
Packing and Fusing Narrow-Width Vector
Operations for Energy-Efficient SIMD

Miguel Eduardo Mateus Pinho

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. Nuno Filipe Valentim Roma
Prof. Pedro Filipe Zeferino Aidos Tomás

Examination Committee

Chairperson: Prof. Teresa Maria Sá Ferreira Vazão Vasques
Supervisor: Prof. Nuno Filipe Valentim Roma

Member of the Committee: Prof. Nuno Cavaco Gomes Horta

July 2020

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

i

Acknowledgments

I want to start by thanking my family for their unwavering support and dedication: my parents, my

brother, and my sister. I want to thank my supervisors, Prof. Nuno Roma and Prof. Pedro Tomás, for

challenging me with this research opportunity, and for their constant feedback and advice, and thorough

revisions. Had it not been for their demanding yet supportive attitude, this work would not be possible,

and neither the personal growth it enabled. I had the luck of sharing the many challenges encountered

in this thesis work with my colleague and friend João Mário, who always had some piece of advice. I

also want to thank João Ramiro for his help in the thesis revision. The academic journey that now comes

to an end would not have the same meaning without the friends from SIIIIIIIIIM that accompanied me. I

particularly treasure the companionship with Miguel Malaca and Pedro Mendes, with whom I overcame

many a challenge (and who also helped with the revisions). This voyage was made even more significant

by everyone I met at JUNITEC, where I found some of the most entrepreneur, dedicated, and motivated

young people of my generation. Someone very special was also waiting there for me to meet, her name

Sara Farias.

This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia

(FCT) under projects UIDB/50021/2020 and PTDC/EEI-HAC/30485/2017, and by funds from the Euro-

pean Union Horizon 2020 research and innovation programme under grant agreement No. 826647.

ii

Abstract

Application developers usually decide on the size of each variable data type by either considering its

maximum range or simply by comfortably using larger data types. Since these represent maximum val-

ues (and not typical), the applications most often do not make full use of the bit-width offered by the

processor integer arithmetic units. This wasted bit-width is especially relevant when using Single In-

struction Multiple Data (SIMD) instructions, since the inefficient use of each arithmetic unit is multiplied

by the number of vector elements. This (rather frequent) circumstance is herein exploited by proposing

new run-time mechanisms to (i) efficiently handle narrow integer vector elements, by removing excess

sign bits and packing these elements in a smaller vector, and (ii) agglomerate (fuse) multiple vector in-

structions pending in the execution queue of the processor, to simultaneously execute them on a single

SIMD unit. When combined with clock and power gating techniques, the proposed approach provides

a very significant reduction of the energy consumption in the SIMD units, by dynamically optimizing the

execution of narrow-width integer vector computations, with low hardware overhead and no need for any

changes in the application executable. Experimental results, based on a prototyping implementation

supported on an ARM Cortex-A76 model, show a reduction of the dynamic and leakage energy con-

sumption of the vector units of up to 54%, with either a negligible performance reduction or even some

slight improvements of the execution time.

Keywords

Narrow-width, SIMD Units, Clock and Power Gating, Energy Efficiency, General-purpose Processors

iii

Resumo

Os programadores de software normalmente decidem qual o tipo de dados de uma variável con-

siderando o seu valor máximo esperado, ou simplesmente usando um tipo de dados com elevada

precisão. Como os valores reais tendem a ser bastante inferiores a este valor máximo, grande parte da

precisão das unidades aritméticas inteiras é desperdiçada. Em instruções vetoriais (ou SIMD) este des-

perdı́cio da precisão do processador é ainda mais relevante, pois é multiplicado pelos vários elementos

do vetor. Esta situação frequente é particularmente explorada neste trabalho através da proposta de

novos mecanismos em hardware para (i) manipular elementos vetoriais inteiros de precisão reduzida,

removendo os bits de sinal redundantes e compactando os elementos num vetor menor, e (ii) aglom-

erar (fundir) várias operações vetoriais à espera de execução na fila do processador, para execução

simultânea numa única unidade de execução. Quando combinada com as técnicas de bloqueio do sinal

de relógio e de alimentação, esta abordagem permite reduzir significativamente o consumo energético

das unidades vetoriais, promovendo-se uma optimização dinâmica de cálculos vetoriais de inteiros, com

uma penalização reduzida em termos de recursos de hardware e sem necessidade para quaisquer

alterações nos ficheiros executáveis. Os resultados experimentais obtidos, baseados na prototipagem

destes mecanismos com um modelo do processador ARM Cortex-A76, mostram uma redução do con-

sumo de energia (dinâmica e estática) na unidade de execução vetorial de até 54%, com uma redução

mı́nima no desempenho ou, até mesmo, em certas aplicações, com algumas melhorias ligeiras.

Palavras Chave

Precisão Reduzida, Unidades SIMD, Técnicas de Bloqueio de Relógio e de Alimentação, Eficiência

Energética, Processadores de Uso Geral

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Thesis contributions . 3

1.4 Thesis outline . 4

2 Background and Related Work 6

2.1 Contemporary GPP architectures . 7

2.2 Power efficiency in computer architectures . 10

2.2.1 Prevailing techniques for power efficiency . 11

2.2.2 Power gating unused functional units . 12

2.2.3 Reducing the SIMD units power dissipation . 14

2.3 Scalable width datapaths . 15

2.3.1 Software based techniques . 18

2.3.2 Dynamic hardware-based approaches . 19

2.3.3 Scalable width structures . 20

2.3.3.A Functional units . 21

2.3.3.B Register file . 22

2.3.3.C Caches . 24

2.4 Summary . 24

3 Narrow-width Opportunity in SIMD 25

3.1 Defining narrow-width in SIMD computations . 25

3.2 Optimizing vector computations in out-of-order processors 28

3.3 Profiling integer intensive applications . 29

3.3.1 Benchmarked applications . 30

3.3.2 SIMD unit usage analysis . 31

3.4 Envisaged energy savings . 34

3.5 Summary . 36

v

4 Architectural Mechanisms to Exploit Narrow-width 37

4.1 Proposed Mechanisms . 38

4.1.1 Width encoding . 38

4.1.2 Packing narrow-width vector operands . 42

4.1.3 Fusing vector operations . 45

4.1.4 Gating functional units . 46

4.2 Integration in conventional processor architectures . 48

4.3 Summary . 50

5 Prototyping and Experimental Workflow 51

5.1 Architectural simulation tools . 52

5.2 ARM ISA and the NEON vector extension . 55

5.3 Implementation of the architectural changes . 56

5.4 Traces and performance counters . 58

5.5 Power modelling . 60

5.6 Experimental workflow . 61

5.7 Summary . 62

6 Experimental Evaluation 64

6.1 Evaluation methodology . 64

6.1.1 Considered configurations and benchmarks . 64

6.1.2 Evaluated metrics . 66

6.2 Experimental results . 67

6.2.1 Energy and performance impact of the proposed mechanisms 67

6.2.2 Design parameters exploration . 73

6.3 Summary . 75

7 Conclusions and Future Work 76

7.1 Conclusions . 76

7.2 Future Work . 77

Bibliography 80

Appendix A Considered Benchmark Datasets 86

Appendix B ARMv8 NEON Instructions 88

vi

List of Figures

1.1 Outline of the thesis work . 4

2.1 Microarchitecture of the Arm Cortex-A76 . 7

2.2 SIMD execution model . 9

2.3 Functional unit’s power gating control mechanism . 13

2.4 Time-intervals in power gating . 14

2.5 Narrow-width integer representation . 15

2.6 Cumulative distribution of narrow-width values occurrence for SPEC2000 16

2.7 Distribution of integer operations grouped by classes, for SPECint2000 applications . . . 17

2.8 Operation fusing example . 19

2.9 Cluster partitioned approach for narrow-width exploitation 21

2.10 Vectorized MAC design . 22

2.11 Implementing 32-bit, 16-bit, and 8-bit operation modes in a 64-bit scalar MAC unit 23

3.1 Width of a vector operation . 26

3.2 Overview of vector operation modes in Arm NEON . 27

3.3 Details of the SIMD execution engine in the out-of-order microarchitecture 29

3.4 Evaluation of the usage of the SIMD unit for the selected benchmarks 32

3.5 Analysis of the width required by integer vector operations 33

3.6 Execution samples for the mini-apps . 34

3.7 Maximum expected dynamic energy savings . 35

4.1 Examples of the widths detected with different width-block sizes 38

4.2 Width encoding example . 39

4.3 Details of the width encoding procedure of an operand . 40

4.4 Width masks examples for different vector modes . 41

4.5 Vector operand packing in a SIMD Add . 43

4.6 Implementation of a irregular element size vectorized adder unit 44

vii

4.7 Selection of partial products for an irregular element size multiplication 45

4.8 Fusing two similar vector operations . 46

4.9 Example of opportunities for clock and power gating vector functional units 47

4.10 Detailed changes proposed in the out-of-order execution engine 48

5.1 Comparison of different processor specification and modelling levels 52

5.2 Comparison of gem5 simulation modes and models . 53

5.3 Modifications made to the internal structure of gem5’s O3 CPU model 56

5.4 Block diagram of the McPAT framework . 60

5.5 Description of the experimental workflow . 62

6.1 Energy reduction and normalized execution time with the Cortex-A76 core 68

6.2 Energy reduction and normalized execution time with the High-performance core 69

6.3 Active rate of the SIMD units . 71

6.4 Percentage of issued instructions that are fused . 72

6.5 Impact of adding a new pipeline stage . 73

6.6 Comparison of energy savings with different width-block sizes 75

7.1 Possible extension to the proposed architecture . 78

A.1 Cumulative distribution function of the bit-width of the values in the random datasets . . . 87

