be configured

to include a single-cycle barrel-shifter and an integer multiplier.

Memory:

The Memory stage provides access to the data memory to store and load values. The ALU result

defines the memory address and the value to be stored corresponds to operand D. The memory ac-

cess can be made using different sizes: byte, half-word, and complete word. In rare cases, a data

hazards occurs. In particular, when a store instruction is immediately executed after a load instruc-

tion, and the loaded value is immediately stored to the memory. This situation could be simply solved

by forwarding the loaded value to the Memory stage, but due to the additional logic, the performance

would be affected. As an alternative, a stall can be inserted in the pipeline when this case is verified.

This forwarding can be enabled or disabled in the configuration file.

Write-Back:

The Write-Back stage receives either the ALU result (from the Memory stage) or the output of the

Data memory (when there is a load instruction), and one of these is written back to the destination

register. According to the control signals, it chooses the correct value and it selects the destination

register to store the value in the register file. Some of the signals that contain the output memory data

and the ALU result are also used as forwarding data signals to the previous stages.

By using VHDL generics, the core uses different configuration parameters that can enable the

multiplier, the barrel shifter, the external interruption, different memory settings, and memory-mapped

peripherals. To support the connection of multiple devices, the MB-Lite also offers a configurable

address decoder that can be directly connected to the data memory bus. This bus is composed

of the data input and output signals, the address, the enable, and the write enable signal, with byte

selection. In the configurations file, the memory map and the number of peripherals can be configured

using generics. When the address decoder receives a request, the address is decoded and the

corresponding slave’s chip-enable signal is activated according to the memory map. One of the

slaves can be a Wishbone bus adapter, allowing the connection of Wishbone compliant IPs with

different latency cycles. This adapter is also responsible for disabling the core until the end of a

transaction during a Wishbone cycle. In Figure 2.10 it is shown an example of a connection between

the core and external devices using the memory map address decoder.

25

PC

rst PC
CTRL

Instruction
Memory

branch

branch_target / prev_alu_result

program_counter

D
ec

od
er

Register File

reg_a

ctrl_ex

ALU

Op
A

Op
B

dat_a

dat_b

Forwarding
Operands

imm

Branchhazard

Op
D

Data
Memory

alu_result

dat_d

hazard

ctrl_ex

branch

flush_id

ctrl_mem
ctrl_wrb

instruction

ctrl_wrb

flush_id

mem_result

addr_i

dat_o

addr_a addr_b

reg_b

dat_a dat_bdat_d

dat_d

fwd_dec, _result
program_counter

ctrl_mem
ctrl_wb

dat_i

dat_o

Instruction Fetch
(IF)

Instruction Decode
(ID)

Execute
(EX)

Memory
(MEM)

Write-Back
(WB)

we_i adr_i

alu_result

dat_iaddr_i
we_i

addr_d

ctrl_mem_wrb

ctrl_ex

branch

Figure 2.9: The MB-Lite architecture. The pipeline consists of 5 stages: Instruction Fetch, Instruction
Decode, Execute, Memory, and Write-Back. The core itself is connected to the external memories
and the Register File, also present in this diagram. Some signals and logic are not represented to
simplify the figure.

MB-Lite
Core

Data Memory
0x0:0xFFFF

Slave 0
0x10000:0x1FFFF

Wishbone
Adapter

0x20000:0x2FFFF

Address
Decoder

IP

addr_i

dat_o

we
dat_i

ena_i

dmem_i[0]

dmem_i[1]

dmem_i[2]

dmem_o[0]

dmem_o[1]

dmem_o[2]

Figure 2.10: The MB-Lite memory map address decoder. In this example, the connections between
the core and three external peripherals are represented: the data memory, a generic slave, and a
Wishbone IP connected through the Wishbone Adapter. The memory map address decoder uses the
data memory interface to establish the connection between the peripherals and the core, according
to the memory map set by VHDL generics.

26

2.4 Summary

Throughout this chapter, the state-of-the-art related with the RISC-V ISA was analyzed, with a special

attention given to the instruction set and some of the existing implementations. It started by presenting

the RISC-V evolution, comprehending not only the ISA but also the support provided by the open-

source community, companies, and universities. Regarding the instruction set, the base integer set

and the integer multiplication and division extension were discussed.

Looking to the existing RISC-V core implementations, seven were presented and compared, using

as criteria the available documentation, the maximum working frequency, the FPGA support, and

resources usage. Based on this evaluation, it was possible to conclude that none of them were able

to meet all the required aspects. It was also suggested the hypothesis of modifying a non-RISC-V core

which already meets these requirements to support the RISC-V ISA. From the existing non-RISC-V

cores, the MB-Lite was considered the most suitable according to the proposed requirements, so its

architecture and implementation results were studied at the end of this chapter.

27

28

3
Proposed Architecture

Contents

3.1 Architecture Overview . 30

3.2 RISC-V support . 32

3.3 Memory Structure . 33

3.3.1 Instruction memory . 35

3.3.2 Data memory and cache implementation . 36

3.4 Multi-cycle Functional Units . 38

3.4.1 Integer Multiplier . 38

3.4.2 Integer Divider . 40

3.5 Hazards . 41

3.5.1 Data Hazards . 41

3.5.2 Control Hazards . 41

3.5.3 Structural Hazards . 42

3.5.4 Dependencies Handling . 42

3.6 Peripherals . 46

3.6.1 UART for Standard Input/Output . 46

3.6.2 Cycle Counter . 49

3.6.3 Timer . 50

3.6.4 Support for more memory-mapped peripherals 51

3.7 Data Transfer (PCI Express) . 52

3.8 Adaptation for other FPGA vendors . 55

3.9 Summary . 56

29

This chapter presents the architecture development of the proposed processor. The main focus is

on the modifications that were introduced to the MB-Lite architecture and the implementation of the

RISC-V ISA, as well as the new features, and the taken decisions related to the FPGA implementation.

This presentation is introduced by an architecture overview of the processor, where the main structural

changes are highlighted. In the following sections, each component is explained in more detail.

3.1 Architecture Overview

By analyzing the MB-Lite original architecture, described in the previous chapter, one realizes that it

offers fewer features than the existing RISC-V cores. Stands out the support for multi-cycle functional

units, caches, and pre-built peripherals, such as UART, timers, and counters. Based on this observa-

tion, the solution that was developed during this thesis was focused not only on the implementation of

the RISC-V ISA but also on keeping the MB-Lite characteristics, namely the methodologies used and

its reliability. The new features of the architecture beyond the support for the RISC-V ISA include:

• Development of a multi-cycle divider and a multiplier and providing support for additional func-

tional units.

• Support for the execution of some instructions out-of-order, after the ID stage.

• Development of a specialized unit for conflict detection and handling, caused by the out-of-order

execution and other structural hazards.

• Creation of an extra writing port on the Register File to write-back the non-memory instructions

directly after the EX stage, avoiding an extra stage.

• Development of peripherals (UART module, counter, timer, and data cache).

• Addition of a buffer that works as a waiting queue between the EX and the MEM stage, to store

memory request instructions until they can enter to the MEM stage, in order to keep the issuing

of instructions.

The processor architecture, represented in Figure 3.1, shows the changes that were introduced

on the MB-Lite pipeline. The new signals and units are represented in orange. To keep the schematic

more straightforward, some simplifications were made. The EX stage now has support for a multi-

cycle pipelined divider and multiplier, with configurable latencies, allowing out-of-order execution in

the remaining stages. To detect and solve the hazards introduced by these modifications, it was

necessary to develop and include a Dependency Handler unit on the ID stage. This unit is responsible

for analyzing the current instruction type, the operands dependencies, and the state of the functional

units, in order to issue or stall the processor whenever required.

30

PC

rst PC
CTRL

Instruction
Memory

branch

branch_target / alu_result_ex

program_counter

D
ec

od
er

Register File

reg_a

ctrl_ex
ALU

Forwarding
Operands

imm

Branch

hazard

Op
D

Peripherals
Decoder

result

hazard

ctrl_ex

branch
flush_id

ctrl_mem

ctrl_wrb

instruction

flush_id

m
em

_r
es

ul
t

addr_i

dat_o addr_a addr_b

reg_b

dat_a dat_b dat_d

dat_d

fwd_dec, _result
program_counter

ctrl_mem
ctrl_wb

dat_i

da
t_

o

we_i adr_i

dat_i addr_i
we_i

addr_d

branch

Multiplier

Divider

O
pe

ra
nd

s
A

/B
 S

el
ec

tio
n

Depend.
Handler

dat_i addr_i
we_i

Buffer

Peripherals

da
t_

d
ct

rl_
m

em

al
u_

re
su

lt

ct
rl_

w
rb

_m
em

ct
rl_

m
em

_w
rb

ct
rl_

w
rb

_e
x

al
u_

re
su

lt_
m

em

Instruction Fetch
(IF)

Instruction Decode
(ID)

Execute
(EX)

Memory
(MEM)

Write-Back
(WB)

Figure 3.1: Processor Architecture schematic with simplifications. The new units and signals are
represented in orange. A dependency handler unit was included on the ID stage to detect hazards.
The EX stage features a multi-cycle pipelined divider and a multiplier. The Register File was modified
to support two write ports since the EX stage can now write directly to the destination registers. The
MEM stage features a buffer to store instructions that are waiting for their request to be processed.
By using an Address Decoder, it is possible to connect different peripherals such as the data cache
or the UART module, not represented here.

The MEM stage was modified to support memory requests with unknown latency. This requisite

was necessary to support the interconnection of a data cache. By using an address decoder, it

is possible to set the address map and connect the cache and other peripherals using the same

interface.

To avoid stalls on the processor’s pipeline every time an instruction is waiting on the MEM stage

until the memory request is complete, different ways to continue the execution of instructions (without

dependencies) were identified. The first modification consists in the implementation of a new write

port on the RF and forwarding non-memory request instructions directly from the EX stage to the WB.

The second improvement was the creation of an instructions buffer (Figure 3.2) with a configurable

size on the entrance of the MEM stage to allow the issue of new instructions without dependencies,

even when there is one instruction waiting on the MEM stage. If there is an empty space inside the

buffer, the ID stage will continue issuing memory instructions.

31

01...depth-1 depth-2 depth-3Ex
ec
ut
e

M
em

or
y

write_en read_en

data_i data_o

stall_mem

Figure 3.2: Memory stage instructions buffer. Based on the occupation of this queue, the processor
will continue issuing new memory instructions in case of having free space. Whenever the buffer is
full, the pipeline stalls waiting for the acknowledgment of the instruction that is being processed.

3.2 RISC-V support

As referred to in the previous chapter, the MB-Lite processor is an open-source implementation of the

MicroBlaze ISA [31]. To implement the RISC-V ISA, the required changes were mainly focused on

the instruction decoder because it was necessary to change the parsing of each instruction due to

differences in the formats.

The MicroBlaze ISA has only two types of instructions, Type A (used for register-register instruc-

tions) and Type B (used for register-immediate operations), as represented in Figure 3.3. On the

other hand, the RISC-V ISA has six different types of instructions, as shown in Figure 2.1. New en-

tries were added inside the decoder to parse the new types of instructions. Each instruction type is

identified with a specific opcode since instructions of the same type share the same opcode. Then,

after the type has been identified, the specific instruction is discovered using the funct3 and funct7

parameters, and the operands are retrieved.

The ALU also required some modifications due to new operations or changes in the way they

should be executed. The decision to offer support for the Integer Multiplication and Division exten-

sion also required new entries inside the decoder and new operations defined in the Execute control

signals. The list of RISC-V supported instructions is available in Table A.1.

For comparison purposes, the MicroBlaze instructions implemented by the MB-Lite softcore are

present in Table A.2. It is noticeable the reduction of instructions on the RISC-V ISA when compared

to the MicroBlaze. Mainly, the memory requests and branches, since in these operations, RISC-V

uses only one register and the immediate as operands, but MicroBlaze also supports two registers.

Figure 3.3: MicroBlaze instruction types [31].

32

3.3 Memory Structure

In a Harvard architecture, instructions and data are stored in different memories. This model allows

a simultaneous access to data and instructions, but it is not possible to mix the program and data

addressing space, for instance, to load a new program as data before the execution. Consequently,

this processor is designed to be used as a slave, because each program needs to be previously

transferred before its execution.

As an example, when a C program is compiled, the compilation toolchain produces a binary where

the program instructions (also known as text) and the data are stored, originating the memory layout

represented in Figure 3.4. Typically, the data part includes the initialized and uninitialized data, the

heap, and the stack, requiring a bigger address space when compared with the text part.

address

text

initialized data

uninitialized data

heap

stack

command line arg.
env. variables

Figure 3.4: Memory layout resulting from the compilation of a C program.

Modern processors use caches to mitigate the trade-off between available storage and access

speed. In particular, it is common to see implementations with multiple levels of caches, where

the low level is faster but has small capacity, and the up-levels have more capacity and are faster

enough regarding the main memories. Multicore processors also benefit from multi-level caches.

Typically each core features its non-shared L1 cache because it would increase the latency and

the circuit complexity and consequently reduce the performance of each core. In the higher levels,

unified caches are desirable since they allow the sharing of data between multiple cores outside the

main memory and reduce the complexity of cache coherence protocols. The initial goal was the

implementation of two caches, one for instructions and the other for data. Due to time limitations, only

one was implemented and the priority was given to the data cache because, as it was said, the data

part has tendency to be larger than the instructions part. The connections between the core and both

the instruction memory and the data cache are represented in Figure 3.5.

33

Core

Data
Cache

Instruction
Memory

address(31:0)

enable

instruction(31:0)

address(31:0)
enable
sel(3:0)

write_enable
data_in(31:0)

reset
data_out(31:0)
data_valid

Figure 3.5: Connections between the core and both the instruction memory and the data cache.