A.2 Energy savings for different datasets . 87

viii

List of Tables

1.1 Number and width of integer SIMD units in recent out-of-order processors 2

3.1 Complete list of profiled benchmarks . 31

4.1 Width-mask size trade-off . 42

5.1 Baseline parameters of the CPU models . 54

6.1 Considered simulation modes . 65

6.2 Selected benchmarks for this evaluation . 65

6.3 Best energy savings Cortex-A76 core . 74

6.4 Best energy savings High-performance core . 74

A.1 Sample values from each dataset . 87

B.1 List of ARMv8 NEON vector instructions . 88

ix

Acronyms

ALU Arithmetic Logic Unit

CDB Common Data Bus

CLA Carry-Lookahead Adder

CPU Central Processing Unit

DSP Digital Signal Processor

FP Floating-Point

FU Functional Unit

GPP General Purpose Processor

GPU Graphics Processing Unit

HPC High-Performance Computing

ILP Instruction-Level Parallelism

IPC Instructions Per Cycle

ISA Instruction Set Architecture

MAC Multiply-Accumulator

MIMD Multiple Instruction Multiple Data

RAT Register Alias Table

RISC Reduced Instruction Set Computing

ROB Re-Order Buffer

ROI Region Of Interest

x

RTL Register-Transfer Logic

SIMD Single Instruction Multiple Data

SMT Simultaneous Multi-Threading

WAR Write After Read

WAW Write After Write

xi

1
Introduction

Contents

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Thesis contributions . 3

1.4 Thesis outline . 4

1.1 Motivation

The increasing number of transistors that implement today’s microprocessors has not been accompanied

by a corresponding increase in the power efficiency of each transistor, in what is known as the failing

of Dennard scaling [1, 2]. As a result, power consumption has been the most limiting factor to increase

the microprocessors’ performance, as a result of the difficulty to dissipate the energy and fully utilize the

chip at its maximum clock rate, without compromising its integrity. This power dissipation wall has been

imposing a stagnation in the offered computer performance, leading to the need for a computer design

shift towards power efficiency [3–6].

General Purpose Processors (GPPs), which will be the focus of this work, have been increasingly

used for High-Performance Computing (HPC), such as multimedia, scientific, and engineering applica-

tions [6, 7]. Successive architectures in this segment have evolved to match the increased computing

power demand by adopting an out-of-order architecture and by having wider issue widths, larger register

files, and more functional units. A particular trend in modern Instruction Set Architectures (ISAs) is to

include Single Instruction Multiple Data (SIMD) vector extensions [6–9], which allow the execution of

1

the same operation over a vector of several data values in parallel. These instructions provide consid-

erable speed-ups in workloads with data-level parallelism, which are common in HPC. As these SIMD

extensions have evolved to adapt to a broader range of applications, the supported vector width has in-

creased to enable higher performance benefits. The recent trend has been to double the vector register

size every four years [7–9]. For example, the successive Intel x86 vector extensions have gone from

64-bit vectors (MMX), to 128-bit (SSE) and 256-bit (AVX), to more recently 512-bit (AVX-512) [7, 10].

The ARM SVE extension is already designed to scale up to 2048 bits [9].

However, all these architectural features put an even higher strain on these chip’s power limitations.

In particular, the execution engine has become an increasingly important power drain in the processor

cores, mainly due to the leakage power in its functional units [11, 12]. Moreover, as SIMD extensions

became increasingly relevant in high performance and their vector length increased, several and wider

integer vector units have been included per core, as presented in Table 1.1. Hence, these units have

become a very significant source in power dissipation in processor cores, so they are a particularly

relevant candidate for further improvements in power efficiency.

Table 1.1: Number and width of integer SIMD units in recent out-of-order processors

Microarchitecture Domain ISA (vector extensions) Integer SIMD Units

ARM Cortex-A76/A77/A78 Mobile ARM (NEON) 2 × 128-bit
Samsung Exynos M3/M4 Mobile ARM (NEON) 3 × 128-bit
Apple A12 (Vortex) / A13 (Lightning) Mobile ARM (NEON) 3 × 128-bit
ARM Cortex-X1 Mobile ARM (NEON) 4 × 128-bit
ARM Neoverse N1 Server ARM (NEON) 2 × 128-bit
AMD Zen/Zen+ Desktop, Server x86 (SSE, AVX) 4 × 128-bit
AMD Zen2 Desktop, Server x86 (SSE, AVX) 4 × 256-bit
Intel Sunny Cove Desktop, Server x86 (SSE, AVX, AVX-512) 2 × 256-bit, and

1 × 512-bit (Server)

In this thesis, a still unexplored opportunity for reducing the power dissipation in SIMD units when

handling integer computations is identified and evaluated. The conducted research arose from the

observation that most integer computations do not require the whole word width, as their operands can

be encoded with a lower number of bits, and can be executed using only a portion of the functional unit’s

width. In previous literature [13–16], these computations have been denoted as narrow-width, but only

scalar instructions were exploited.

However, although vector extensions usually provide instructions to support several element data

sizes, these instructions pose the constraint that all elements in a vector must have the same bit-width.

Even though most integer element values can be represented using narrow data types (i.e. 8 or 16 bits),

the occurrence of a small portion of wider values makes it necessary for the application programmer

to use a larger element size, to avoid overflow. Hence, for a large portion of the vector lanes, the bit-

resolution of the vector functional units is wasted, which means that a very significant portion of the

SIMD unit does not perform any computation.

2

1.2 Objectives

The main objective of this research is to evaluate the opportunity to exploit narrow-width integer SIMD

computations in out-of-order processors and to propose architectural mechanisms to increase power

efficiency when handling intensive data-parallel integer workloads.

Achieving this goal first requires collecting and profiling a set of representative applications, which

should be not only integer intensive, but also vectorizable, measuring relevant metrics about the width

required by the operations and the degree of usage of the SIMD units. These two metrics will show,

respectively, the existence and the relevance of this opportunity, and will provide insight on how to

design mechanisms to exploit it.

The next step is to propose architectural changes to exploit the narrow-width opportunity, taking

into account the characteristics and constraints imposed by out-of-order superscalar processors. The

proposed mechanisms should be transparent to the compiler (alleviating the need for code recompilation

and toolchain changes) and ISA agnostic (to be adaptable to different architectures and vector lengths).

This design step must take into account the compromise between the expected power efficiency gains

and the complexity and penalty of implementing the proposed mechanisms in hardware.

Afterwards, the proposed mechanisms should be evaluated using a state-of-the-art architectural sim-

ulation tool, making the necessary modifications to implement these architectural changes. Then, a

relevant set of metrics to evaluate the impact in the processor operation should be identified and gener-

ated by the simulation. Finally, these metrics should be used to estimate the resulting impact in terms of

performance and energy consumption, using an adequate power model.

1.3 Thesis contributions

The main novelty presented in this thesis consists in a viable exploitation of narrow-width in SIMD integer

operations. This contrasts with other previous authors’ works, who identified this narrow-width oppor-

tunity, but focused only on scalar instructions. On the other hand, the SIMD execution unit provides

particular challenges for optimization, as the overhead of detecting the required bit-width for each vector

element is multiplied by the number of elements. Moreover, the proposed scheme must be designed

to handle the multiple element modes that vector extensions usually support (e.g. 64, 32, 16, or 8-bit

elements). In accordance, the main contributions of this thesis are:

• The identification of a novel opportunity for reducing the SIMD unit power consumption, by exploit-

ing narrow-width vector computations, and an evaluation of its relevance in a variety of applications;

• The proposal of low-overhead mechanisms for dynamic detection of the required operands’ width

for each SIMD lane (width encoding);

3

• A new scheme (operand packing) to efficiently pack integer vector operands, by discarding un-

necessary sign bits between elements - these packed vectors can execute directly in an available

portion of existing SIMD units (with minor changes);

• A new mechanism (operation fusing) to agglomerate multiple packed vector instructions for simul-

taneous execution in a single functional unit;

• A set of architectural modifications to the out-of-order vector execution pipeline of a modern pro-

cessor to support the proposed packing and fusing mechanisms, as well as to provide the means

for a more aggressive application of power and clock gating;

• An implementation of these modifications in the gem5 simulator, using the ARMv8 ISA and its

NEON advanced vector extension as a proof of concept, and with processor models based on the

ARM Cortex-A76 core;

• An estimation of the impact that the proposed architectural changes have in the energy consump-

tion of the SIMD unit and in its execution time, by adding relevant performance counters and using

the McPAT power modelling framework.

1.4 Thesis outline

Preliminary
Evaluation

Propose
Architectural

Changes

Implement
Changes in

an Architectural
Simulator

Run Simulations
with Representative

Benchmarks

Estimate Energy
Savings with a
Power Model

Chapter 3 Chapter 4 Chapter 5 Chapters 5 and 6

Figure 1.1: Outline of the thesis work, with the corresponding steps in the evaluation of the narrow-width opportunity
in SIMD.

Chapter 2 starts by introducing the computer architecture concepts and the processor research back-

ground that are necessary to understand the work that is developed in this thesis. Then, the previous

research works that exploited the narrow-width opportunity in the scalar integer pipeline are also re-

viewed. As depicted in Figure 1.1, Chapters 3 to 6 follow the typical steps in the evaluation of a new

architectural mechanism. Chapter 3 presents a preliminary evaluation of the narrow-width opportunity

in SIMD operations, using a modified model of the ARM Cortex-A76 processor core, which shows there

are very relevant energy efficiency gains to be exploited. Then, Chapter 4 proposes architectural mech-

anisms to exploit this opportunity, taking into account the typical design constraints in an out-of-order

processor but without tieing these mechanisms to a specific architecture or implementation. Chapter 5

4

specifies the prototyping architecture and core models, and details how the proposed changes were

implemented in a state-of-the-art processor simulator. This chapter also presents the power models

used to evaluate the impact of the proposed architectural changes. Finally, Chapter 6 starts by listing

the configurations and applications that were considered in the evaluation and discusses and analyses

the main results that were obtained. Lastly, Chapter 7 addresses the main conclusions and outlines

possible future work opportunities.

5

2
Background and Related Work

Contents

2.1 Contemporary GPP architectures . 7

2.2 Power efficiency in computer architectures . 10

2.3 Scalable width datapaths . 15

2.4 Summary . 24

The main architectural features of general-purpose computer architectures are first briefly reviewed,

with a particular focus on the superscalar and out-of-order architectures and on the Single Instruction

Multiple Data (SIMD) vector extensions. This background is crucial to set the constraints and opportuni-

ties for new architectural mechanisms. The prevailing techniques and mechanisms for power efficiency

are also introduced, with a particular focus on how to reduce the power dissipation of the execution unit.

Then, the previous approaches for taking advantage of narrow-width integer operations are reviewed.

This opportunity is first clearly identified, and the two different approaches to explore it are presented:

statically (at compile time) and dynamically (at run-time). After identifying the dynamic approach as

the most promising alternative, the most relevant architectural mechanisms proposed in the literature

are also described. This review includes the existing work on optimizing the datapath structures, with

a particular focus on the execution unit, namely the research on the implementation of addition and

multiplication units with variable width.

6

2.1 Contemporary GPP architectures

Over the past 20 years, most General Purpose Processors (GPPs) have adhered to the superscalar and

out-of-order architecture paradigms [17–19]. These processors take advantage of the Instruction-Level

Parallelism (ILP) existing in programs, where several instructions can be executed at the same time, to

extract higher levels of performance. Figure 2.1 depicts the microarchitecture of a modern superscalar

out-of-order core, the Arm Cortex-A76 launched in 2018, and is used to illustrate the computer architec-

ture concepts and structures which are introduced in this section. This representative microarchitecture

will be also used as an example for prototyping the work developed in the following chapters.

Op Op Op Op Op Op Op Op

Op Op Op Op Op Op Op Op

4-8 Instructions/cycle

Op Op Op Op

16 Bytes/cycle

Inst Inst Inst Inst

Op Op Op Op Op Op Op Op

3
2
B

/c
y
c
le

3
2
B

/c
y
c
le

3
2
B

/c
y
c
le

16B/cycle

32B/cycle

2x
32B/cycle

A
S

IM
D

Branch Predictor

NanoBTB (16-entry)
MicroBTB (64-entry)

Main BTB (6K)

Return Stack

L1 Inst Cache
64 KB
4-way

Inst TLB
48-entry

Instruction Fetch

Decode Queue (16 x 32b)

Rename & AllocateC
o
m

m
it Dispatch

General-Purpose
Register File

System
Registers

Advanced SIMD & FP
Register File

Issue (120-entry)

Queue
16-entry

PortPortPortPortPortPortPort Port

IMAC

Branch ALU ALU ALU

MAC

DIV

ALU

FADD

FMUL

FDIV

ALU

FADD

FMUL

AGU AGU

LSU
Load Buffer

68-entry
L1 Data Cache

64 KB
4-way

Data TLB
48-entry

Store Buffer
72-entry

L2
 C

a
ch

e
2

5
6

/5
1

2
 K

B
8

-w
a
y

U
n
ifi

e
d

 S
T
LB

1
2

8
0

-e
n

try
; 5

-w
a
y

4-Way Decode
Decoder Decoder Decoder Decoder

Front
End

CachesBack End

Execution Unit

In
te

g
e
r

M
S

H
R

2
0

-e
n
try

M
S

H
R

4
6

-e
n
try

Out-of-Order

16B/cycle

Queue
16-entry

Queue
16-entry

Queue
16-entry

Queue
16-entry

Queue
16-entry

Queue
12-entry

Queue
12-entry

R
e
-o

rd
e
r B

u
ff

e
r (1

2
8

-e
n
try

)

Figure 2.1: Microarchitecture of the Arm Cortex-A76, a modern 4-wide superscalar out-of-order core (based on the
figure from https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a76).
Every cycle, this microprocessor can fetch and decode up to four new instructions, and can dispatch up
to eight operations to the eight available pipelines, each with its independent issue queue.

7

https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a76

A superscalar processor tries to fetch and dispatch several instructions in the same clock cycle and

has multiple and different functional units to execute several instructions in parallel (see Fig. 2.1), as long

as the original program dependencies are respected. Superscalar execution is usually complemented

by out-of-order instruction scheduling, where instructions can be executed in a different order than the

original program. Instructions fetched later are allowed to execute first, as long as all their dependencies

with previous instructions have already been solved.

However, when instructions are executed out-of-order, the completion of a more recent instruction

may overwrite a register operand that is still required by older instructions. Futhermore, if two instructions

write to the same register in the wrong order, the final value in that register is incorrect. These two data

hazards, denoted as Write After Read (WAR) and Write After Write (WAW), respectively, are usually

solved by another mechanism typically associated with these processors: register renaming. Register

renaming solves the reuse of the same architectural register, which is not an actual dependency, by

allocating a new physical register to store the new value. The correspondence between the architectural

registers (in the code) and the physical registers (in the hardware) is abstracted by using an intermediate

table of pointers, which is usually called Register Alias Table (RAT) or rename map. Hence, a new

rename stage is added after the instructions are decoded and before they are dispatched to an issue

queue (see Fig. 2.1), which allocates a new register for the result and updates the corresponding pointer

in the RAT.

However, the occurrence of branch instructions greatly limits the possibility of exploiting ILP, since

which instructions should be executed after depends on the result of the branch condition. This control

dependency is solved by predicting the result of the branch and fetching instructions accordingly. The

superscalar out-of-order scheme is therefore complemented with speculative execution, where instruc-

tions resulting from branch prediction are allowed to execute but not to commit their results immediately,

that is, to change any permanent state of the processor. This way, in the event of the prediction fail-

ing, the correct execution state can be recovered by deleting the instructions waiting to commit, without

leaving any lingering effect. An auxiliary structure keeps track of the original instruction issue order, the

Re-Order Buffer (ROB), so that the instructions are committed in order and only when they are no longer

speculative.