To store the program and data on the FPGA, it is required a physical memory that can be BRAMs

or other memory types such as Dynamic Random-Access Memories (DRAMs), depending on the

FPGA board support. The BRAMs are small capacity memories inside the FPGA chip, used to store

data. Multiple BRAMs can be aggregated to create bigger memories and other complex structures

such as FIFOs and Dual Port BRAMs with just 1 cycle output latency. However, to store large amounts

of data, this solution cannot be applied due to two main constraints: the number of BRAMs inside an

FPGA chip is limited, and they are spread across the FPGA, which could originate timing violations

with a consequent decrease of the operating frequency when the used BRAMs are too far from each

other. On the other hand, the external DRAM provides more storage capacity, but the latency to

read and store data is higher. The FPGA board that was used to implement and test this processor

supports an external DRAM device, having in total 4 × 16GB DDR4 DIMMs.

Beyond the instructions and data memories, the processor supports peripherals that are part of

the address space. They are accessible via memory instructions, which are handled by the address

decoder and forwarded according to the address map. More details about the implementation of

peripherals are available in Section 3.6. The default address space represented in Table 3.1 features

16KB for instructions, 256B for peripherals, and nearly 4GB for data, allowing a large configuration

space according to the user’s preferences.

Table 3.1: Address Map.

Region Start Address End Address Size

Instructions 0x0000 0000 0x0000 3FFF 16KB

Data (cached) 0x0000 4000 0xFFFF FEFF 4GB

Peripherals 0xFFFF FF00 0xFFFF FFFF 256B

34

3.3.1 Instruction memory

Since the instruction cache was not implemented, the program instructions are stored inside BRAMs.

The memory should have one port to receive and send data across the Peripheral Component Inter-

connect Express (PCIe) interface and a second port connected to the processor to fetch the instruc-

tions. Xilinx offers a BRAM generator [32] through the Vivado’s IP Catalog, which supports several

types of RAMs with configurable sizes. According to the architecture requirements, the True Dual-

Port BRAM is the right option because it provides two read and write ports for different addresses

simultaneously and two independent clocks. This way, it is possible to connect one of the ports to the

receive the data that is sent via PCIe, but due to implementation requirements, this interface must be

compatible with AXI4. So, we need to use the Xilinx’s AXI Block RAM Controller IP [33] to make the

conversion between both interfaces, because BRAMs are not compatible with AXI.

The connections between the AXI Block RAM Controller and the instruction memory, implemented

using a True Dual-Port BRAM, are represented in Figure 3.6, where is also represented the core

connected to the other port. It is represented the two independent clock signals, one from the PCIe

logic and the dedicated core clock.

address(31:0)

enable

instruction(31:0)

address(31:0)
enable

write_enable
data_in(255:0)

data_out(255:0)

AXI Block RAM
Controller IP

Instruction
Memory

Core

AXI

Port B

Port A

core_clk

xdma_clk

Figure 3.6: Connections between the Core, the Instruction Memory (implemented with a True-Dual
Port RAM IP), and the AXI Block RAM Controller IP.

The BRAM Port A has data input and output ports of 256 bits, corresponding to 8 instructions

received simultaneously from the AXI BRAM Controller. On the other hand, Port B data is 32-bit wide

because the processor only needs one instruction each clock cycle. The depth of each port is defined

according to the corresponding line width and total memory size. When the user decides to change

the processor’s instruction memory size, the BRAM depth should be updated in both ports, as well

as the mapping of the AXI BRAM Controller on the AXI bus, to be compliant with the Address Map of

Table 3.1.

35

3.3.2 Data memory and cache implementation

The adopted cache uses an existing implementation as its base structure, requiring several modifica-

tions to support 32-bit words, lines with a larger dimension, a configurable number of lines, and data

invalidation when the processor is reset. The cache can be configured to use two different configura-

tions: direct-mapped or 2-way set associative with the Least Recently Used (LRU) data replacement

policy. Both types use the Write-Back policy, where the date is only written to the main memory

when the cache line needs to be replaced by a new loaded line. This write policy allows reducing

the number of memory accesses when compared to the Write-Through policy, since this last policy

keeps the memory always updated. Figure 3.7 shows the structure of the default cache with 2 ways

of associativity and 16 lines, each with 256 bits, featuring one valid and one dirty bit per line. This

cache has a total capacity of 1KB, corresponding to 256 32-bit words.

31

WAY 0

Valid Dirty TAG

TAG INDEX OFFSET

9

=

Data Line
256 bits

16
lines

WAY 1

Data Out

Hit

0458

Figure 3.7: 2-way set associative cache structure. Each way is comprised of 16 lines with 256 bits
each, the tag, a valid bit, and a dirty bit which indicates if the line was changed and it needs to be
updated on the main memory before it is replaced.

Depending on the program type and the amount of data needed in the beginning and during its

execution, the main data memory could require a storage space higher than the available BRAMs can

provide. The solution goes through the use of DRAMs present on the board to store the processor’s

execution data.

The connection between the design implemented on the FPGA and the DRAM is made through

the Xilinx Memory Interface Generator (MIG) [34]. This IP is responsible for generating memory

controllers and interfaces, simplifying the design process by providing the constraints and Verilog

or VHDL design implementations automatically. The memory controller accepts user transactions

36

through a native interface or AXI4 Slave interface, which are converted and sent to the physical layer

internally. The MIG was configured to include the AXI4 Slave interface instead of the native interface

to transfer data between the PCIe endpoint and the DDR4 memory, since both IPs are compatible

with this protocol. Its AXI base address was mapped according to the processor’s address map.

To connect the cache and the MIG, an AXI4 Master [35, 36] interface for the cache was developed.

This interface is primarily based on the Finite State Machine present in Figure 3.8 that reads the cache

output signals to detect new requests and makes the conversion to the AXI4 protocol. Until the cache

sends a read or write request, the state machine is kept on the IDLE state. When the request is

made, the AXI transaction is initialized by sending the memory address (WRITE ADDR and READ

ADDR states). As soon as the slave sets the valid signal to high, the next state is changed to READ or

WRITE, depending on the initial cache request. The read request finishes when the interface receives

valid data, and the cache input valid signal is set to high. The write request has an additional state

(WRITE RESP) used to receive the slave valid write response signal before the cache receives the

valid signal, which indicates the end of the write transaction.

The introduction of DRAMs as data memory solves the available storage limitation but increases

the latency for every access by dozens of clock cycles. This is a consequence of the DRAM internal

latency and the delays created by the AXI interconnections. The minimum latencies introduced by

both the cache and the main memory are 22 clock cycles in case of a Read Miss or a Write Miss, 3

clock cycles for a Write Hit, and finally, 2 clock cycles when a Read Hit occurs.

WREADY = 1
/ WVALID = 0
WLAST = 0
BREADY = 1

WRITE
AWREADY = 1
/ AWVALID = 0
WVALID = 1
WLAST = 1
BREADY = 1

WRITE
(ADDR)

BVALID = 1
/ BREADY = 1
MEM_DATA_VALID = 1

WRITE
RESP

MEM_REQ = 1
MEM_WE = 0
/ ARVALID = 1

MEM_REQ = 1
MEM_WE = 1
/ AWVALID = 1

MEM_REQ = 0
/ ARVALID = 0
AWVALID = 0
RREADY = 0
BREADY = 0
MEM_DATA_VALID = 0

IDLE

ARREADY = 1
/ ARVALID = 1
RREADY = 1

READ
(ADDR)

RVALID = 1
RLAST = 1
/ MEM_DATA_VALID = 1

READ

RVALID = 0
/ RREADY = 1

ARREAD = 0
/ ARVALID = 1

AWREADY = 0
/ AWVALID = 1

WREADY = 0
/ WVALID = 1
WLAST = 1
BREADY = 1

BVALID = 0
/ BREADY = 1

Figure 3.8: Cache AXI4 master interface Finite State Machine. This state machine is responsible to
control the interface that translates the cache read and write requests to AXI4 and vice-versa.

37

By using the Xilinx IP Integrator, a specific IP was created to make the process of integrating

the cache easier. By making the cache independent of the core, the user has more control over its

implementation and faces fewer difficulties if he decides to add his cache or memory instead of what

was originally available. By observing the IP in Figure 3.9, one can identify the inputs corresponding

to the control signals from the core, and as outputs, the AXI4 master interface to be connected to the

MIG, and the data and valid signals that are connected to the core.

Core Data
Cache AXI

address(31:0)
enable
sel(3:0)

write_enable
data_in(31:0)

reset
data_out(31:0)
data_valid

MIG

Figure 3.9: Connections between the Core, the Data Cache, and the MIG.

3.4 Multi-cycle Functional Units

With the addition of support for the RISC-V Integer Multiplication and Division extension, the core

requires the implementation of a multiplier and a divider. Typically the multiplication and division are

too complex to be executed on a single clock cycle without reducing the frequency. The multi-cycle

functional units solve this problem because they need several clock cycles to generate the result.

By using the Xilinx IPs, a pipelined multiplier unit and a pipelined divider with configurable latency

were developed to be implemented in the Execute stage in parallel with the ALU. The multiplier IP is

configured with a latency of 6 clock cycles, and the divider latency was set to 30 clock cycles. It is

higher due to the complexity of the division algorithms.

3.4.1 Integer Multiplier

The integer multiplier unit developed for this processor includes a multi-cycle pipelined Xilinx IP mul-

tiplier [37]. The IP settings allow the configuration of the type of the operands (signed or unsigned),

its sizes, and the latency required to compute the result. The RISC-V multiplication instructions (see

Table 2.2) use 32-bit operands, signed or unsigned. Since the multiplier unit must support both types

of operands, but the IP, after generated, only support one type, it was decided to define the operands

always as signed. Then, by using an extra bit, the sign can be extended when the operand is signed,

but otherwise it has the value zero. This selection is made by the control signals a sign and b sign,

which are dependent on the operation type. Thus, the multiplier IP inputs are 33-bit wide, and the

output result is 66-bit wide (2×33 bits), but the two most significant bits are discarded. According

to the multiplication instruction, the output value can be the lower or the higher 32 bits of the result.

38

There is a control signal (low high) that chooses the desired part. Figure 3.10 shows the structure of

this unit and Table 3.2 shows the control signals for each supported multiplication instruction.

result_o(31:0)

a_ext(32:0)

b_ext(32:0)

Shift
Register

 ctrl_wrb_i

 ctrl_mem_i

 dat_d_i

 low_high_i

 valid_inst_i

 ctrl_wrb_o

 ctrl_mem_o

 dat_d_o

 low_high_o

 valid_inst_o

Xilinx IP
Multiplier

(12.0)

A

B

P

ctrl_wrb_o

ctrl_mem_o

dat_d_o

valid_inst_o

ctrl_wrb_i

ctrl_mem_i

dat_d_i

low_high_i

valid_inst_i

Sign
Ext.

Sign
Ext.

alu_src_a_i(31:0)

alu_src_b_i(31:0)

a_sign_i

b_sign_i

Low/
High
32-bit

x(65:0)

Figure 3.10: The Multiplier Unit. This unit uses a Xilinx IP to execute the multiplication operations.
There is always a signal extension in the operands because the multiplier is configured to do sign
operations. When the instruction corresponds to an unsigned multiplication, the extension bit is zero.
The output value can be the upper or the lower 32 bits of the result, and the signal low high is used to
select the correct part. Since the multiplier is pipelined, it is necessary to have a shift register to store
the control signals of each operation.

Table 3.2: Control signals for each supported multiplication instruction.

Instruction
Control signals

a sign b sign low high

MUL 0 0 0

MULH 1 1 1

MULHSU 1 0 1

MULHU 0 0 1

Each instruction that arrives in the Execution stage is comprised of different control signals, which

are needed for the following pipeline stages. Since the multiplier is pipelined, it can simultaneously

execute a number of multiplications equal to its latency, so this unit must be capable of storing all

the control signals from each instruction. To do that, the unit uses a shift register with the multiplier’s

latency. To know when the multiplier output is valid, there is a valid signal (named valid inst) that is

set to high when a valid operation arrives, and due to the fixed latency, the valid signal is at the exit of

the shift register when the valid result is in the multiplier’s output.

39

3.4.2 Integer Divider

The development of the integer divider unit, represented in Figure 3.11, followed the same principles

of the multiplier. This time it was used a multi-cycle Xilinx IP divider, with different division imple-

mentations: LutMult, Radix-2, and High Radix. According to the IP’s manual [38], the LutMult solution

limits the dimension of the dividend and the divisor to 17 and 12 bits, respectively; the High Radix only

supports fractional remainders; the Radix-2 allows dividends and divisors up to 64 bits, fractional and

integer remainders and it is recommended for applications which require high throughput. Therefore,

Radix-2 is the only solution compliant with the ISA requirements.

The divider IP always computes the quotient and the remainder, and both are available in its out-

puts. Depending on the instruction, the desired result can be the quotient or the remainder. This

selection is made by the signal div rem, generated in the Decode stage. According to the C99 stan-

dard [39], the quotient is rounded towards zero, while the remainder’s signal is equal to the dividend’s.

The control signals used to select the signs of the operands or the desired result, for each supported

instruction, are described in Table 3.3.

result_o(31:0)

a_ext(32:0)

b_ext(32:0)

Shift
Register

 ctrl_wrb_i

 ctrl_mem_i

 dat_d_i

 div_rem_i

 valid_inst_i

 ctrl_wrb_o

 ctrl_mem_o

 dat_d_o

 div_rem_o

valid_inst_o

Xilinx IP
Divider

(5.1)

 A

 B

 valid

quotient

remainder

ctrl_wrb_o

ctrl_mem_o

dat_d_o

ctrl_wrb_i

ctrl_mem_i

dat_d_i

div_rem_i

Sign
Ext.

Sign
Ext.

alu_src_a_i(31:0)

alu_src_b_i(31:0)

a_sign_i

b_sign_i

Quot./
Rem.

valid_inst_i valid_inst_o

quotient(31:0)

remainder(31:0)

Figure 3.11: The Divider Unit. This unit supports the division of 32-bit integer signed/unsigned
operands, and its output can provide the remainder or the quotient. It uses a multi-cycle pipelined
divider from Xilinx with a latency of 30 cycles, and it is configured to use the Radix-2 division algorithm.
A shift register with the same latency is used to store the control signals during the division operations.