These techniques allow for an increased performance, as the processor can maintain a higher in-

struction throughput and can more easily hide the latency of more time-consuming instructions (e.g.

floating-point, SIMD and memory operations). However, this is traded for increased complexity in the

processor control structures, as it must be able to fetch, decode, rename, execute, and commit several

instructions at the same time, verifying and handling all the dependencies between them. A classical ap-

proach to handle all this complexity is to distribute the control of the instruction scheduling, in a scheme

known as the Tomasulo’s algorithm [17]. This approach relies on dispatching the decoded instructions to

8

one of the multiple issue queues available (also called reservation stations), each associated to a cluster

of functional units (execution ports), depending on the instruction type (see Fig. 2.1). Each issue queue

is responsible for monitoring when its instructions are ready for execution, by scanning the Common

Data Bus (CDB) (shared with the other queues) for the needed operands and buffering them when they

are produced. In each clock cycle, it selects as many ready instructions as possible and schedules them

for execution, limited by the available functional unit resources.

To sum up, a modern superscalar speculative processor executes instructions out-of-order to exploit

ILP, but has to operate in-order in the first pipeline stages (fetch, decode, rename, and dispatch) and

in the commit step, so that an application is correctly executed. By following the usual terminology, the

front-end is the part of the processor core responsible for fetching and decoding new instructions, and

the back-end (or execution engine) is where these instructions are executed.

However, the amount of ILP that can be exploited is often limited [20]. As a result, and to bet-

ter use the available resources, several modern processors also exploit another form of parallelism:

multithreading. In multithreading, different threads that share the same process addressing space are

executed concurrently, i.e. without the need for any process context switch. By using the register

renaming and dynamic scheduling capabilities of a superscalar processor, instructions from different

threads can be executed simultaneously (in the same core) in an approach called Simultaneous Multi-

Threading (SMT) [21].

SIMD extensions

Another form of parallelism that can be exploited for increased performance is data-level parallelism,

where the same operation is performed over several data elements in parallel, following the Single In-

struction Multiple Data (SIMD) execution model (see Fig. 2.2). This type of parallelism was first exploited

in graphics and multimedia applications, often supported in domain-specific architectures, Digital Signal

Processors (DSPs), stream processors, and Graphics Processing Units (GPUs) [22]. However, SIMD

architectures have since found application in other broader domains, such as scientific and engineering

computing, and machine learning [6,9].

X3 op Y3

Y3

X3

op

X2 op Y2

Y2

X2

op

X1 op Y1

Y1

X1

op

X0 op Y0

Y0

X0

op

Source
Vector 1

Source
Vector 2

Destination
Vector

Figure 2.2: SIMD execution model [6].

9

As the relevance of these application domains increased, new instructions were gradually added

to GPPs following the SIMD model, in what is usually called a vector extension in the Instruction Set

Architecture (ISA). These SIMD instructions allow for the efficient manipulation (in parallel) of vectors of

several data elements, reducing the number of instructions needed to process the input data. Initially,

these instructions used the regular 64-bit registers and functional units, packing together several small

width values, such as 8-bit and 16-bit [13], but eventually brought the appearance of dedicated vector

registers and functional units, with larger widths. For example, the ARM Cortex-A76 microarchitecture,

presented in Figure 2.1, includes a dedicated vector register file and two vector execution pipelines,

which are shared with the Floating-Point (FP) operations. Since its version 7, the ARM ISA includes an

Advanced SIMD extension, which has dedicated vector registers with 128-bit (in version 8), and whose

implementation in ARM cores is called NEON (see Section 5.2 for more details).

The current trend is to increase the vector length with each new ISA generation to extract higher

performance gains [7, 10]. This trend is exemplified by successive Intel architectures, where the MMX

vector extension (1997) started by sharing the scalar 64-bit registers, and the SSE extension (1999)

introduced dedicated 128-bit vectors registers, which were increased to 256-bit in AVX (2008) and then

to 512-bit in AVX-512 (2013). ARM has taken a step further by introducing SVE, a SIMD extension that

can scale to a vector length of up to 2048 bits [9]. As the vector registers increased in size, the datapath

resources that are necessary to perform the vector operations have increased too, namely the SIMD

register file and execution units. The drawback is the increase in power dissipation [11].

2.2 Power efficiency in computer architectures

The mechanisms presented in Section 2.1 have allowed new levels of performance to be attained but

required a corresponding scaling of the available architectural resources. More functional units of each

instruction type were added, the decode and commit stages were widened to support a larger instruction

bandwidth, and the issue queues and ROBs sizes were increased (see the example microarchitecture

in Fig. 2.1). The cost of these structures is paid in increased chip area and power dissipation [12,18].

For many years, this performance scaling was supported by a steady advance in transistor integra-

tion technology, which was maintained at constant power density regimes. However, the reduction in

transistor size that allowed for tighter integration had to be accompanied by a proportional reduction in

their power dissipation through a downscaling in voltage and current. This is known as Dennard scaling

and was valid for 30 years [23,24]. Nevertheless, this scaling has broken down in the past two decades,

as a consequence of the increasing sub-threshold leakage current in the transistors, and because their

threshold voltage turns further reductions in the supply voltage unfeasible [1, 2]. These factors have

been fixing the power per transistor, even when their dimensions are further reduced.

10

As a consequence, the overall power consumption by chip area has been steadily scaling upwards

with each microprocessor generation. At the same time, the power that can be dissipated by the chip

without compromising its integrity is limited, originating a ”Power Wall” that limits performance increases.

Hence, power consumption became one of the major constraints in computer design, and architectural

research has shifted towards power efficiency [3–5], which continues to be a focus in present-day re-

search in all computing domains, from mobile to High-Performance Computing (HPC) [25–28].

Although superscalar processors provide enough architectural resources to sustain a high execution

throughput (e.g. several functional units for each operation type and large physical register files), these

resources are highly underused during large portions of the execution, namely in code regions with

low ILP [29]. A research trend for increasing power efficiency is to implement mechanisms to turn off

unneeded resources and cut their power waste [3,5,28,30,31]. A particular focus is given in the literature

to optimizing the usage of functional execution units, as they represent a very significant fraction of the

energy consumption [11,12,29,32–34]. Some of the most prevailing approaches will be briefly reviewed

in the following subsections.

2.2.1 Prevailing techniques for power efficiency

The two principal sources of the microprocessor power consumption are dynamic power and leakage

power [3, 30]. Dynamic power is caused by the charging and discharging of the transistors’ capacitive

load, when switching between states. In the CMOS technology, the dynamic power consumption of a

logic block is a function of its activity, as a logic gate only dissipates dynamic power when it switches.

This power component is approximated by

Pdynamic ' αCVDD
2f, (2.1)

where C is the equivalent capacitance of the load circuit, VDD is the supply voltage, and f is the oper-

ating frequency. α is the activity factor, which varies between 0 and 1, and it is the average fraction of

gates switching each cycle.

A significant portion of the dynamic power dissipation is caused by the clock signal tree, which

switches at a high frequency and drives a high load. Hence, a common approach for reducing the

dynamic power is to turn off the clock signal for unneeded logic blocks [3, 5, 30, 31]. This technique is

called clock gating and is implemented by partitioning the clock network and by adding enable signals

to toggle each portion.

The other main component of power dissipation is leakage (or static) power, which is caused by

the transistors’ leakage currents, which dissipate power even when the gate is not switching [3]. It is

composed of two main components: sub-threshold leakage, which is due to weak inversion currents

11

across the device; and gate leakage, which is caused by tunnelling currents through the gate oxide.

Hence, leakage power is given by

Pleakage = VDDIleak = VDD(Isub + Iox), (2.2)

where VDD is the supply voltage, Isub the sub-threshold leakage current, and Iox is the gate leakage

current. Due to the shrinking in transistor size and the consequent increase in leakage current, leakage

power has become extremely relevant and is a major concern in microprocessor design [4,32].

A common technique for reducing leakage is power gating, where the power supply for the idle logic

blocks is cut off [32,35–38]. Power gating suppresses both dynamic and leakage power consumption in

that block, but has the drawback that it requires long wake-up delays when restoring the supply voltage,

and has a significant energy overhead in the state transitions. Hence, its usage only outweighs the

cost when the gated block is idle for an extended period. Power gating is implemented by placing a

header transistor between the supply voltage and the supply of the circuit portion to be power gated,

which is controlled by a sleep signal. As clock and power gating have different trade-offs, it can be

advantageous to add support for both techniques in the microprocessor’s components and to trigger

them concurrently [36].

Another widely used power management technique is dynamic voltage and frequency scaling,

which is similar to power gating in the sense that either the supply voltage is lowered to reduce leakage

currents, or the frequency is lowered to reduce the switching rate. However, instead of completely

cutting the supply voltage or the switching currents, they are simply reduced gradually [30, 35]. Hence,

the targeted circuit block can still operate normally, and the decreased voltage/frequency results in a

consequent reduction of dynamic and leakage power (see Equations 2.1 and 2.2). However, as reducing

the supply voltage increases gate delays, the frequency must also be lowered for the circuit to function

properly. Hence, varying the voltage and frequency during execution allows different trade-offs between

power saving and performance reduction.

2.2.2 Power gating unused functional units

Functional units represent a very significant fraction of the microprocessor power dissipation, particularly

in terms of leakage power, and several previous authors have focused on reducing their power dissipa-

tion when idle, using power gating [11,12,29,32–34]. The crucial challenge in this approach is deciding

when to gate a functional unit. Power gating techniques have a significant latency when waking up a

gated unit, which cannot be used immediately [29]. If a functional unit is kept in the sleep mode for too

long, it might significantly hinder performance. Moreover, turning off the functional unit has a transition

delay: when the supply voltage is decreasing, the power dissipation gradually decreases [32], so the

12

earlier the power gating is initiated in an idle period, the better (see Fig. 2.4). Finally, the transitions

when turning off and on this mechanism have a power overhead, so the idle period must be expected to

last long enough to outweigh that cost.

Rele et al. [29] proposed a software-based approach, where the hardware gating mechanisms are

controlled by new instructions, which hint on when to turn functional units off or on. The compiler is

responsible for identifying regions where each functional unit type has low activity and trigger their sleep

mode.

More recent literature focuses instead on dynamic hardware mechanisms, which detect the run-time

usage of the functional unit and use predictors to decide on whether to trigger power gating during idle

periods [12,32,33]. These authors propose the addition of an architectural structure associated with the

functional unit that monitors its activity (idle signal) and uses some control logic to decide on when to

generate a sleep signal. When the sleep signal is triggered, a leakage control mechanism power gates

the functional unit into a low leakage mode (Figure 2.3).

Sleep

Power
Management

Unit

Sleep
Signal

Generator

Functional
Unit

Leakage
Control

Mechanism

Idle

Figure 2.3: Functional unit’s power gating control mechanism [12].

Hu et al. [32] proposed a model to evaluate the potential of power gating an idle functional unit,

introducing three main intervals worth considering in a gating mechanism (see Fig. 2.4). The idle detect

interval (A) begins when the functional unit becomes idle until the sleep signal is generated; the break-

even interval (B) is the interval of time since the sleep signal is triggered until the leakage energy saved

(Ebe) outweighs the energy overhead in the sleep (Est) and wake-up (Ewt) transitions; the wake-up

interval (C) corresponds to the period from the moment when the wake-up signal is triggered until the

functional unit is ready for issue.

Hu et al. [32] also proposed a mechanism for generating the sleep signal, consisting on a simple

state machine which counts the number of idle cycles and triggers the sleep mode when a certain static

threshold is reached. The threshold for each functional unit type is decided at design time, based on

their model of the break-even interval and experimental testing. They reach a detection threshold of

around 6 to 12 cycles for floating-point units, as a compromise between losing gating opportunities and

mispredicting short idle periods. They reported that with the proposed mechanism, the floating-point

13

Power

Time

Dynamic
Energy

Leakage
Energy

Dynamic
Energy

Leakage
Energy

Est Ebe=Est+Ewt Egain

trigger
sleep

trigger
wake-up

Residual Energy Leakage

idle detect
interval

break-even
interval

unit
ready

wake-up
interval

Ewt

(A) (B) (C)

sleep-down
interval

sleep
interval

Figure 2.4: Time-intervals in power gating as described in [32] (also based on the figure in [39]). Ebe is the break-
even energy which is required to outweigh the overheads in the sleep transition, Est, and in the wake-up
transition, Ewt. The remaining leakage energy savings correspond to the actual energy gain, Egain.
The power curves in this diagram are simplified.

unit is power gated for up to 28% of the execution cycles, with only a 2% performance loss.

Youssef et al. [12] argued that the accuracy of this counter mechanism could be increased by al-

lowing the sleep threshold to change dynamically, adapting to the currently running application. Their

implementation raises the detection threshold when idle periods are frequently interrupted by functional

unit usage spikes, and lowers the threshold when the functional unit usage is infrequent and the proba-

bility of saving energy when gating is high. They reported that their mechanism improved the accuracy

of correctly detecting an idle period from an average of around 40−60% to 98%. Lungu et al. [33] argued

that even though these mechanisms can provide very relevant leakage power savings (as much as 99%),

they can also cause significant increases in power consumption (up to 70%) when there is a system-

atic misprediction. They proposed improving the sleep control unit by adding a success monitor, which

predicts whether a gating opportunity is likely to cause power loss based on previous occurrences, can-

celling the sleep signal if that probability is high. They further proposed introducing a maximum power

loss threshold which, when exceeded, aborts all sleep opportunities during a specified period.

2.2.3 Reducing the SIMD units power dissipation

SIMD functional units, due to their larger width, represent a significant contribution to power dissipa-

tion, namely leakage power, so they are a particularly relevant candidate for applying power efficiency

techniques. Kumar et al. [11] tackled this problem in a complementary way to the previously discussed

gating mechanisms, focusing on keeping the SIMD units idle for long periods. By increasing the duration

of gating intervals and reducing the transitions between the sleep and ready states, the effectiveness of

the gating mechanism is improved.

To attain this objective, they propose a mechanism that identifies short duration spikes in the SIMD

14

functional unit usage, and devectorizes the corresponding instructions, trading a slight performance

penalty for more significant power benefits. However, their approach has a significant drawback, as

the profiling and devectorization are performed dynamically at run-time, which requires an extra layer

between software and hardware, with power and delay penalties.

Another shortcoming is the performance reduction from the devectorization. However, the authors

propose an interesting solution for reaching a better compromise between the power dissipation reduc-

tion and this performance decrease, by performing partial devectorization. In regions with intermediate

SIMD intensity, they propose gating only half of the SIMD unit and dynamically splitting vector operations

into two, so that each half of the vector is computed separately. However, this approach increases even

more the additional complexity in the dynamic translation between software and hardware.

2.3 Scalable width datapaths

Integer values are typically stored and computed using the processor’s default bit-width, which for most

modern GPP corresponds to 64 bits. However, most of the computed values are small when compared

to the full integer range and can be encoded using only a small portion of those bits. The remaining

bits that are not required to encode the value represent a waste of energy, as they are not required

for computations or for storing that value. The values or computations that present this reduced width

pattern have been labelled as narrow-width in the literature [13]. In particular, optimizing the architecture

when handling computations over narrow-width operands is a very relevant opportunity for reducing

power consumption in the execution unit.

Brooks and Martosini [13] and some later authors [14,15] have defined the narrow-width representa-

tion of an integer value by removing its redundant sign bits on the left: the leading zero-bits or one-bits.

This narrow-width definition is especially relevant and prevalent for integer values, where this reduction

in the number of bits is done without losing any precision. The width of an integer value is then defined,

in bits, as the index of the least significant sign bit (see Fig. 2.5).

Decimal Binary Width

...000001100125 6 bits
123456

...1111111000-8 4 bits
1234

...00000000000 1 bit

-1 ...1111111111 1 bit

Figure 2.5: Narrow-width integer representation, where redundant sign bits are removed. The index of the least
significant sign bit corresponds to the value’s width.

Furthermore, an operation itself can be labelled as narrow when the calculation involves two values

15

of limited width, hence requiring less logic to evaluate. Previous authors have differed slightly in how

they classify an operation’s width. Some authors only consider the width of the input operands [13],

while others also take into account the resulting value [14,40]. Although it is straightforward to consider

the width of an operation as the largest width among its operands, Brooks et al. [13] note that when

computing some addition operations, it may suffice to evaluate the portion corresponding to the narrower

operand. If there is no carry from the least significant portion of the operation, the remaining bits of the

wider operand can be propagated directly. However, this specific optimization is highly dependent on

the operation type and the specific value of the operands.