Table 3.3: Control signals for each supported division instruction.

Instruction
Control signals

a sign b sign div rem

DIV 1 1 0

DIVU 0 0 0

REM 1 1 1

REMU 0 0 1

40

3.5 Hazards

The modifications made in the processor’s pipeline, specifically the introduction of a data cache and

the multi-cycle functional units, caused some new hazards that had to be solved. This section studies

the various types of hazards originated by those changes, and it also explains how they were solved.

Data hazards are the first type to be considered, followed by Control hazards, and lastly, the Structural

hazards. At the end of this section, it is presented a scoreboard unit that was developed to detect and

solve hazards during the processor execution.

3.5.1 Data Hazards

Data hazards occur when the dependencies of operands between instructions are not respected, and

eventually, some of them will use wrong operand values. The pipeline architecture can introduce

these hazards when instructions with dependencies between them are too close, and some of them

need operands computed by the previous instructions that are not written yet to the Register File

(Read after Write). The solution for this problem is the introduction of stall cycles, and the usage of

forwarding paths like the original MB-Lite does. There are three types of data hazards, being classified

as follows:

• Read after Write (RAW): It occurs when an instruction requires an operand written by a previous

instruction but it is not available yet on the RF.

• Write after Write (WAW): It occurs when the instructions arrives at the Write-Back stage out-of-

order or allows multiple simultaneously writes.

• Write after Read (WAR): It occurs when an instruction is writing to its destination register before

a previous instruction has read its operands from the same register, receiving an incorrect value.

This type of data hazards does not occur on processors with in-order instructions issue.

The introduction of multiple functional units with different latencies, working in parallel in the Ex-

ecution stage, may result in the instructions leaving that stage out-of-order, causing WAW hazards.

This situation can also originate RAW hazards when an instruction that is entering the EX stage uses

operands that were not written yet because a previous instruction is still inside the EX stage. The

memory load instructions can also originate RAW hazards since the instructions can be several clock

cycles waiting for the requested value. To identify and solve these situations, a dedicated unit was

developed and implemented inside the ID stage, responsible for storing information about each in-

struction that leaves the ID stage and uses the multi-cycle functional units or accesses the memory.

These hazards are detected and solved by the scoreboard unit, that is going to be presented later.

3.5.2 Control Hazards

Control hazards appear as a result of not knowing which instruction should be executed when a

conditional branch or jump instructions enter the pipeline, considering that the processor needs to

41

continue fetching instructions. The original MB-Lite has its branch control unit in the Execution stage,

and it uses a static not taken branch prediction technique. This approach considers that no branch

is taken, and the processor continues to fetch the instructions that follow the branch or jump. If the

prediction was correct, the execution continues, but if it was incorrect, the instructions that meanwhile

entered into the Fetch and Decode stages are cleared, and the correct target instruction is fetched.

PC = 0x0C PC = 0x08 PC = 0x04
(Branch)

- -

Branch
Target

PC = 0x30

NOP NOP

IF ID EX MEM WB

Figure 3.12: Example of an incorrect branch prediction, where the instructions that entered into the
pipeline are removed and the correct program counter is fetched.

3.5.3 Structural Hazards

Structural hazards are caused by hardware limitations, preventing the correct execution of the instruc-

tions. With the modifications implemented on this processor, some structural hazards may appear

inside the EX stage, whenever more than one functional unit finishes the execution on the same cy-

cle. Consequently, this stage can only output one instruction per cycle. The solution to this problem

requires knowing the position of each instruction inside each functional unit and introduce stalls in

specific cycles, instead of issuing the instruction. By using the scoreboard mechanism explained in

the next sub-section, the processor is capable of predicting and solving these hazards based on the

occupancy of each unit and its known latency.

3.5.4 Dependencies Handling

As it was previous referred, the need to have a control mechanism capable of identifying and han-

dling the dependencies between instructions and the usage of multiple functional units arise. The

considered unit was inspired by the Scoreboard concept, introduced in the CDC 6600 computer [40],

in 1963. In that computer, the Scoreboard was responsible for monitoring each instruction dependen-

cies and the available hardware resources in order to solve WAW, RAW, and structural hazards. Due

to the similarities behind the goal of both units, the name “Scoreboard” was also used in this unit.

Inside this unit, represented in Figure 3.13, there are 3 main blocks. The top one is a set of shift

registers responsible for storing the expected latency of each register operand when an instruction

inside a functional unit makes use of that same register as its destination. The verification of de-

pendencies occurs as soon as the instruction enters the ID stage. By decoding its used registers

identification, it is verified if the corresponding position on the shift register is set to ’1’. If so, the

42

scoreboard indicates that a hazard exists on its output and the processor stalls. For memory request

instructions, there is a specific bit that is set to ’1’ when a load instruction is issued. Consequently,

instructions dependent on that register are stalled. As soon as the load is finished, that bit is cleared,

and instructions waiting on the ID stage are ready to be issued if no other hazards exist.

The other 2 blocks of the scoreboard (see Figure 3.13) are responsible for storing the position

of each instruction inside the multiplier and the divider. It is necessary to provide the ID stage with

information about when it should stall, in order to avoid structural hazards, which happen when one

of these units has an instruction in its penultimate stage, and the instruction about to be issued uses

the ALU. Since the ALU execution only takes 1 clock cycle, a collision in the EX output would occur.

Another situation occurs when the instruction present on the ID stage requires the multiplier, but inside

the divider there is an instruction in a position of its meta-pipeline that would finish simultaneously.

The solution goes through the introduction of a 1 cycle stall instead of issuing the instruction.

To demonstrate the operation of this unit, Figure 3.14 depicts a simple program that contains 3

data hazards. In this case, we considered a latency of 6 clock cycles for the multiplier and 30 for

the divider. In the second instruction of this program there is a WAW hazard on register R1 because

the first instruction writes to the same register. But despite being issued first, the mul instruction

stays 6 cycles inside the multiplier. To solve this hazard, the processor stalls until instruction 1 leaves

the EX stage. Figure 3.15 represents the values that are written to the scoreboard during cycle 3,

corresponding to the latency of R1 (6 cycles) and the entrance of the instruction on the multiplier.

In the sixth instruction, it is observed a RAW data hazard, since it uses as operand the register R6,

which is the destination register of the previous division operation. Once again, the processor stalls.

In Figure 3.16, (cycle 12) it is possible to observe the scoreboard content resulting from the execution

of two divisions (instructions 4 and 5) and multiplication (instruction 3). The R1’s shift-register is empty

since the multiplication of instruction 1 has already finished (at cycle 8).

After cycle 41, the load instruction is finally free to continue across the pipeline. As such, the

Memory field of register R10 is set to ’1’ until the hit signal is received (Figure 3.17). Consequently,

instruction 7 should wait to avoid a RAW hazard. Finally, at cycle 50, the dependency is solved, so

the execution continues, and the Memory bit of R10 is set to ’0’, as shown in Figure 3.18.

Figure 3.14: Example of dependencies handling. For each instruction is shown its execution stage
over time. On the first column, the registers involved in data hazards are underlined and written in
red, as well as the cycles when the instruction stalls on the ID stage due to dependency conflicts.

43

R0

Reg. Latency

- - - - - - - - -
L L-1 L-2 L-3 ... 4 3 2 1

addr_a

addr_b

addr_d

Mem.

-
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
...

R31
R30
R29
R28
R27

R24

R26
R25

R23
R22

write_d

latency_d

Divider unit status

Multiplier unit status

Stage
Status

Stage
Status

1234...27282930

123456

hazard

mem_d

write_mem_d

free_d_mem

addr_free_d_mem

write_div

flush_div

write_mul

flush_mul

Figure 3.13: Representation of the scoreboard unit. It is responsible for informing the ID stage when
data and structural hazards occur, by marking the destination registers in use and storing the state of
each multi-cycle functional unit.

44

Reg. Latency
30 29 ... 6 5 4 3 2 1

Mem.

R1 0 00 0 1 0 0 0 0 0

Multiplier unit status
Stage
Status

123456

000001

Figure 3.15: Scoreboard state at clock cycle 3. Register R1 is marked on the scoreboard with the
multiplication latency. The position of this instruction inside the multiplier is also stored.

Reg. Latency
30 29 ... 6 5 4 3 2 1

Mem.

R1 0 00 0 0 0 0 0 0 0

Multiplier unit status
Stage
Status

123456

000100

Divider unit status
Stage
Status

1234...27282930

R2 0 00 0 0 0 1 0 0 0
R5 0 01 0 0 0 0 0 0 0
R6 1 00 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0...

Figure 3.16: Scoreboard state at clock cycle 12. At this moment, the dependency of R1 was already
solved. Instructions 3, 4, and 5 are being processed at the EX stage, so the destination registers were
marked, as well as the corresponding functional units.

45

Reg. Latency
30 29 ... 6 5 4 3 2 1

Mem.

R2 0 00 0 0 0 0 0 0 0

Multiplier unit status
Stage
Status

123456

000000

Divider unit status
Stage
Status

1234...27282930

R5 0 00 0 0 0 0 0 0 0
R6 0 00 0 0 0 0 0 0 0
R10 0 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0...

Figure 3.17: Scoreboard state at clock cycle 42. The divider and the multiplier units are empty, so
none of the registers are marked with latencies. Instruction 6 left the ID stage and because it is a load
request, its destination register, R10, has its memory bit on scoreboard set to ’1’.

Reg. Latency
30 29 ... 6 5 4 3 2 1

Mem.

R10 0 00 0 0 0 0 0 0 0

Figure 3.18: Scoreboard state at clock cycle 50. The memory load request received a hit on the
previous cycle, so the mark on the scoreboard relatively to the register R10 was removed.

3.6 Peripherals

Peripherals are used to expand the processors’ capabilities to interact with its external environment,

according to the application’s requirements. This section presents three memory-mapped peripherals

that were developed for this processor and which are compatible with the MB-Lite address decoder,

as shown in Figure 2.10. The first peripheral is a UART module, to be used as standard input and

output, together with a set of software functions. The remaining peripherals are a cycle counter and

a timer, useful to measure time on programs and evaluate the processor’s performance. It is also

explained how other peripherals can be added and the requirements they should meet.

3.6.1 UART for Standard Input/Output

UART is an asynchronous serial communication peripheral that uses only two independent lines to

transmit (TX) and receive (RX) data. Unlike other protocols, the supported serial communication

protocol does not need any clock signals because both devices should be configured to use the

same transmission rate (or baud rate) and the same data format. The most common baud rates are

1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, and 115200 bps. The UART is used for low

46

distance and slow communications, and almost all the available microcontrollers support it to connect

peripherals, for debugging or for standard input and output communication.

The serial data transmission, represented in Figure 3.19, begins with the start bit, which usually

has the logic value low because the lines are typically high during the idle state. This bit is essential for

the receiver to detect the incoming data and to synchronize its internal clock. The start bit is followed

by the 8 bits of data, sequentially. After the last data bit, there is an optional parity bit used for error

detection. Finally, the transmission ends with at least one stop bit, which has the logic value high, and

the line is kept high until a new transmission starts.

0 1 2 3 4 5 6 7

Data bitsStart bit Stop bit

Data line

Figure 3.19: Representation of a serial transmission.

Since the processor’s operating frequency is usually higher than the transmission rate, when the

processor wants to write a string to the TX line, it cannot be waiting that each byte transmission ends

to write the next byte. The solution for that is the use of a FIFO to store the bytes until they are sent.

To know when the FIFO is full, there is a signal named FIFO TX FULL with that indication mapped

in memory, which can be read by the processor to stop the next transmission and wait. In the same

way, there is a signal to indicate when the FIFO is empty so that the UART TX module knows when

there is nothing to transmit (FIFO TX EMPTY). On the reception side, when the processor is waiting

for a string, it should wait for each byte so it can only read the RX line when the reception FIFO

has content, and this is done by reading the address correspondent to the FIFO RX EMPTY signal.

The architecture of the considered UART module is present in Figure 3.20. The Address Decoder is

responsible for controlling which FIFO signal is going to be read or written, according to the memory

map present in Table 3.4. The TX and RX modules, available on [41], are responsible for transmitting

and receiving the bits from the FPGA’s lines, and the TX Controller initiates the transmission when

the TX FIFO has content, by setting the TX VALID signal to high, following the finite state machine

present in Figure 3.21.

47

TX
FIFO

RX
FIFO

UART Address
Decoder

fifo_tx_emptyfifo_tx_full

fifo_rx_empty

TX

RX

TX
Module

RX_BYTE(7:0)
RX

Module

dat_i(31:0)

adr_i(31:0)

we_i

TX
Ctrl.

dat_i(7:0)

wr_en

rd_en

dat_o(7:0)dat_o(31:0)

wr_en

rd_en

TX_BYTE(7:0)

TX_VALID

TX_DONE

Figure 3.20: UART module. The FPGA’s TX and RX signals are connected to this module which is
comprised of the UART Address Decoder, the TX and RX FIFOs, the TX Controller, and the TX and
RX modules.

FIFO_TX_EMPTY = 1
/ FIFO_TX_RD_EN = 0

IDLE

READ
TX FIFO

START
TX
1

START
TX
2

TX
DONE

FIFO_TX_EMPTY = 0
/ FIFO_TX_RD_EN = 1

/ FIFO_TX_RD_EN = 0/ TX_VALID = 1/ TX_VALID = 0

TX_DONE = 0

TX_DONE = 1

Figure 3.21: TX Controller Finite State Machine. The control waits for some content stored in the
TX FIFO by checking the signal FIFO TX EMPTY in the IDLE state. When the FIFO is not empty,
the controller sets the FIFO TX RD EN to high to get the next byte to be sent. Then, the TX VALID
signal is enabled and the transmission of each bit starts in the TX module. The controller is kept in
the TX DONE stage until the TX DONE signal is set to high.

To simplify the use of the UART module for standard input and output operations through the serial

line, it is available a library with some implementation of the standard C stdio library adapted for this

processor, in particular the following functions: putchar(), printf(), puts(), getchar(), and gets(). Those

functions make use of the UART Module Memory Map (Table 3.4). A detailed explanation about those

functions is available in Chapter 4.

48

Table 3.4: UART Module Address Map. These are the addresses where the input and output data
signals are mapped as well as the FIFO’s status signals. The processor can read the status of each
FIFO to know if there is something to read from the RX FIFO or if the TX FIFO has free space.

Name Address Type Description

RX Empty 0xFFFF FFF0 Read
Indicates the status of the RX FIFO.

It holds the value ’1’ if it is empty or ’0’ if not.

TX Full 0xFFFF FFF4 Read
Indicates the status of the TX FIFO.

It holds the value ’1’ if it is full or ’0’ if not.

RX Data 0xFFFF FFF8 Read Address where the received bytes can be read.

TX Data 0xFFFF FFFC Write Address where the output bytes should be written.

3.6.2 Cycle Counter

Counters are used in processors to count events or the number of clock cycles, and they are very

usefully for basic performance analysis allowing the comparison of benchmarks across different pro-

cessors with different operating frequencies. The RISC-V manual reserves in the Control and Status

Registers Extension some unprivileged read-only CSR registers for performance counters and timers.

Since this implementation does not offer support for the Zicsr extension, the counter is implemented

as a memory-mapped peripheral, being accessed with memory requests instructions instead of using

the CSR instructions included in the Zicsr extension.

To tackle this need, it was developed a 64-bit cycle counter compatible with the same memory

interface as the other peripherals. The counter features a 64-bit accumulator that is always counting

when the processor is enabled, and it is reset when the processor is also reset. The choice of a 64-bit

counter (instead of a 32-bit) is to reduce the chance of a overflow while the count is being considered.

According to Table 3.5, the user accesses to the 64 bits (separately) using two 32-bit reads. The

selection of the output part is easily made internally using the input address, as represented in Figure

3.22.

To obtain the 64-bit result, first, the user should read the upper 32 bits; then, the lower 32 bits;

finally, the upper 32 bits again to compare with the first value to detect if any overflow occurred. If

both values are different, the process should be repeated. By following this process, it is possible to

get the 64-bit result using 32-bit instructions. In Chapter 4, it is presented a list of functions that can

be used in C programs to access the cycle counter.

49

64-bit
Accumulator

Low/
High
32-bit

ena_i

rst_i

adr_i(31:0)

counter(63:0) dat_o(31:0)

Figure 3.22: The cycle counter block diagram. This 64-bit counter uses an accumulator and it is
compatible with the processor’s memory interface. The selection of the required result part is made
by the input address.

Table 3.5: Cycle Counter Address Map. The 64-bit value should be obtained by reading the upper
and the lower 32 bits individually.

Name Address Type Description

counter[31:0] 0xFFFF FF00 Read Location of the counter’s lower 32 bits.

counter[63:32] 0xFFFF FF04 Read Location of the counter’s higher 32 bits.

3.6.3 Timer

Timers are used to measure how much time a specific task needs to be executed, being a valuable

tool to evaluate the processor’s performance. Its hardware is the same used in the cycle counter, but

it requires a dedicated clock with a well-known frequency instead of the clock used in the processor.

Despite being set by the user before the synthesis and implementation, the processor’s clock can

suffer minor changes during the synthesis process, which will compromise the precision of the results,

since the time results are calculated using the relation between the number of clocks counted by the

accumulator and the frequency.

The timer range and resolution depend on the clock frequency. Increasing the frequency results

in a higher resolution, but on the other hand, a higher frequency limits the total time that can be

measured. The accumulator width is also an important parameter to calculate the range. As an

example, using a 64-bit accumulator and a frequency of 500MHz, the range value is more than 1100

years.

Focusing specifically on the FPGA used for the current implementation, there are four 300 MHz

clock sources available, all of them implemented with differential pairs. The user must select one of

the free clocks and, using a clock generator, connect it to the timer clock input. The output frequency

can be defined according to his preferences.

50

The process that is used to access the timer is the same that was explained for the counter cycle.

To get a time value, two reads at different addresses are needed, according to the address map of

Table 3.6. On Chapter 4, the implemented functions to help the user to access the timer and to obtain

an absolute time value are presented.

Table 3.6: Timer Address Map. The 64-bit value should be obtained by reading the upper and the
lower 32 bits individually.

Name Address Type Description

timer[31:0] 0xFFFF FF80 Read Location of the timer’s lower 32 bits.

timer[63:32] 0xFFFF FF84 Read Location of the timer’s higher 32 bits.

3.6.4 Support for more memory-mapped peripherals

In the development of this processor, it was considered the addition of other memory-mapped periph-

erals. The peripheral should follow the VHDL interface despicted in Listing 3.1, to be compatible with

the MB-Lite Address Decoder. Beyond that, it must follow a set of conditions, as follows:

• When the peripheral has valid data in its output (dat o), the signal ena o should be set to high

to inform the processor that valid data is available to be read on the MEM stage.

• The input and output signals must be sensitive to the processor’s clock (clk i).

• The clk i, adr i and ena i signals are mandatory. The signals wr i, dat o and ena o are manda-

tory only if the peripheral supports the read mode. The rst i signal is optional.

• Extra input and output ports can be added according to the peripheral needs.

The number of peripherals and the base address of each one is defined through the constants

CFG NUM SLAVES and CFG MEMORY MAP present on the configuration file “cfg Pkg.vhd”, as

shown in the example present in Listing 3.2.

Listing 3.1: VHDL compatible peripheral interface.

entity peripheral is

port (

dat_o : out std_logic_vector(31 downto 0);

ena_o : out std_logic;

dat_i : in std_logic_vector(31 downto 0);

adr_i : in std_logic_vector(31 downto 0);

we_i : in std_logic;

clk_i : in std_logic;

rst_i : in std_logic;

ena_i : in std_logic

);

end peripheral;

51

Listing 3.2: VHDL peripherals address space definition.

constant CFG_NUM_SLAVES : positive := 3;

constant CFG_MEMORY_MAP : memory_map_type(0 to CFG_NUM_SLAVES+1) := (

X"00000000", --Initial address

X"FFFFFF00", --Cycle counter base address

X"FFFFFF80", --Timer base address

X"FFFFFFF0", --UART base address

X"FFFFFFFF" --Final address

);

3.7 Data Transfer (PCI Express)

The PCIe interface is a high-speed serial data transfer standard bus created by Dell, HP, IBM, and Intel

in 2003, featuring a shared address space, with data and control lines communication in packets. This

interface is currently the standard to connect peripherals on motherboards, such as graphic cards,

network cards, accelerators, and hard drives, due to its high-bandwidth.

The PCIe link of a device can have different widths, also called lanes. A lane corresponds to two

differential pairs, one to receive and the other to transmit, providing a full-duplex communication be-

tween the host and the peripheral. The link width can be x1, x4, x8, or x16 lanes, requiring connectors

of different form factors. Over the years, newer PCIe generations were released with the purpose of

increasing the bandwidth, but at the same time, providing backward compatibility. In Table 3.7 it is

presented a list with the raw bit rate and bandwidth of each PCIe generation.

Table 3.7: Raw bit rate and bandwidth values for different generations of the PCIe standard.

PCIe generation Raw bit rate/lane/way
Bandwidth [GB/s] (unidirectional)

x1 lane x4 lanes x8 lanes x16 lanes

1.0 2.5 GT/s 0.25 1.0 2.0 4.0

2.0 5 GT/s 0.50 2.0 4.0 8.0

3.0 8 GT/s 0.95 3.94 7.88 15.75

4.0 16 GT/s 1.97 7.88 15.75 31.51

The PCIe devices are mapped into the host address space. When the host starts up, the BIOS or

the operating system identifies all the devices connected to the bus and program their Base Address

Registers (BARs) with the assigned base address, which is valid until the system is on. Each non-

bridge PCIe device can implement up to 6 different BARs, where each BAR represents a different

region, having a different base address.

Xilinx provides an IP [42] that allows the connection between the user logic and the PCIe bus

through the FPGA PCIe interface. The DMA/Bridge Subsystem for PCI Express, also referred as

XDMA, can be configured as a DMA data mover or as Bridge between PCIe and AXI memory. The

52

DMA data mover is ideal for moving blocks of data, and it can act as an AXI memory mapped interface

or as an AXI streaming interface to allow direct connection to RTL logic. The PCIe bridge is used to

convert PCIe packets into AXI traffic and vice versa without offering support for data streaming or a

DMA. In this design, the DMA data mover configuration was used, acting as an AXI memory-mapped

interface, since the main goal is the data transference between the host and the FPGA to specific

addresses.

The XDMA diagram, represented in Figure 3.23, shows the different alternatives to access the user

logic from the PCIe bus. The AXI DMA can be configured to have up to 4 upstream and downstream

channels, which are useful for multi-thread parallel data transmission. Beyond that, the host can

bypass the DMA and access the user logic directly through an AXI4 memory-mapped interface with

32-bit data requests. There is also another interface which allows the host to access the configuration

and status registers in the user logic through an AXI4-Lite interface. On the host side, each interface

has its BAR and a dedicated base address.

Figure 3.23: DMA Subsystem for PCIe diagram. The AXI4 DMA interface between the host and the
FPGA with multiple channels is represented on top of the diagram. On the bottom, the diagram shows
the interfaces used for the PCIe traffic to bypass the DMA and access the user logic directly using an
AXI4-Lite interface or an AXI4 Master interface.

When configuring the XDMA IP on Vivado, the user must select the functional mode as “DMA” and

the AXI interface as “Memory Mapped”. The configuration tool allows the selection of different PCIe

link speeds and the number of lanes, according to the support offered by the host and the FPGA. The

53

AXI Data Width available options are affected by the PCIe interface bandwidth.

During this work, the selected link speed value and the number of lanes correspond to the maxi-

mum available, 16 lanes, and 8.0 GT/s (PCIe 3rd Gen.), which represents a bandwidth of 15.75 GB/s

in each direction. Hence, by using these PCIe settings, it was possible to use an AXI Data Width of

512 bits. Figure 3.24 exemplifies the configuration that was done.

Figure 3.24: DMA/Bridge Subsystem for PCI Express IP configuration on Vivado Block Automation.
This IP was configured to use 16 lanes and a maximum link speed of 8 GT/s, which is equivalent to
the PCIe 3rd Generation. The AXI bus supports 512-bit words, running at a frequency of 250 MHz.
The DMA is configured as an AXI Memory Mapped device.

The data flow between the host and the processor is shown in Figure 3.25. The binary is trans-

ferred from the host memory to the XDMA on the FPGA via PCIe. Depending on the destination

address, the data that is being received is sent to the DRAM (via MIG IP) or the BRAM (via AXI to

BRAM IP) using the AXI4 protocol. The core uses simple interfaces (write, enable, address, data in,

data out) to access data on the instruction memory or the data cache. The data cache communicates

with the MIG via AXI4 when it needs to access the DRAM to read or store data.

Host XDMA MIG Cache

Core
Data

memory
(DRAM)

Instruction
memory
(BRAM)

AXI
to

BRAM

PCIe AXI AXI

AXI

Figure 3.25: Data flow between the host and the processor’s memories.

54

3.8 Adaptation for other FPGA vendors

Currently, the FPGA market is dominated by Xilinx. Each vendor offers different IPs, some of them

closed-source, and different tools for design implementation, creating ecosystems compatible just with

their products. Even inside their ecosystem, there are different versions of the same IP, depending on

the FPGA family, requiring changes in the designs when implemented on different models.

Once the development of this processor settled on the Xilinx environment, some of the IPs used

in the design implementation were generated using the Xilinx configuration tools. Consequently, if the

user chooses to implement this core on a different FPGA, he should follow the FPGA documentation

to find similar alternatives for the incompatible IPs. If the IP interfaces are too different, a wrapper

may be needed.

During the development of the processor, the problem of incompatibilities was always present. The

use of vendor IPs was avoided whenever it was feasible. In some instances, due to the complexity

issues and optimizations, it was mandatory to use vendor IPs, instead of developing custom solutions

from scratch to increase the compatibility between different platforms. The Xilinx blocks used in the

implementation are:

• PCIe XDMA;

• DRAM MIG;

• Multiplier;

• Divider;

• FIFOs;

• AXI to BRAM controller;

• BRAM generator.

The two major Xilinx blocks that were used are the PCIe XDMA and the DRAM MIG, both compat-

ible with the AXI protocol. If the alternative IPs available for the FPGA where the processor is going

to be implemented are compatible with this protocol, the necessary changes are likely to be minimal,

since the existing interfaces on the core would be compatible, especially the cache AXI interface and

instructions memory interface. In case of the alternative IPs not offering support for the AXI protocol,

these interfaces on the core must be adapted.

Beyond these, the multiplier, the divider, and some of the FIFOs also require attention. The adapta-

tion process of these IPs is more straightforward in comparison with the XDMA and the MIG because

the number of connections is smaller and standardized.

55

3.9 Summary

Throughout this chapter, the development of the RISC-V softcore based on the MB-Lite processor

was presented. The first section includes an overview of the proposed architecture that highlights the

significant changes that were introduced to the original architecture. The second section analyzes

the memory structure, where it is shown the instruction and data memories, as well as the proces-

sor’s address map. Next, it is given special attention to the new multi-cycle functional units and the

mitigation of hazards that appear as a result of these changes in the pipeline. To expand the proces-

sor’s resources and functionalities, several peripherals were developed, sharing the same interface,

which increases the flexibility and adaptability in different scenarios. Then, it is explained how the

programs are transferred to the processor’s memory using the FPGA board PCIe interface. Some of

the changes required propriety IPs compatible only with Xilinx. As a consequence, a reflection about

the adaptation to other vendors was presented at the end of the chapter.

56

4
Software Tools

Contents

4.1 Development Workflow . 58

4.1.1 Software Requirements . 58

4.1.2 Support Files . 59

4.2 Developed Libraries . 61

4.3 Summary . 65

57

To complement the proposed architecture, a set of software tools is required to allow the develop-

ment of programs and the interaction between the core (on the FPGA) and the host machine (personal

computer). This chapter focuses on explaining which tools should be installed on the machine to allow

the software development and the access to the PCIe bus, to transfer the binary and the data. Beyond

that, several other tools were developed, including a Board Support Package, a makefile, libraries to

interact with the processor’s peripherals, and scripts to transfer the binaries and read or clear the

processor’s memories, according to the user intention.