Several authors have evaluated the relevance of exploiting narrow-width operations, using integer in-

tensive or multimedia benchmarks. Based on the SPECint95 benchmarks and a modified SimpleScalar

superscalar processor simulation environment, Brooks and Martonosi [13] reported that roughly 50%

of the integer instructions had both operands within 16 bits. This ratio increased to a fraction between

80% to 90% for operands within 33 bits. Loh [14] obtained significantly lower fractions, around 30% and

50% for 16-bit and 33-bit, respectively, with the same simulator. They justified the new width distribution

with the usage of an updated benchmark (SPEC2000) and because the operation result is also used

to calculate the width. Ergin et al. [15] focused on the values stored in the register file, by using a su-

perscalar cycle-accurate simulator based on SimpleScalar and the SPEC 2000 benchmark suite. They

found that around 40% of the stored values have 16 bits or less, and 85% are covered by 32 bits. Özsoy

et al. [41] obtained similar narrow-width statistics for the SPEC2000 but using the PTLsim simulator,

which handles 64-bit x86 instructions. As shown in Figure 2.6, they reported that the 34-bit range covers

more than 90% of the values in the profiled applications.

Figure 2.6: Cumulative distribution of narrow-width values occurrence, per benchmark of SPEC2000 [41].

16

Several authors have also expressed the notion of grouping values in different narrow-width classes,

proposing static bit partitions based on their benchmark statistics. Most of the suggested partitions are

among three classes (see Fig. 2.7), with 16 bits and 33/34 bits as boundaries [13,14,41]. The boundary

around 33 bits is attributed to the memory addressing [14], which explains why it is more prone to change

with specific benchmarks or even compilers. Grouping into a smaller number of classes introduces a

coarser granularity but simplifies the control logic [41].

Figure 2.7: Distribution of integer operations grouped by classes (16-bit, 33-bit, and 64-bit), for several SPEC2000
applications [14].

In some of these analyses, it was also identified that not only narrow-width operations occur fre-

quently, but they also show strong temporal locality. An instruction that recently operated on narrow-

width values has more probability to perform narrow computations again, as it will likely manipulate the

same type of input data. Loh [14] first found out that 90% of the instructions have the same width as

the last three occurrences of the same instruction type, and 86% for the past seven instances. This

temporal locality makes it possible to develop width prediction mechanisms that enable the detection of

narrow-width instruction early in the pipeline [14, 15, 41], with low misprediction rates, even before the

operands are known, or the result is computed.

Hence, narrow-width values are a highly relevant opportunity for microarchitectural optimizations,

as the logic involved in performing calculations and storing these values is simplified. A narrow-width

operation can be performed using a narrower Arithmetic Logic Unit (ALU), and its operands and result

can be transferred in the datapath using a reduced bus-width and can be stored more compactly in the

register file or even in memory.

17

2.3.1 Software based techniques

A possible approach to exploit narrow-width operands at the microarchitecture level is to explicitly provide

the programmer with instructions to more efficiently manipulate smaller resolution operands. SIMD

instructions are themselves an example of this, as they can operate on individual elements of up to 8

bits, in most ISAs [9,42,43]. In this case, the instruction itself encodes the operand’s width, so the use of

narrow-width operands has to be decided on compile-time. The performance efficiency of this approach

relies on having architectural structures conveniently adapted to compute and store several values in

parallel, but these values must all have the same width.

A different software-based technique was proposed by Canal et al. [44], where the binary instruction

explicitly encodes the width required for an integer operation, and its execution is optimized by gating

the unneeded datapath portion.

These static solutions have the advantage that the architectural optimizations can be performed with

low control overhead, and can be identified very early in the pipeline, as soon as the instructions are

decoded. However, these software-based approaches rely on compile-time analysis to estimate the

width bounds for each operation, in order to identify which instructions require less resolution. The com-

piler must perform a conservative estimation, as no overflow should occur due to insufficient resolution,

independently of the data input, which results in losing a significant portion of the narrow-width oppor-

tunities. In particular, for the SIMD instructions, even if only a small fraction of the elements requires a

larger width, all operations have to be performed using this higher resolution.

A possible solution to reduce the number of missed opportunities is to allow the resolution encoded

in these instructions to be speculative. This approach relaxes the constraints on the static analysis,

which only needs to set the most probable width of the operand and result. Pokam et al. [16] proposed

that the instruction encoding should be only a hint to the architecture and that there should be hardware

mechanisms to recover from width overflow. If the hinted width is not enough to perform the computation,

a replay trap should be set to restart the instruction with a wider datapath resolution.

However, these replay mechanisms come at a high performance and energy cost, as not only is the

executed instruction wasted, but this may also interfere with the execution of the other instructions in the

pipeline. Moreover, the compiler is still forced to be conservative to some degree in the estimation of

the width bounds to keep the under-prediction rate low. Futhermore, the same program region can have

different width patterns at different moments of execution, which makes the static analysis even more

complicated and may require more complex program binaries.

Moreover, these approaches require making complex changes to the compilers and recompiling the

applications to take advantage of the new optimized instructions. This increases the cost of deploying

these software-based solutions.

18

2.3.2 Dynamic hardware-based approaches

As it was referred before, a considerable portion of narrow-width computations can only be detected at

run-time, when the actual values are available. The width that is required by each value can be evaluated

using leading zero or one-bit detectors. Hence, dynamic mechanisms implemented at the hardware

level can better exploit narrow-width computations, for increased performance and power-efficiency, by

conveniently scaling the datapath structures during run-time or by better utilizing the already available

resources.

Most of the existing work in dynamic narrow-width optimization has been developed in out-of-order

superscalar processors [13, 14, 40, 41]. Apart from its higher relevance in the GPP segment, this can

be explained by the wider instruction window and higher amount of available datapath resources, which

present more opportunities for width related optimizations.

Brooks and Martosini [13] suggested some optimizations to the scalar datapath at the level of the

issue queue and the functional unit schedulers. By using leading zero and one detectors, the integer

instructions waiting for execution are tagged according to the width of their operands, as soon as they are

known (See Figure 2.8). They proposed two different optimization mechanisms when narrow instructions

are issued to the corresponding functional unit:

• For power efficiency, they suggested clock-gating the unneeded resolution of the functional unit,

when the instruction is issued;

• For performance, they proposed fusing multiple narrow operations of the same type for executing

simultaneously, in the same ALU, in a form similar to auto-vectorization.

Issue Queue

Op

add

sub

add

Source 1 Source 2 Narrow?
yes

no

yes

000...000010001 000...000000010

010...100110101 011...011110101

000...001000010 000...000010011

Functional Unit

add
Source 1000...001000010 000...000010001

Source 2000...000010011 000...000000010

Kill Carry

Figure 2.8: Example of an opportunity to fuse two narrow-width addition operations waiting for execution in the
issue queue (adapted from [13])

For the fusing approach, they only consider simpler and more frequent arithmetic operations, such

as additions, where the functional unit can be shared by cutting the carry chain and multiplexing the

19

operands to different bit ranges. The performance increase is achieved with the higher execution

throughput using the same functional unit resources, as long as enough opportunities for fusing are

encountered during the program execution.

They argue that the overhead in terms of circuit area and power consumption for their approaches

is not significant, and it is mainly due to the leading bit detectors and width select multiplexers. For the

power efficiency method, they estimated a reduction in power consumption of the integer unit of 54.1%

for the SPECint95 benchmark suite. For the performance approach, they estimated an average speedup

between 4.3% and 6.2%, with the same benchmarks.

Loh [14] presented a similar approach to increase the superscalar processor performance by fusing

several one cycle integer narrow-width operations for execution in the same ALU. However, different

operation types can be fused, in his approach, extending this technique from a SIMD to a Multiple

Instruction Multiple Data (MIMD) approach. He argued that existing ALU designs that already support

SIMD and multimedia extensions only have to be extended to have support for different opcodes for

each sub-operation.

Rochecouste et al. [40] argued that the added complexity to handle instructions of different widths,

in particular at the scheduler and in register file accesses, justify partitioning the superscalar microar-

chitecture into two clusters which process instructions of different width. These full and narrow-width

cores have independent register files and datapaths, with the corresponding resolution, as illustrated

in Figure 2.9. The narrow core only executes instructions where both the operands and the result are

narrow, which they define as 16-bit or less. The narrow register file must be replicated in the full-width

core, for the execution of instructions which have both types of operands or result. They argued that

there are enough narrow and full instructions interleaved in the execution to keep both cores working at

a good rate.