4.1 Development Workflow

The development workflow includes the software installed on the host machine to compile programs

(RISC-V GCC compiler), the required drivers to enable the connection between the host and the

XDMA through the PCIe bus, the support files created to allow the software development (Makefile

and Board Support Package) and scripts to transfer data between the host and the core.

4.1.1 Software Requirements

GCC Compiler:

RISC-V offers an official GNU toolchain with support for the GCC compiler, GDB, newlib, and glibc [1].

Due to some bugs on the official tools, it was decided to use as an alternative the xPack GNU RISC-V

Embedded GCC [3], which is a pre-compiled modified version specially adapted to produce bare-

metal applications and can be easily installed on different operating systems. According to the xPack

GNU RISC-V Embedded GCC release notes [3], it is fully compatible with the official specifications.

Since RISC-V is a set of base ISAs and extensions, the compiler must know which modules are

being used on the implementation. To provide the supported set of instructions, the user must include

the GCC options -march and -mabi when the compiler is called. For the particular case of the

developed processor, with support for the 32-bit base integer ISA and the Integer Multiplication and

Division extension, the first option is -march=rv32im. The second option, -mabi, is used to define

the integer ABI in use, -mabi=ilp32, supporting 32-bit “int”, “long”, and pointers, as well as 64-bit type

“long long”, 8-bit “char”, and 16-bit “short”. Some commands used for compilation are available in

Listing 4.1.

58

Listing 4.1: GCC compiler commands examples.

/../bin/riscv-none-embed-gcc -march=rv32im -mabi=ilp32 -std=gnu11 -Wall -Iinclude

-fno-common -c -o bsp/entry.o bsp/entry.S

/../bin/riscv-none-embed-gcc -march=rv32im -mabi=ilp32 -std=gnu11 -Wall -Iinclude

-fno-common -c -o bsp/exit.o bsp/exit.c

/../bin/riscv-none-embed-gcc -march=rv32im -mabi=ilp32 -std=gnu11 -Wall -Iinclude

-fno-common bsp/entry.o bsp/exit.o -o elf/printf_test.elf src/printf.c src/main.c

-T bsp/ls.lds -nostartfiles -static -L/../lib/gcc/riscv-none-embed/8.2.0/ -lgcc

XDMA PCIe drivers:

To allow the detection and data transfers between the host and the XDMA on the FPGA, using the

PCIe bus, Xilinx provides specific Windows and Linux drivers [43]. Along with the drivers, Xilinx also

offers test scripts to validate the correct operation of the implemented design. Some of the test scripts

were modified to allow the transference of any binary file with any arbitrary size to execute or store on

the core, with the possibility to set the desired memory address. The user can also use the scripts to

clear or dump the memory data using specific flags when executing the script. Listing 4.2 shows how

data can be sent and received using the scripts to access the PCIe interface.

Listing 4.2: Examples of commands to write and read data from the processor’s memories using the
PCIe interface.

//command to transfer the printf_test.bin file to the base address 0x00000000

./write_pcie.sh pritff_test.bin 0

//command to read 1024 bytes from the address 0x00004000 (16384)

./read_pcie.sh 1024 16384

4.1.2 Support Files

Board Support Package:

The Board Support Package (BSP) is a set of software parts responsible for executing hardware-

specific routines. This processor requires an entry (entry.S) and an exit file (exit.c), provided in Ap-

pendix B. The entry file (Listing B.2) is responsible for doing the initial setup before and after the

program execution, such as global and stack pointers initialization, bss section cleaning, main func-

tion execution, and call the exit. The exit function (Listing B.3) is responsible for finishing the processor

execution with a jump instruction that ends in a loop and is identified in the ID stage.

Beyond these two files, the BSP also includes a Linker Script. A Linker Script file is used to inform

the linker (after the program compilation) of how the memory structure (Figure 4.1) is organized. It

reflects precisely the processor’s memory map. When the memory map is changed, the Linker Script

59

should be updated with the new memory base addresses and sizes. An example of a Linker Script

configuration is available in Listing B.1.

0x0000 0000

0x0000 4000
0x0000 3FFF

Instructions

0x0000 7FFF

Data

16KB

12KB

4KB
(stack)

Figure 4.1: Memory structure configured on the Linker Script.

Makefile:

The developed makefile, available in Appendix C, includes a set of directives that allow the compila-

tion and build process automation. The binary file generation is the result of the compilation process

described in Figure 4.2. First, the BSP files are compiled and assembled, producing two different ob-

jects. Then, the ELF file is created as a result of the source files and BSP compilation and linked with

the Linker Script. The RISC-V toolchain path must be provided by setting an environment variable.

The binary output file is created using the RISC-V objcopy, available in the toolchain. It was also

included the possibility to generate a unique binary with the entire memory content or two separated

binaries, one with the instructions part and the other with the data.

BSP files (entry.S and
exit.c)

Compile and assemble

entry.o and exit.o

Linker ScriptSources *.c

.elf

Compile and linking

.bin

objcopy

Figure 4.2: Binary generation workflow.

60

4.2 Developed Libraries

Standard Input and Output:

The set of developed functions that are herein presented have the purpose of making the devel-

opment process easier when the access to the standard input and output is required. They act as a

software layer between the user code and the hardware implementation of the UART module.

Listing 4.3 shows some of the developed functions to print data through the serial interface. The

user calls the printf() function as if he was using the standard printf() from the stdio.h library. The

printf() function (and others not represented here) are responsible for creating the output string and

sending each char to the putchar() function. The putchar() function calls the uart putchar() function

that is responsible for writing the char to the UART TX FIFO memory address, always verifying if the

TX FIFO is full or not.

Listing 4.3: Developed Standard Output most relevant functions.

#define UART_TX_FULL (*((volatile unsigned int*)(0xFFFFFFF4)))

#define UART_TX_DATA (*((volatile unsigned int*)(0xFFFFFFFC)))

...

//sends each char to the UART TX line

int uart_putchar(char ch){

//new line detection

if(ch == '\n'){

uart_putchar('\r');

}

//checks the UART TX FIFO status

while(UART_TX_FULL == 1);

//writes the char to the TX line

UART_TX_DATA = ch;

return 0;

}

//prints just one char

char putchar(char c){

uart_putchar(c);

return c;

}

//printf function

int printf(const char* format, ...){

...

}

...

61

To read data from the UART RX line, the user should call the gets() function available in Listing

4.4, passing as argument a pointer to a string and its maximum size. Then, each char stored in the

RX FIFO is read (provided that the RX FIFO is not empty). The read process ends when the user

writes a new line. All the content written to the UART RX is replicated in the terminal by simply writing

it back to the TX line.

Listing 4.4: Developed Standard Input functions.

#define UART_RX_EMPTY (*((volatile unsigned int*)(0xFFFFFFF0)))

#define UART_RX_DATA (*((volatile unsigned int*)(0xFFFFFFF8)))

//reads one char each time

int getchar(){

//wait until data is written to the UART RX FIFO

while(UART_RX_EMPTY == 1);

return UART_RX_DATA;

}

//reads a string with the maximum size defined by s

void gets(char *p, int s){

int c = 0;

//read next char

while(--s){

c = getchar();

//detect new line

if(c == '\n' || c == '\r'){

break;

}

//writes the char to the TX to get feedback

putchar((*p++ = c));

}

//writes a new line

putchar('\n');

*p = 0;

}

Cycle Counter and Timer:

Both the Cycle Counter and the Timer hardware implementation are similar, so the corresponding

functions to access both peripherals only differ on the memory addresses that are accessed. Listing

4.5 shows the developed functions getcounter() and printcounter(), used to obtain the current 64-bit

counter value and print it to the terminal, respectively. The code detects if the counter overflows

between the reading of both parts, and if this happens, it will try again. Listing 4.6 shows similar

functions used for the timer (gettimer() and printtimer()).

62

Listing 4.5: Developed Cycle Counter functions.

#define CYCLE_COUNTER_LOW (*((volatile unsigned int*)(0xFFFFFF00)))

#define CYCLE_COUNTER_HIGH (*((volatile unsigned int*)(0xFFFFFF04)))

//gets the current cycle counter value

void getcounter(unsigned int result[2]){

unsigned int result0, result1, result2 = 0;

int *cnt_l = (int*) CYCLE_COUNTER_LOW;

int *cnt_h = (int*) CYCLE_COUNTER_HIGH;

do{

result0 = *cnt_h;

result1 = *cnt_l;

result2 = *cnt_h;

}while(result0 != result2);

result[0] = result1;

result[1] = result2;

}

//prints the number of clock cycles passed between cycles c1 and c2 in hex.

void printcounter(unsigned int c1[2], unsigned int c2[2]){

unsigned int r[2];

r[0] = c2[0] - c1[0];

r[1] = c2[1] - c1[1];

if((unsigned int)(c2[0]) < (unsigned int)(c1[0])){

r[1]--;

}

printf("\n\n0x%8X %8X cycles\n\n", r[1], r[0]);

}

Listing 4.6: Developed Timer functions.

#define TIMER_LOW (*((volatile unsigned int*)(0xFFFFFF80)))

#define TIMER_HIGH (*((volatile unsigned int*)(0xFFFFFF84)))

//gets the current timer value

void gettimer(unsigned int result[2]){

unsigned int result0, result1, result2 = 0;

int *timer_l = (int*) TIMER_LOW;

int *timer_h = (int*) TIMER_HIGH;

do{

result0 = *timer_h;

result1 = *timer_l;

result2 = *timer_h;

}while(result0 != result2);

result[0] = result1;

result[1] = result2;

}

63

//prints the number of timer clock cycles passed between the instants t1 and t2 in hex.

void printtimer(unsigned int t1[2], unsigned int t2[2]){

unsigned int r[2];

r[0] = t2[0] - t1[0];

r[1] = t2[1] - t1[1];

if((unsigned int)(t2[0]) < (unsigned int)(t1[0])){

r[1]--;

}

printf("\n\n0x%8X %8X timer clock cycles\n\n", r[1], r[0]);

}

Use cases:

To demonstrate how those functions can be used inside the programs, several pieces of code will

be presented. The first example (Listing 4.7) shows how the user can get the number of cycles an

algorithm takes to be executed. The second example (Listing 4.8) is similar, but this time is for the

timer functions. The last example (Listing 4.9) calculates and prints the quotient and the remainder

by dividing two integers written by the user on the terminal.

Listing 4.7: Example 1: Counter functions.

int main(){

unsigned int c1[2], c2[2];

int disks = 20;

getcounter(c1);

hanoi(disks, 'A', 'C', 'B');

getcounter(c2);

printcounter(c1, c2);

return 0;

}

Listing 4.8: Example 2: Timer functions.

int main(){

unsigned int t1[2], t2[2];

int a = 0;

int n = 40;

gettimer(t1);

a = fib(n);

gettimer(t2);

printf("F(%d) = %d\n\n", n, a);

printtimer(v1, v2);

return 0;

}

64

Listing 4.9: Example 3: Standard I/O functions.

int main(){

char a[10];

int n = 0;

int dividend = 0;

int divisor = 1;

int result = 0;

int remainder = 0;

while(divisor != 0){

printf("Dividend:\n");

gets(a, 100);

dividend = atoi(a);

printf("Divisor:\n");

gets(a, 100);

divisor = atoi(a);

result = dividend / divisor;

remainder = dividend % divisor;

printf("Quotient = %d\n", result);

printf("Remainder = %d\n\n", remainder);

}

return 0;

}

4.3 Summary

This chapter presented the developed software tools that can be used as a complement to the hard-

ware. It starts with the presentation of the required software toolchain (the RISC-V GCC Compiler

and the Xilinx XDMA PCIe driver), and the support files that are essential for the compilation pro-

cess: the Board Support Package files and the Makefile. The second and last section presents and

explains the developed functions necessary to interact with the processor’s peripherals, with some

usage examples.

65

66

5
Implementation and Experimental

Results

Contents

5.1 Prototyping framework . 68

5.1.1 Area and timing constraints analysis . 70

5.1.2 Power analysis . 71

5.2 Benchmarks results . 72

5.3 Discussion . 75

5.4 Summary . 75

67

To test and evaluate the developed processor, different system configurations were implemented

and prototyped in an FPGA, to be compared and evaluated in terms of resources, operating frequency,

and power requirements.

Moreover, some software tests were executed to verify the correct system operation and to obtain

quantitative evaluation from the execution of algorithms that can be used as benchmarks for com-

paring its performance with other softcores. Those tests were compiled using the RISC-V compiler.

In Appendix D, part of the disassembled code of a test program is shown for both RISC-V and Mi-

croBlaze ISAs. It is visible that both assembly codes are not too different, justifying the approach of

modifying the ID stage decoder.

Based on the obtained results and taking into account all the implemented features, a discussion

is presented, at the end of the chapter, to compare the proposed solution with the other RISC-V cores

presented in Chapter 2.

5.1 Prototyping framework

The developed processor was implemented on a Xilinx Virtex Ultrascale+ VCU1525 device [44], fea-

turing an XCVU9P FPGA. This board is mainly targeted for computationally intensive applications due

to the amount of resources offered by its FPGA and the available communication interfaces. Look-

ing for its technical features, stand out the Gen3 x16 / Gen4 x8 PCIe interface, offering high transfer

rates, four DDR4 DIMM slots, each one with 16GB memories, and finally, a UART interface via USB.

Regarding the FPGA resources, the number of available LUTs, FFs, BRAMs, LUT Random-Access

Memories (LUTRAMs), and Digital Signal Processing (DSP) units are listed in Table 5.1 [45].

Table 5.1: XCVU9P FPGA resources.

LUT 1182240

FF 2364480

BRAM 2160

LUTRAM 591840

DSP 6840

During the development phase, several versions of the softcore were implemented on the FPGA,

as new features were added. This process started with the PCIe XDMA implementation, followed

by modifications on the architecture to add multi-cycle functional units support, hazards handling,

peripherals, and cache support. The last step was the connection to the MIG, to start using the

DRAM as data memory. The complete solution was implemented according to what was initially

purposed and idealized. The simplified system diagram, presented in Figure 5.1, illustrates the major

components and the connections between them.

The XDMA IP is responsible for connecting the host processor and the core’s memory system,

by converting the PCIe data packets received from the host into AXI requests. Inside the FPGA, the

68

data is transferred, according to the address map, via AXI to the data memory (and placed in the

external DDR4 memory through the MIG IP) or to the instruction memory, implemented with BRAMs.

The data cache, the UART module, and other peripherals are connected to the core data bus through

the address decoder. Hence, this address decoder is responsible for forwarding the memory requests

according to the memory address. Finally, the user has access to the core’s standard input and output

by using the implemented UART, in particular, by connecting the host to the board’s USB port, since

it provides UART over USB conversion.

Host
Processor

DMA
Subsystem

for PCIe
RISC-V
Core

Instruction
Memory

Address
Decoder

DDR4
Memory
Interface

Generator
(MIG)

DDR4
MemoryPCIe

FPGA Board

Data
Cache

UART over USB

AXI

AXI

A
XI

UART

Figure 5.1: Simplified diagram of the proposed system. This diagram is an overview of the connec-
tions between the main blocks inside the FPGA and the host processor.

To make the implementation process more manageable, the core and the data cache were pack-

aged into custom IPs. The complete version was implemented with the help of Vivado IP Integrator

design automation tool, which is responsible for the auto-configuration of some of the IPs (such as, the

XDMA, and the MIG) and establishing connections between them. Those tools also add extra logic

when the IPs cannot be directly connected; for instance, when they are driven by different clocks, the

AXIs interfaces have different configurations, or when it is necessary to connect multiple AXI blocks

to the same bus.

The Block Design created for the full implementation is available in Appendix E. There, we can

find all the processor required IPs (Core, Cache, MIG, and XDMA) and the additional ones (Clock

generators, System Reset, Inverters, and AXI SmartConnect).

The following variants in the developed softcore were implemented:

• Core: this is the simplest implementation, that only includes the core with the modifications in

the architecture. Different versions with and without the multiplier and the divider were also

implemented to evaluate the resources used by these units.

• Core + XDMA: base version including the XDMA IP.

• Core + XDMA + Cache: base version including the XDMA IP and the data cache.

69

• Core + XDMA + Cache + DRAM: this version is the complete system, featuring the connection

to the DRAM using the MIG IP, as shown in Appendix E.

5.1.1 Area and timing constraints analysis

By using the Xilinx Vivado 2019.1 tool, the proposed architecture was submitted to the implementation

process to understand how the modifications impacted the resources usage and operating frequency.

The small version of the implemented RISC-V core is a minimal implementation with all the changes

in the pipeline, and optionally, the divider and the multiplier. However, the extra IPs, such as the

XDMA, the MIG, the data cache, and the peripherals, were removed. Looking at Table 5.2, we can

observe that the minimal implementation, as expected, uses less resources than the others and it

supports a maximum operating frequency of 250MHz. The multiplier has low logic usage since it is

implemented with DSPs. However, the divider increases the area with significant impact in the FFs

and LUTs usage because the Radix-2 algorithm exploits the FPGA logic, in opposition to the High

Radix algorithm that uses DSPs.

With the addition of the XDMA, the used resources increased significantly. The XDMA is a complex

IP that requires a large FPGA area, especially in terms of LUTs and Flip-flops. The frequency was

reduced from 250MHz to 200MHz. An explanation for that can be the fact that the logic placement is

near the PCIe pins on the FPGA, but the four clock pins are relatively far (as shown in Figure 5.2),

which increases the critical path and forces higher clock periods. This implementation also includes

a data memory implemented with BRAMs, which explains the use of 75 BRAMs when compared to

the base core.

(a) Implementation using the clock 1. (b) Implementation using the clock 2.

Figure 5.2: Vivado post-implementation device view showing the critical path with 200MHz clocks.

70

When the pre-developed cache integrated into a custom IP was added to the processor, the clock

frequency was reduced to 100 MHz. The main reason for this reduction is the fact that the considered

cache implementation is not optimized, leading to an increase in the critical path. According to infor-

mation reported by Vivado, the critical path starts on the logic responsible for selecting the processor

output data and ends on the Write-Back stage memory data input.

The last implementation presented in Table 5.2 corresponds to the complete system, which in-

cludes the connection to the DRAM using the MIG IP. The operating frequency was kept in 100MHz,

but the used area increased about three times, mainly due to the resources required by the MIG

implementation.

Table 5.2: Resources usage and operating frequency of the different configurations of the developed
processor.

Design
Resources Frequency

[MHz]LUT LUTRAM FF BRAM DSP

Core 5800 2407 2346 0 0 250

Core (+ MUL) 5921 2434 2439 0 4 250

Core (+ DIV) 7234 2419 5230 0 0 250

Core (+ MUL + DIV) 7336 2446 5307 0 4 250

Core + XDMA 28856 2367 31931 75 4 200

Core + XDMA + Cache 33137 3699 33872 59 4 100

Core + XDMA +

Cache + DRAM
94343 9924 102055 110.5 7 100

5.1.2 Power analysis

Table 5.3 presents the results of the power analysis estimations that were provided by Vivado tool

after the post-implementation process. The resources used and the routing, as well as other circuits,

affect the power results. More resources typically mean more energy consumed.

Looking at these the power results, it can be seen that the developed core’s small implementation

require less power than the others, since it has the lowest area occupancy. On the other hand, the

two implementations with the XDMA IP, as expected, have higher power values. The complete sys-

tem, with the DRAM connection, uses three times more resources than the previous implementation,

causing an increase of about three times in the power consumption.

71

Table 5.3: Power results for each implementation.

Design Dynamic Power [W]

Core 0.27

Core (+ MUL + DIV) 0.30

Core + XDMA 1.31

Core + XDMA + Cache 1.32

Core + XDMA + Cache + DRAM 3.91

5.2 Benchmarks results

To evaluate the processor performance and reliability, a set of benchmark tests were executed. These

tests, written in C, implement simple algorithms that require some processor effort to finish the tasks.

The number of clock cycles and the corresponding execution time were obtained for each test.

The set of benchmark tests includes the Tower of Hanoi, Fibonacci sequence element calculation,

and vector-vector division and multiplication. The first two tests implement recursive algorithms that

can be used to confirm the processor’s reliability, Due to these algorithms’ execution grow rates, the

processor runs during millions of clock cycles without failing. The others are useful for testing data

memory accesses, by enabling the verification of hardware resources, such as the data cache system

operation, the main memory accesses communication, and the implemented divider and multiplier.

The advantage of using such algorithms is because they are simple, and the obtained results can

be easily verified, being useful to validate the correct operation of the developed solution.

Tower of Hanoi:

The Tower of Hanoi puzzle consists of n disks and three rods. The disks are placed in one of the

rods, and the goal is to move them from one rod to another rod. The rules say that only one disk can

be moved each time, in each move the top disk is removed and placed on top of another rod, and a

disk cannot be placed on top of a smaller disk. The time complexity for this algorithm is exponential,

O(2n), meaning that this is a computationally costly algorithm. In terms of memory, the complexity is

O(n) since it only stores n return pointers because it is the maximum number of recursive calls. The

used algorithm implementation is presented in Listing 5.1.

Several tests were executed using a different number of disks. For each test, the number of clock

cycles and the time needed to finish the algorithm execution was measured. The results are present

in Table 5.4. For each test with n disks, if we divide the number of clock cycles by the algorithm

complexity, 2n, we will get a constant approaching 56 the higher the number of disks. So, for this

processor, the number of clock cycles for n disks is equal to 56× 2n.

72

Listing 5.1: Tower of Hanoi recursive implementation.

void move(int n, char from, char to, char aux){

if(n == 1){

return;

}

move(n-1, from, aux, to);

move(n-1, aux, to, from);

}

Table 5.4: Number of clock cycles and time duration for different tests with different number of disks.

#Disks 5 10 15 20 25

#Clock cycles 1851 57403 1835193 58720597 1879048995

Time 18,51 us 574,03 us 18,35 ms 587,21 ms 18,79 s

Fibonacci Sequence:

The series of Fibonacci numbers is represented by the following sequence: Fn = Fn−1 + Fn−2,

with F0 = 0 and F1 = 1. From a computational point of view, using a recursive algorithm to compute

the nth element without compilation optimizations, the complexity is given by O(1, 618n). The mem-

ory complexity is linear and it is given by O(n), since the recursive call stack has the maximum size

equals to n. The C code used in this test to implement the Fibonacci sequence algorithm to get the

nth element is available at Listing 5.2.

The Fibonacci algorithm execution was tested for the first 40 elements, and the results were cor-

rect. The number of clock cycles and the execution time required to run some of the tests are pre-

sented in Table 5.5. By doing the same analysis that was done with the Hanoi Towers’ results, the

number of clock cycles is given by a constant multiplying by the complexity. For these results, the

constant is approaching 71,4, so the number of clock cycles for this processor can be estimated

by 71, 4 × 1, 618n. With this test, it was also possible to guarantee the 64-bit cycle counter correct

operation, since values represented by more than 32 bits were acquired successfully.

Listing 5.2: Fibonacci Sequence recursive implementation.

int fib(int n){

if (n == 0){

return 0;

}

else if(n == 1){

return 1;

}

else{

return fib(n-1) + fib(n-2);

}

}

73

Table 5.5: Number of clock cycles and time duration for different tests with a different number of
elements.

n 5 10 15 20 30 40

#Clock cycles 830 8825 97591 1080782 132888429 16344128821

Time 8,30 us 88,25 us 975,91 us 10,81 ms 1,33 s 163,44 s

Vector-vector division and multiplication:

To evaluate the correct operation of each functional unit and the access to the data memory, sev-

eral tests involving vectors were executed. In each test, two arrays with the same size were divided or

multiplied element by element, as show in Listing 5.3. The number of clock cycles and time of each

test were measured. The results for the division are available in Table 5.6 and for the multiplication are

in Table 5.7. The tests were executed several times for arrays with different sizes. When the number

of elements varies, the execution time is affected in the same proportionality.

Listing 5.3: Division and multiplication between the elements of two arrays.

void vvdiv(int n, int a[], int b[], int c[]){

int i;

for(i = 0; i < n; i++){

c[i] = a[i] / b[i];

}

}

void vvmul(int n, int a[], int b[], int c[]){

int i;

for(i = 0; i < n; i++){

c[i] = a[i] * b[i];

}

}

Table 5.6: Vector-vector division: number of clock cycles and time duration for different vector sizes.

#Elements 1k 10k 100k 1M 10M

#Clock cycles 109316 1092009 10919860 109200045 1091999939

Time 1,09 ms 10,92 ms 109,20 ms 1,09 s 10,92 s

Table 5.7: Vector-vector multiplication: number of clock cycles and time duration for different vector
sizes.

#Elements 1k 10k 100k 1M 10M

#Clock cycles 85588 854095 8541234 85410105 854099854

Time 855,88 us 8,54 ms 85,41 ms 854,10 ms 8,54 s

74

The pipeline capability of each multi-cycle functional unit tested here is not improving the results,

since a RAW hazard occurs just after the issue of the corresponding arithmetic instruction when the

store instruction that receives the result arrives at the ID stage and the processor stalls until the result

is out the EX stage. Part of the Assembly code of both tests is shown is Figure 5.3, where the RAW

hazard is highlighted in both cases.

(a) SW and DIV RAW hazard.

(b) SW and MUL RAW hazard.

Figure 5.3: RAW hazard every time each element result is stored

5.3 Discussion

The comparison of this solution with other softcores is not an easy task. As it was previously said,

the other RISC-V cores presented in this work have several particularities. Some are not suitable for

FPGAs, so they cannot be implemented and tested under the same conditions. Others, announced

as suitable for FPGAs, are difficult to implement due to the lack of documentation or are attached to

specific boards. The obtained results that were achieved with this processor in terms of frequency

and resources usage also cannot be directly compared, because all of them were implemented in

different FPGAs, leading to different implementation results.

What it is possible to compare are the functionalities and the characteristics each one offers. Look-

ing at Table 2.3, we can observe that the developed architecture is the first one offering support for

data transfer via PCIe, it integrates a data cache, supports the Multiplication and Division Extension,

AXI connection to the external DRAM memory, several peripherals, including a UART module, being

prepared to support more due to a well-defined interface.

Beyond that, due to its robust architecture inherited from the MB-Lite softcore, the proposed so-

lution keeps its adaptability and flexibility. Most of the modifications were made thinking in future

customizations, such as the addition of more functional units with variable latencies, the addition of

new peripherals, or other types of cache structures.

5.4 Summary

This chapter presented the implementation and evaluation procedures of the developed system on

an FPGA. It started by presenting the prototyping framework, where the FPGA that was used for the

implementation was presented. Then, the implementation process was described, and the different

75

implementation versions were compared in terms of resource usage, operating frequency, and power

requirements. To evaluate and test the processor execution on the FPGA, different algorithms were

executed, and the performance results were listed. Finally, a reflection was made to discuss the

experimental results and compare what was achieved over this work with the other RISC-V cores

analyzed in Chapter 2.

76

6
Conclusions

77

The number of RISC-V processors has increased in the last years. This fact is explained by the recent

efforts that were made on the RISC-V development with the support offered by the open-source

community and companies that integrate the RISC-V Foundation. It is expected that in the future,

several commercial products will include RISC-V cores instead of the current closed and proprietary

solutions.

Despite the recent work done in the available RISC-V implementations, the integration of one of

the existing cores in projects is not easy. Several problems in the current solutions were found, such

as the lack of support for FPGA implementation with suitable performances, poor documentation and

information explaining how it operates and what are the steps to execute the implementation process

successfully.