Islam and Stenstrom [45] focused on optimizing narrow-width memory instructions, proposing an

additional cache for these narrow values. This narrow-width cache would be placed alongside the L1

data cache and connected directly to the Central Processing Unit (CPU) in parallel. This new cache

would also be connected to the higher-level cache hierarchy through a narrow-width detection block,

which would detect narrow operands closer to memory and fetch them directly.

2.3.3 Scalable width structures

These narrow-width optimization mechanisms require datapath structures that can adapt their bit-width

during run-time, namely at the level of the Functional Units (FUs), register files, or caches. Several

implementations of such structures have been proposed in the literature that either turn off part of their

resolution when handling narrow-width values or that use their full width to pack several narrow-width

values.

20

Centralized front-end

Steering logic

Centralized data-cache

local instruction queue instruction queue

16-bit RF
16-bit RF
duplicate64-bit RF

local bypass local bypass

16-bit
ALU

16-bit
ALU

LD/ST Unit
+ ALU

64-bit ALU

64-bit 16-bit 16-bit

16-bit

6
4

-b
it

 c
lu

st
e
r

1
6

-b
it

 c
lu

st
e
r

Figure 2.9: Cluster partitioned approach for narrow-width exploitation [40]

2.3.3.A Functional units

Several implementations have been proposed for integer FUs capable of supporting operands with mul-

tiple widths, mainly developed to provide support for SIMD ISA extensions. These implementations

focus on multiplication and addition operations, although it is reasonable to assume that logical and shift

operations are easier to implement.

Själander and Larsson-Edefors [46] proposed an integer multiplier design that adapts its bit-width to

the operands. Their implementation also allows the multiplier logic to be efficiently shared for computing

two narrow-width operations in parallel. They argued that the same could be done for other functional

unit types, namely adders.

In the context of SIMD functional units, Balakrishnan and Nandy [47] and Karthikeyan and Ran-

ganathan [48] went further and argued that the default element sizes (namely 8-bit, 16-bit, 32-bit, and

64-bit) miss some important media applications, such as medical imaging with 12-bit pixels and 9-bit

encoded MPEG files. In accordance, they proposed changes in the SIMD FU for supporting arbitrary

element sizes in addition and multiply-add operations, by modifying the carry-lookahead and Wallace

tree algorithms, respectively, with a small hardware overhead.

For the efficient implementation of integer multiply and multiply-accumulation SIMD units, Danysh

and Tan [49], and Krithivasan and Schulte [50] have proposed designs that allow the same multiplier

hardware to be shared for different operation modes. The Multiply-Accumulator (MAC) design proposed

21

in [49] allows the execution of either one operation with 64-bit operands, two with 32 bits, four with 16

bits, or eight with 8 bits, both signed and unsigned. In both cases, the proposed designs are based

on a similar scalar multiplier architecture, which is composed of a partial product generator, a Wallace

reduction tree and a final carry-propagate adder (see Figure 2.10). The units are vectorized by selecting

only the partial products corresponding to the elements in each mode and by killing the cross-products

between boundaries of different elements (zeros in Figure 2.11). By aligning the partial products for

each element so that there is no overlap with other elements (see Figure 2.11) the same reduction tree

can be used for each mode.

The main difference between these two architectures is the implementation of the partial product

generator, which is a Booth encoder in [49] and a matrix multiplier based on Baugh-Wooley technique

in [50]. Using a Booth encoder reduces the number of partial products to half and allows for a smaller

reduction tree. However, it requires more complex control logic for supporting multiple element sizes, as

it requires suppressing carries between element boundaries in the reduction tree and final adder.

More recently, in the context of floating-point MAC architectures that support multiple precisions,

several works [51–53] have proposed similar designs for implementing a mantissa multiplier (which is

identic to an integer multiplication) that is shared between precision modes.

accumulator (C)

multiplicand (A) multiplier (B)

Partial Product Generator (PPG)

Partial Product Reduction Tree (PPRT)

Final Carry-Propagate Adder (CPA)

result (R)

mode[3:0]

unsigned

Figure 2.10: Vectorized MAC design proposed in [49].

2.3.3.B Register file

Large register files also play a fundamental role in sustaining the performance of a superscalar proces-

sor and represent a significant portion of dynamic and static power dissipation. Several authors have

focused on taking advantage of the lower number of bits required by narrow-width values to use register

logic more efficiently, either for increased performance, by compacting narrow values and increasing the

22

32-bit

0

0

0

0

16-bit

0

0

8-bit

Figure 2.11: Selecting the partial products for 32-bit, 16-bit, and 8-bit operation modes, using the same hardware
of a 64-bit scalar MAC unit.

number of free registers available, or for power-efficiency, by turning off unused portions of the register

file.

However, register file optimization is quite challenging for a superscalar processor, mainly because

of register renaming, as the registers are allocated before the value to be stored is known. To handle

this, Ergin et al. [15] proposed conservative and speculative approaches. In the conservative approach,

a full-size register is allocated during the renaming phase, and as soon as a narrow result is obtained,

the empty space can be reallocated. In the speculative approach, the width of the instruction is predicted

before renaming, and a register with an adequate size is allocated. If there is an over-prediction, the

extra resolution can be either reallocated or wasted. Under-prediction is more difficult to handle, as

it may lead to deadlocks if a suitable register is not found. The recovery mechanism depends on the

details of the implementation but may require squashing more recent instructions to free-up registers.

Based on this same idea, two different techniques to optimize narrow-width value storage can be

identified in the literature: packing and partitioning. In the packing technique, several narrow values

share the same full-size register, and an extra pointer or mask is used to address the sub-registers.

Ergin et al. [15] proposed a register packing approach, where four classes of values (16, 32, 48, and

64-bit) are stored in 8 byte physical registers. These values are stored in any of the 8 byte slots, not

necessarily contiguously, by using a 4-bits mask to encode where each byte is stored. Each physical

register is then addressed by a pointer and this mask. To manage the allocation and reallocation of

these sub-registers, they also proposed independent lists of free registers for each class. Similarly to

operation fusing, this register packing technique is more focused on performance, as it allows the existing

resources to be better used. Although it does not reduce, by itself, the register file power consumption,

it can be combined with other approaches, such as turning off unused parts of the register file.

In the register partitioning approach, the physical register file is partitioned in regions of different

widths, where the unneeded resolution is either removed or gated, providing different register size

classes. Özsoy et al. [41] proposed both a static scheme for this partition, where the number of registers

for each class is fixed, and a dynamic scheme, which can change this partition in run-time, by using

23

gating mechanisms. In their implementation, they also resort to a width predictor to choose the register

class in the renaming stage. In the case of a misprediction, if there are no free registers with enough

size, the recovery mechanism is to flush the most recent instructions. In the dynamic partition, the reg-

isters’ class configurations are updated periodically (e.g. every 1024 clock cycles), by using decision

heuristics based on utilization statistics measured in that interval. They report power dissipation reduc-

tions in the register file in the order of 50% and 60%, for their static and dynamic partition approaches,

respectively. They also report a minor performance degradation of 5% (on average) for the static ap-

proach, as the reduction in the number of full-size registers may lead to the program stalling more easily.

For the dynamic approach, the reported degradation is negligible, and for some benchmarks there is

even an increase in Instructions Per Cycle (IPC).

2.3.3.C Caches

The optimization in the storage of narrow-width values is not only relevant for the register file but also for

the caches, in particular for the first level data cache connected to the datapath. Cache space is crucial

for performance, as it allows accessing recently used values without the high latency of accesses to main

memory (or other cache levels). Using the available space more efficiently, by packing narrow values,

would allow for more new data values to be kept without the need for replacing older ones. Pujara and

Aggarwal [54] proposed implementing these optimizations in the L1 data cache, obtaining an increase

in its capacity of 50% and a reduction in the miss rate of 23%, on average.

2.4 Summary

This chapter presented a highly relevant research topic in computer architecture focused on increasing

the energy efficiency of the processor’s execution unit, in particular of the increasingly important SIMD

unit. The main structures of modern superscalar processors were presented and the state-of-the-art

techniques for reducing power dissipation were reviewed, in order to provide the necessary background

for proposing new power-efficiency mechanisms. Then, the opportunity of exploiting narrow-width inte-

ger operations for reducing power and increasing performance was presented. Previous authors have

shown that most integer values use only a fraction of the available ALU width, but they only proposed so-

lutions for exploiting it in the scalar execution pipeline, disregarding the exploitation of these techniques

in vector operations. The following chapter will evaluate the previously unexplored opportunity of opti-

mizing the execution of narrow-width vector instructions, with the goal of reducing power consumption in

the SIMD units.