To contribute to the RISC-V development, a new RISC-V softcore processor for FPGA implemen-

tation was proposed in this work. Throughout the development, the limitations found in the existing

processors were taken into consideration.

The development started after the analysis of the RISC-V ISA, to identify the required instructions

for a base implementation and the existing extension, giving more attention to the Integer Multiplica-

tion and Division Extension. Research about the current state of the RISC-V processors was also

done. Seven cores were compared, using as evaluation parameters the available documentation, the

degree of customization, and the existing FPGA implementation support.

Based on the information collected from the initial analysis, other non-RISC-V cores were ana-

lyzed, with the expectation of finding one with a well-designed architecture, proper documentation,

and good performance to serve as the base of this architecture. The MB-Lite softcore, which origi-

nally implements the Xilinx’s MicroBlaze ISA, was selected due to its well-designed architecture and

the methodologies used during its development related to the HDL implementation.

The first step was the implementation of the RISC-V ISA on the MB-Lite architecture. Due to

differences in both ISA’s instructions formats, the decoder was modified, so the RISC-V instructions

were well parsed. After that, to support the Integer Multiplication and Division extension, a multi-cycle

multiplier and a divider were included in the Execute stage. The memory system was improved with

the implementation of a data cache, support for external memories, and data transfer via PCIe. Three

peripherals (a UART module, a counter, and a timer) were developed, as well as software libraries to

help the software development. The complete system was successfully implemented and tested in a

Virtex UltraScale+ VCU1525 FPGA board.

78

6.1 Future Work

For future work, this processor can be used in the development of a multicore system, just like the

motivations that originated this work. Before that can be achievable, there are some recommendations

to improve this softcore:

• Create support for the implementation of an instruction cache, since it would be essential to

support the implementation of a multi-level cache system, fundamental in a multicore processor.

• Improve the current cache implementation by reducing its critical path, expecting improvements

in the operating frequency.

• Development and implementation of a debugger unit to enable the GDB debugging.

• Implement more RISC-V extensions, such as the floating-point extension and the atomic in-

structions.

• Test the developed implementation in other FPGAs.

79

80

References

[1] RISC-V. GNU toolchain for RISC-V, including GCC. Available: https://github.com/riscv/

riscv-gnu-toolchain, 2019. [Online].

[2] L. Project. LLVM 9.0.0 Release Notes. Available: http://releases.llvm.org/9.0.0/docs/

ReleaseNotes.html, 2019. [Online].

[3] T. xPack Project. xPack GNU RISC-V Embedded GCC. Available: https://xpack.github.io/

blog/2019/07/31/riscv-none-embed-gcc-v8-2-0-3-1-released/, 2019. [Online; accessed

10-October-2019].

[4] RISC-V. Spike, a RISC-V ISA Simulator. Available: https://github.com/riscv/

riscv-isa-sim, 2019. [Online].

[5] QEMU. Documentation/Platforms/RISCV. Available: https://wiki.qemu.org/Documentation/

Platforms/RISCV, 2019. [Online].

[6] B. Zimmer, R. Venkatesan, Y. S. Shao, J. Clemons, M. Fojtik, N. Jiang, B. Keller, A. Klinefelter,

N. Pinckney, P. Raina, et al. A 0.11 pj/op, 0.32-128 tops, scalable multi-chip-module-based deep

neural network accelerator with ground-reference signaling in 16nm. In 2019 Symposium on

VLSI Circuits, pages C300–C301. IEEE, 2019.

[7] W. Digital. RISC-V: Accelerating Next-Generation Computing Architectures. Available: https:

//www.westerndigital.com/company/innovations/risc-v, 2019. [Online].

[8] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook, D. Dabbelt,

J. Hauser, A. Izraelevitz, et al. The Rocket Chip generator. EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[9] A. Traber and M. Gautschi. PULPino: Datasheet. ETH Zurich, University of Bologna, 2017.

[10] A. Waterman and K. Asanovic. The RISC-V Instruction Set Manual, Volume I: User-Level ISA,

Document Version 2.2. Technical report, RISC-V Foundation, 2017.

[11] A. Waterman and K. Asanovic. The RISC-V Instruction Set Manual, Volume I: User-Level ISA,

Document Version 20190608-Base-Ratified. Technical report, RISC-V Foundation, March 2019.

81

https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
http://releases.llvm.org/9.0.0/docs/ReleaseNotes.html
http://releases.llvm.org/9.0.0/docs/ReleaseNotes.html
https://xpack.github.io/blog/2019/07/31/riscv-none-embed-gcc-v8-2-0-3-1-released/
https://xpack.github.io/blog/2019/07/31/riscv-none-embed-gcc-v8-2-0-3-1-released/
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://wiki.qemu.org/Documentation/Platforms/RISCV
https://wiki.qemu.org/Documentation/Platforms/RISCV
https://www.westerndigital.com/company/innovations/risc-v
https://www.westerndigital.com/company/innovations/risc-v

[12] C. Wolf. PicoRV32 - A Size-Optimized RISC-V CPU. Available: https://github.com/

cliffordwolf/picorv32, 2015. [Online; accessed 16-June-2019].

[13] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek, and

K. Asanović. Chisel: constructing hardware in a scala embedded language. In Design Au-

tomation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages 1212–1221. IEEE, 2012.

[14] K. Asanovic, D. A. Patterson, and C. Celio. The Berkeley Out-of-Order Machine (BOOM) Design

Specification. University of California, Berkeley, 2016.

[15] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton, E. Amaro,

C. Schmidt, A. Chopra, et al. Firesim: Fpga-accelerated cycle-exact scale-out system simulation

in the public cloud. In Proceedings of the 45th Annual International Symposium on Computer

Architecture, pages 29–42. IEEE Press, 2018.

[16] C. Celio, J. Zhao, A. Gonzalez, K. Asanovic, B. Korpan, and D. Patterson. BOOM: Berkeley Out-

of-Order Machine. Available: https://github.com/riscv-boom/riscv-boom, 2019. [Online;

accessed 25-June-2019].

[17] VectorBlox. VectorBlox ORCA. Available: https://github.com/VectorBlox/orca. [Online;

accessed 25-June-2019].

[18] VectorBlox. ORCA FPGA-Optimized RISC-V. 2016.

[19] K. Skordal. The Potato Processor: A simple RISC-V processor for use in FPGA designs. Avail-

able: https://github.com/skordal/potato. [Online; accessed 25-June-2019].

[20] A. Traber, M. Gautschi, and P. D. Schiavone. RI5CY: User Manual Revision 4.0. ETH Zurich,

University of Bologna, 2019.

[21] P. D. Schiavone. zero-riscy: User Manual Revision 0.2. ETH Zurich, University of Bologna, 2018.

[22] VexRiscv: A FPGA friendly 32 bit RISC-V CPU implementation. Available: https://github.

com/SpinalHDL/VexRiscv. [Online; accessed 01-July-2019].

[23] W. Digital. SweRV EH1 core. Available: https://github.com/chipsalliance/Cores-SweRV,

2019. [Online; accessed 02-July-2019].

[24] W. Digital. RISC-V SweRVTM EH1 Programmer’s Reference Manual. Available: https:

//github.com/chipsalliance/Cores-SweRV, 2019. [Online; accessed 26-June-2019].

[25] R. Jia, C. Y. Lin, Z. Guo, R. Chen, F. Wang, T. Gao, and H. Yang. A survey of open source

processors for FPGAs. In 2014 24th International Conference on Field Programmable Logic and

Applications (FPL), pages 1–6. IEEE, 2014.

[26] T. Kranenburg. Design of a portable and customizable microprocessor for rapid system proto-

typing. 2009.

82

https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/picorv32
https://github.com/riscv-boom/riscv-boom
https://github.com/VectorBlox/orca
https://github.com/skordal/potato
https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV

[27] T. Kranenburg and R. Van Leuken. MB-LITE: A robust, light-weight soft-core implementation of

the MicroBlaze architecture. In Proceedings of the Conference on Design, Automation and Test

in Europe, pages 997–1000. European Design and Automation Association, 2010.

[28] D. Lampret. OpenRISC 1200 IP core specification. September June, 2001.

[29] J. Gaisler. Fault-tolerant microprocessors for space applications. Gaisler Research, pages 41–

50, 2012.

[30] L. Barthe, L. V. Cargnini, P. Benoit, and L. Torres. The secretblaze: A configurable and cost-

effective open-source soft-core processor. In 2011 IEEE International Symposium on Parallel

and Distributed Processing Workshops and Phd Forum, pages 310–313. IEEE, 2011.

[31] Xilinx. MicroBlaze Processor Reference Guide. Available: https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf, 2018.

[32] Xilinx. Block Memory Generator. Available: https://www.xilinx.com/support/

documentation/ip_documentation/blk_mem_gen/v8_3/pg058-blk-mem-gen.pdf, 2017. [On-

line].

[33] Xilinx. AXI Block RAM (BRAM) Controller. Available: https://www.xilinx.com/support/

documentation/ip_documentation/axi_bram_ctrl/v4_0/pg078-axi-bram-ctrl.pdf, 2017.

[Online].

[34] Xilinx. UltraScale Architecture-Based FPGAs Memory IP. Available: https://www.

xilinx.com/support/documentation/ip_documentation/ultrascale_memory_ip/v1_4/

pg150-ultrascale-memory-ip.pdf, 2019. [Online].

[35] ARM. AMBA R© AXITM and ACETM Protocol Specification, 2011.

[36] Xilinx. AXI Reference Guide. Available: https://www.xilinx.com/support/documentation/

ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf,

2017. [Online].

[37] Xilinx. Multiplier. Available: https://www.xilinx.com/support/documentation/ip_

documentation/mult_gen/v12_0/pg108-mult-gen.pdf, 2015. [Online].

[38] Xilinx. Divider Generator. Available: https://www.xilinx.com/support/documentation/ip_

documentation/div_gen/v5_1/pg151-div-gen.pdf, 2016. [Online].

[39] ISO/IEC 9899:1999. Programming languages — C. Standard, International Organization for

Standardization, Dec. 1999.

[40] J. E. Thornton. Parallel operation in the control data 6600. In Proceedings of the October 27-29,

1964, fall joint computer conference, part II: very high speed computer systems, pages 33–40.

ACM, 1964.

83

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_3/pg058-blk-mem-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_3/pg058-blk-mem-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_bram_ctrl/v4_0/pg078-axi-bram-ctrl.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_bram_ctrl/v4_0/pg078-axi-bram-ctrl.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf

[41] nandland. UART, Serial Port, RS-232 Interface. Available: https://www.nandland.com/vhdl/

modules/module-uart-serial-port-rs232.html. [Online].

[42] Xilinx. DMA/Bridge Subsystem for PCI Express. Available: https://www.xilinx.com/support/

documentation/ip_documentation/xdma/v4_1/pg195-pcie-dma.pdf, 2019. [Online].

[43] Xilinx. Xilinx PCI Express DMA Drivers and Software Guide. Available: https://www.xilinx.

com/support/answers/65444.html, 2019. [Online; accessed 01-October-2019].

[44] Xilinx. VCU1525 Reconfigurable Acceleration Platform - User Guide. Avail-

able: https://www.xilinx.com/support/documentation/boards_and_kits/vcu1525/

ug1268-vcu1525-reconfig-accel-platform.pdf, 2019. [Online].

[45] Xilinx. Xilinx Virtex UltraScale+ FPGA VCU1525 Acceleration Development Kit. Available:

https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html, 2019. [Online].

84

https://www.nandland.com/vhdl/modules/module-uart-serial-port-rs232.html
https://www.nandland.com/vhdl/modules/module-uart-serial-port-rs232.html
https://www.xilinx.com/support/documentation/ip_documentation/xdma/v4_1/pg195-pcie-dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xdma/v4_1/pg195-pcie-dma.pdf
https://www.xilinx.com/support/answers/65444.html
https://www.xilinx.com/support/answers/65444.html
https://www.xilinx.com/support/documentation/boards_and_kits/vcu1525/ug1268-vcu1525-reconfig-accel-platform.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu1525/ug1268-vcu1525-reconfig-accel-platform.pdf
https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html

A
Implemented RISC-V instructions

85

Table A.1: List of the implemented RISC-V instructions.

imm[31:12] rd 0110111 LUI
imm[31:12] rd 0010111 AUIPC

imm[20|10:1|11|19:12] rd 1101111 JAL
imm[11:0] rs1 000 rd 1100111 JALR

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

imm[11:0] rs1 000 rd 0000011 LB
imm[11:0] rs1 001 rd 0000011 LH
imm[11:0] rs1 010 rd 0000011 LW
imm[11:0] rs1 100 rd 0000011 LBU
imm[11:0] rs1 101 rd 0000011 LHU

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB
imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH
imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW

imm[11:0] rs1 000 rd 0010011 ADDI
imm[11:0] rs1 010 rd 0010011 SLTI
imm[11:0] rs1 011 rd 0010011 SLTIU
imm[11:0] rs1 100 rd 0010011 XORI
imm[11:0] rs1 110 rd 0010011 ORI
imm[11:0] rs1 111 rd 0010011 ANDI

0000000 shamt rs1 001 rd 0010011 SLLI
0000000 shamt rs1 101 rd 0010011 SRLI
0100000 shamt rs1 101 rd 0010011 SRAI
0000000 rs2 rs1 000 rd 0110011 ADD
0100000 rs2 rs1 000 rd 0110011 SUB
0000000 rs2 rs1 001 rd 0110011 SLL
0000000 rs2 rs1 010 rd 0110011 SLT
0000000 rs2 rs1 011 rd 0110011 SLTU
0000000 rs2 rs1 100 rd 0110011 XOR
0000000 rs2 rs1 101 rd 0110011 SRL
0100000 rs2 rs1 101 rd 0110011 SRA
0000000 rs2 rs1 110 rd 0110011 OR
0000000 rs2 rs1 111 rd 0110011 AND
0000001 rs2 rs1 000 rd 0110011 MUL
0000001 rs2 rs1 001 rd 0110011 MULH
0000001 rs2 rs1 010 rd 0110011 MULHSU
0000001 rs2 rs1 011 rd 0110011 MULHU
0000001 rs2 rs1 100 rd 0110011 DIV
0000001 rs2 rs1 101 rd 0110011 DIVU
0000001 rs2 rs1 110 rd 0110011 REM
0000001 rs2 rs1 111 rd 0110011 REMU

86

Table A.2: List of the MicroBlaze instructions implemented by the MB-Lite softcore.

000000 Rd Ra Rb 00000000000 ADD
000001 Rd Ra Rb 00000000000 RSUB
000101 Rd Ra Rb 00000000001 CMP
000101 Rd Ra Rb 00000000011 CMPU
001000 Rd Ra Imm ADDI
001001 Rd Ra Imm RSUBI
100000 Rd Ra Rb 00000000000 OR
100001 Rd Ra Rb 00000000000 AND
100010 Rd Ra Rb 00000000000 XOR
100011 Rd Ra Rb 00000000000 ANDN
101000 Rd Ra Imm ORI
101001 Rd Ra Imm ANDI
101010 Rd Ra Imm XORI
101011 Rd Ra Imm ANDNI
101100 00000 00000 Imm IMM
100100 Rd Ra 0000000000000001 SRA
100100 Rd Ra 0000000000100001 SRC
100100 Rd Ra 0000000001000001 SRL
100110 00000 0(1)0000 Rb 00000000000 BR(BRD)
100110 Rd 10100 Rb 00000000000 BRLD
100110 00000 0(1)1000 Rb 00000000000 BRA(BRAD)
100110 Rd 11100 Rb 00000000000 BRALD
100110 Rd 01100 Rb 00000000000 BRK
101110 00000 0(1)0000 Imm BRI(BRID)
101110 Rd 10100 Imm BRLID
101110 00000 0(1)1000 Imm BRAI(BRAID)
101110 Rd 11100 Imm BRALID
101110 Rd 01100 Imm BRKI
100111 0(1)0000 Ra Rb 00000000000 BEQ(BEQD)
100111 0(1)0001 Ra Rb 00000000000 BNE(BNED)
100111 0(1)0010 Ra Rb 00000000000 BLT(BLTD)
100111 0(1)0011 Ra Rb 00000000000 BLE(BLED)
100111 0(1)0100 Ra Rb 00000000000 BGT(BGTD)
100111 0(1)0101 Ra Rb 00000000000 BGE(BGED)
101111 0(1)0000 Ra Imm BEQI(BEQID)
101111 0(1)0001 Ra Imm BNEI(BNEID)
101111 0(1)0010 Ra Imm BLTI(BLTID)
101111 0(1)0011 Ra Imm BLEI(BLEID)
101111 0(1)0100 Ra Imm BGTI(BGTID)
101111 0(1)0101 Ra Imm BGEI(BGEID)
110100 Rd Ra Rb 00000000000 SB
110101 Rd Ra Rb 00000000000 SH
110110 Rd Ra Rb 00000000000 SW
111100 Rd Ra Imm SBI
111101 Rd Ra Imm SHI
111110 Rd Ra Imm SWI
110000 Rd Ra Rb 00000000000 LBU
110001 Rd Ra Rb 00000000000 LHU
110010 Rd Ra Rb 00000000000 LW
111000 Rd Ra Imm LBUI
111001 Rd Ra Imm LHUI
111010 Rd Ra Imm LWI
010000 Rd Ra Rb 00000000000 MUL
011000 Rd Ra Imm MULI
010001 Rd Ra Rb 00000000000 BSRL
010001 Rd Ra Rb 01000000000 BSRA
010001 Rd Ra Rb 10000000000 BSLL
011001 Rd Ra 00000000000 & Imm5 BSRLI
011001 Rd Ra 00000010000 & Imm5 BSRAI
011001 Rd Ra 00000100000 & Imm5 BSLLI

87

88

B
Board Support Package

89

Listing B.1: Linker Script example

OUTPUT_ARCH ("riscv")

ENTRY (_start)

MEMORY

{

rom (x!rw) : ORIGIN = 0x00000000, LENGTH = 16K

ram (wxa!ri) : ORIGIN = 0x00004000, LENGTH = 16K

}

SECTIONS

{

__stack_size = 4K;

.init : {

KEEP (*(SORT_NONE(.init)))

} >rom

.text : {

(.text .text.)

} >rom

.fini : {

KEEP (*(SORT_NONE(.fini)))

} >rom

PROVIDE (__etext = .);

PROVIDE (_etext = .);

PROVIDE (etext = .);

.rodata : {

*(.rdata)

(.rodata .rodata.)

} >ram

.data : {

(.data .data.)

(.sdata .sdata.)

PROVIDE(__global_pointer$ = .);

} >ram

PROVIDE (_fbss = .);

PROVIDE (__bss_start = .);

.bss : {

*(.sbss)

(.bss .bss.)

*(COMMON)

} >ram

PROVIDE (_end = .);

PROVIDE (end = .);

.stack ORIGIN(ram) + LENGTH(ram) - __stack_size : {

PROVIDE (_heap_end = .);

. = __stack_size;

PROVIDE(_sp = .);

} >ram

}

90

Listing B.2: entry.S

.section .init

.globl _start

.type _start,@function

_start:

Initialize the global pointer

.option push

.option norelax

la gp, __global_pointer$

.option pop

Initialize the stack pointer

la sp, _sp

Clear the bss section

la a0, __bss_start

la a1, _end

bgeu a0, a1, 2f

1:

sw zero, (a0)

addi a0, a0, 4

bltu a0, a1, 1b

2:

auipc ra, 0

addi sp, sp, -16

sw ra, 8(sp)

Start the program

li a0, 0

li a1, 0

call main

Finish the execution

tail __exit

Listing B.3: exit.c

void __exit(void) {

asm volatile ("nop");

asm volatile ("nop");

asm volatile ("nop");

asm volatile ("jalr zero, zero, 0x0");

}

91

92

C
Makefile

93

Listing C.1: Makefile.

RISCV environment variable must be set

CC=$(RISCV)/bin/riscv-none-embed-gcc

OBJCOPY=$(RISCV)/bin/riscv-none-embed-objcopy

CFLAGS=-march=rv32im -mabi=ilp32 -std=gnu11 -Wall -Iinclude -fno-common

Set board support package path

BSP_PATH=bsp

Output name

OUT=$(shell basename $(CURDIR))

Linker Script Flags

LINKER_SCRIPT=$(BSP_PATH)/ls.lds

LDFLAGS=-T $(LINKER_SCRIPT) -nostartfiles -static -L$(RISCV)/lib/gcc/riscv-none-embed/8.2.0/ -lgcc

BSP files (entry.S and exit.c)

ASM_SRC=$(BSP_PATH)/entry.S

C_SRC=$(BSP_PATH)/exit.c

ASM_OBJS=$(ASM_SRC:%.S=%.o)

C_OBJS=$(C_SRC:%.c=%.o)

LINK_OBJS=$(ASM_OBJS) $(C_OBJS)

Source files

SRC_FILES=$(wildcard src/*.c)

.PHONY: all dirs clean

all: dirs BIN

Create the output directories

dirs:

mkdir -p elf/

mkdir -p bin/

Generate the ELF file

ELF: $(LINK_OBJS) $(LINKER_SCRIPT)

$(CC) $(CFLAGS) $(LINK_OBJS) -o elf/$(OUT).elf $(SRC_FILES) $(LDFLAGS)

BSP objects

$(ASM_OBJS): %.o: %.S

$(CC) $(CFLAGS) -c -o $@ $<

$(C_OBJS): %.o: %.c

$(CC) $(CFLAGS) -c -o $@ $<

Generate the binaries based on the ELF using the objcopy

BIN: ELF

$(OBJCOPY) -O binary elf/$(OUT).elf bin/$(OUT).bin

$(OBJCOPY) -O binary elf/$(OUT).elf -R .rodata -R .data bin/$(OUT)_text.bin

$(OBJCOPY) -O binary elf/$(OUT).elf -j .rodata -j .data bin/$(OUT)_data.bin

Remove the BSP objects and the output ELF and BIN files

clean:

rm -rf $(ASM_OBJS) $(C_OBJS) elf/$(OUT).elf bin/$(OUT)*.bin

94

D
RISC-V assembly code example

95

Listing D.1: RISC-V assembly code example.

00000994 <fib>:

994: fe010113 addi sp,sp,-32

998: 00112e23 sw ra,28(sp)

99c: 00812c23 sw s0,24(sp)

9a0: 00912a23 sw s1,20(sp)

9a4: 02010413 addi s0,sp,32

9a8: fea42623 sw a0,-20(s0)

9ac: fec42783 lw a5,-20(s0)

9b0: 00078a63 beqz a5,9c4 <fib+0x30>

9b4: fec42703 lw a4,-20(s0)

9b8: 00100793 li a5,1

9bc: 00f70863 beq a4,a5,9cc <fib+0x38>

9c0: 0140006f j 9d4 <fib+0x40>

9c4: 00000793 li a5,0

9c8: 0380006f j a00 <fib+0x6c>

9cc: 00100793 li a5,1

9d0: 0300006f j a00 <fib+0x6c>

9d4: fec42783 lw a5,-20(s0)

9d8: fff78793 addi a5,a5,-1

9dc: 00078513 mv a0,a5

9e0: fb5ff0ef jal ra,994 <fib>

9e4: 00050493 mv s1,a0

9e8: fec42783 lw a5,-20(s0)

9ec: ffe78793 addi a5,a5,-2

9f0: 00078513 mv a0,a5

9f4: fa1ff0ef jal ra,994 <fib>

9f8: 00050793 mv a5,a0

9fc: 00f487b3 add a5,s1,a5

a00: 00078513 mv a0,a5

a04: 01c12083 lw ra,28(sp)

a08: 01812403 lw s0,24(sp)

a0c: 01412483 lw s1,20(sp)

a10: 02010113 addi sp,sp,32

a14: 00008067 ret

96

Listing D.2: MicroBlaze assembly code example.

0000068c <fib>:

68c: 3021fff0 addik r1, r1, -16

690: f9e10000 swi r15, r1, 0

694: fa610008 swi r19, r1, 8

698: fac1000c swi r22, r1, 12

69c: 12610000 addk r19, r1, r0

6a0: f8b30004 swi r5, r19, 4

6a4: b0000000 imm 0

6a8: e86009b0 lwi r3, r0, 2480 // 9b0 <c>

6ac: 30630001 addik r3, r3, 1

6b0: b0000000 imm 0

6b4: f86009b0 swi r3, r0, 2480 // 9b0 <c>

6b8: e8730004 lwi r3, r19, 4

6bc: bc030014 beqi r3, 20 // 6d0

6c0: e8730004 lwi r3, r19, 4

6c4: a8630001 xori r3, r3, 1

6c8: bc030010 beqi r3, 16 // 6d8

6cc: b8000014 bri 20 // 6e0

6d0: 10600000 addk r3, r0, r0

6d4: b800003c bri 60 // 710

6d8: 30600001 addik r3, r0, 1

6dc: b8000034 bri 52 // 710

6e0: e8730004 lwi r3, r19, 4

6e4: 3063ffff addik r3, r3, -1

6e8: 10a30000 addk r5, r3, r0

6ec: b9f4ffa0 brlid r15, -96 // 68c <fib>

6f0: 80000000 or r0, r0, r0

6f4: 12c30000 addk r22, r3, r0

6f8: e8730004 lwi r3, r19, 4

6fc: 3063fffe addik r3, r3, -2

700: 10a30000 addk r5, r3, r0

704: b9f4ff88 brlid r15, -120 // 68c <fib>

708: 80000000 or r0, r0, r0

70c: 10761800 addk r3, r22, r3

710: e9e10000 lwi r15, r1, 0

714: 10330000 addk r1, r19, r0

718: ea610008 lwi r19, r1, 8

71c: eac1000c lwi r22, r1, 12

720: 30210010 addik r1, r1, 16

724: b60f0008 rtsd r15, 8

728: 80000000 or r0, r0, r0

97

98

E
Design Implementation

99

Figure E.1: Block design implementation of the proposed system created using Xilinx IP Integrator.

100

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Outline

	2 RISC-V specification and implementations
	2.1 RISC-V ISA
	2.1.1 Base Integer Instruction Set
	2.1.2 Extensions

	2.2 RISC-V Cores
	2.2.1 PicoRV32
	2.2.2 Rocket Chip
	2.2.3 ORCA
	2.2.4 Potato
	2.2.5 PULPino
	2.2.6 VexRiscv
	2.2.7 SweRV
	2.2.8 Discussion

	2.3 Other non-RISC-V softcores
	2.3.1 Non-RISC-V softcores review
	2.3.2 MB-Lite

	2.4 Summary

	3 Proposed Architecture
	3.1 Architecture Overview
	3.2 RISC-V support
	3.3 Memory Structure
	3.3.1 Instruction memory
	3.3.2 Data memory and cache implementation

	3.4 Multi-cycle Functional Units
	3.4.1 Integer Multiplier
	3.4.2 Integer Divider

	3.5 Hazards
	3.5.1 Data Hazards
	3.5.2 Control Hazards
	3.5.3 Structural Hazards
	3.5.4 Dependencies Handling

	3.6 Peripherals
	3.6.1 UART for Standard Input/Output
	3.6.2 Cycle Counter
	3.6.3 Timer
	3.6.4 Support for more memory-mapped peripherals

	3.7 Data Transfer (PCI Express)
	3.8 Adaptation for other FPGA vendors
	3.9 Summary

	4 Software Tools
	4.1 Development Workflow
	4.1.1 Software Requirements
	4.1.2 Support Files

	4.2 Developed Libraries
	4.3 Summary

	5 Implementation and Experimental Results
	5.1 Prototyping framework
	5.1.1 Area and timing constraints analysis
	5.1.2 Power analysis

	5.2 Benchmarks results
	5.3 Discussion
	5.4 Summary

	6 Conclusions
	6.1 Future Work

	References
	A Implemented RISC-V instructions
	B Board Support Package
	C Makefile
	D RISC-V assembly code example
	E Design Implementation