24

3
Narrow-width Opportunity in SIMD

Contents

3.1 Defining narrow-width in SIMD computations . 25

3.2 Optimizing vector computations in out-of-order processors 28

3.3 Profiling integer intensive applications . 29

3.4 Envisaged energy savings . 34

3.5 Summary . 36

This chapter presents a preliminary evaluation of the opportunity to exploit narrow-width values in

Single Instruction Multiple Data (SIMD) computations. Firstly, narrow-width vector computations are

defined, and the out-of-order processor microarchitecture already presented in Section 2.1 is analyzed

to identify how these operations can be exploited. Then, a variety of integer intensive applications

are profiled to evaluate the prevalence of narrow vector computations. Finally, an initial estimation of

the expected energy savings is performed to motivate the relevance of proposing new architectural

mechanisms.

3.1 Defining narrow-width in SIMD computations

The narrow-width opportunity in SIMD computations can only be evaluated by first defining how the width

of a vector operation is measured. The width of an integer value has been defined as the number of

required bits to uniquely encode it, while excluding the redundant sign bits (see Figure 2.5). Due to the

frequent usage of signed values (in two’s complement) in most application domains, it is advantageous

25

to keep the least significant sign bit and to compute the operand width as its index in the bit-word. For

positive (or unsigned) values, this representation wastes an extra bit, the leading zero bit. The alternative

would be to discard all the leading zero bits and count the position of the most significant one bit (as

some previous authors have done). However, this would result in the full architecture width being used

for every negative value (as all the leading bits are one).

It is important to note that this optimized narrow representation is independent of whether this value

will be considered as a signed or unsigned operand in an instruction, and is more related to how this

value will be stored and transferred. When an operation (e.g. arithmetic, logic, or multiplication) is

executed over narrow values (using the proposed representation), it may use a narrower Arithmetic

Logic Unit (ALU). Naturally, this compressed representation does not result in any precision loss, as only

redundant sign bits are discarded, and the original bit-arrays can be restored through sign bit extension.

A typical vector operation is composed of several sub-operations executed in parallel over the el-

ements of the source vectors, which are usually called vector lanes. The (optimal) width of a vector

operation is henceforth defined as the sum of the width required by each of these lanes (see Fig. 3.1).

When a vector lane corresponds to an operation between two or more data elements, its width is con-

sidered as the maximum width between those elements. When there is only one operand, its width is

used directly.

128-bit Vector (4x32-bit)

Op 1

Op 2

524284 -1 42 -256

-339 0 493 88

(decimal)

(hexadecimal)0007FFFCh FFFFFFFFh 0000002Bh FFFFFF00h

FFFFFEADh 00000000h 000001EDh 00000058h

Lane 3 Lane 2 Lane 1 Lane 0

20 bits 1 bit 7 bits 9 bits

10 bits 1 bit 10 bits 8 bits

20 bits 1 bit 10 bits 9 bits

Useful Width = 30 bits

Figure 3.1: Width of an example 4x32-bit vector operation, in a 128-bit architecture. The width for each lane is the
maximum between its sub-operands, and the operation width is the sum of all lanes. The hexadecimal
digit with the leading sign bit is marked in red.

However, vector extensions usually support several different element modes (e.g. 64-bit, 32-bit,

16-bit, 8-bit), by varying the number and the size of the lanes in which vectors are divided. For the

same contents in the vector operands, different modes change how the values are interpreted and

computed, so the width of these values and of the whole vector computation is also changed. Hence,

when computing the width of a vector instruction, it is necessary to take into account the element size.

26

Moreover, typical vector extensions provide more modes for combining operand elements than the

regular SIMD model (see Fig. 2.2). Figure 3.2a depicts some of these different modes for the instructions

in the ARM NEON extension. For example, the pairwise mode considers lanes as pairs of elements

in the same vector, and the across mode makes a reduction over all the elements in a vector (e.g.

ADDV sums all elements, and MAXV returns the maximum value in the vector). Some other instructions

manipulate a single vector element, such as the UMOV and SMOV instructions, that move an element

to a general-purpose (i.e. scalar) register. These different modes change how the width of an instruction

is calculated, as they group vector elements into lanes differently. Most vector extensions also have

specific instructions to deal with operations between vectors with different element sizes, or that store

the result in wider or narrower elements (see Figure 3.2b). However, in this study, only the operand

values are considered when calculating the width required by each lane.

Op1

Regular

Op2

Op1

Pairwise

Op2

Op1

Across

Op1

Element

(a)

Normal

Op1

Op2

Res

Long (L)

Op1

Op2

Res

Wide (W)

Op1

Op2

Res

Narrow (N)

Op1

Op2

Res

(b)

Figure 3.2: Overview of vector operation modes in Arm NEON, in terms of how the elements are combined (a), and
the relative size between operand and result elements (b). In this example, each vector is considered
to be composed of 4 data elements. Elements in the same lane are highlighted in the same colour.

27

3.2 Optimizing vector computations in out-of-order processors

When the elements in a vector operation do not require the whole bit-width assigned at compile-time,

these elements can be narrowed by discarding redundant sign bits before the operation is computed.

If the narrowed elements are packed into smaller width vectors, only part of the functional unit width is

required to perform the computation, and the remaining portion of the unit can be either turned off or used

for other computations. In either case, it is advantageous to perform these optimizations dynamically

at run-time, when the actual values of the vector operands are known, and the width required can be

detected.

Hence, narrow-width data can be exploited during the execution of vector operations. It should be re-

called that a grater emphasis will be given to superscalar out-of-order processors, not only because this

architecture topology has become dominant in General Purpose Processors (GPPs) but also because

these cores present more opportunities for optimizing narrow-width operations in run-time. In fact, as

explained in more detail in Section 2.1 (see Figure 2.1), these processors try to execute several inde-

pendent operations in parallel, so there are several instructions (in particular vector operations) waiting

for execution at a given time. As the instruction window increases (i.e. with a wider frontend, which

allow more instructions to be fetched each cycle), more narrow-width opportunities can be uncovered

simultaneously.

Moreover, modern superscalar cores have several functional units of each type, to allow multiple

instructions to start executing at each clock cycle. In particular, recent designs have as many as two

to four SIMD pipelines, as presented in Table 1.1. These additional units come at a high cost in power

consumption, so it is essential to use them more efficiently, especially if some of the units can be turned

off while maintaining an identic execution throughput. The existence of speculative execution in these

cores is not an issue for the approaches that will be proposed. Even if a mispeculated narrow-width

instruction is executed before being squashed, this still represents a reduction in the energy that would

be wasted executing it.

In a typical out-of-order execution engine (see Figure 3.3), several instructions are dispatched at

each clock cycle to one of the existing issue queues, accordingly to their operation type (B). In the issue

queues, their dependencies are monitored, and ready operands are fetched and buffered (A). When

all operands have been fetched, the instruction is scheduled (C) for execution in the corresponding

functional unit (D), as soon as it is available. Several instructions of the same unit type are usually waiting

for execution at the same time, and the scheduler is responsible for allocating the limited execution

resources. When each instruction finishes execution, its result is written to the register file (E), and

possibly fetched by other consuming instructions, directly from the Common Data Bus (CDB). Then, the

instruction waits to be committed in the Re-Order Buffer (ROB).

Hence, while the instructions are waiting for execution in an issue queue, additional hardware could

28

Op Op Op Op Op Op Op Op

Op Op Op Op Op Op Op Op

4-8 Instructions/cycle

Op Op Op Op

16 Bytes/cycle

Inst Inst Inst Inst

Op Op Op Op Op Op Op Op

3
2
B

/c
y
c
le

3
2
B

/c
y
c
le

3
2
B

/c
y
c
le

16B/cycle

32B/cycle

2x
32B/cycle

A
S

IM
D

Branch Predictor

NanoBTB (16-entry)
MicroBTB (64-entry)

Main BTB (6K)

Return Stack

L1 Inst Cache
64 KB
4-way

Inst TLB
48-entry

Instruction Fetch

Decode Queue (16 x 32b)

Rename & AllocateC
o
m

m
it Dispatch

General-Purpose
Register File

System
Registers

Advanced SIMD & FP
Register File

Issue (120-entry)

Queue
16-entry

PortPortPortPortPortPortPort Port

Branch ALU ALU ALU

MAC

DIV

ALU

FADD

FMUL

FDIV

FADD

FMUL

AGU AGU

LSU
Load Buffer

68-entry
L1 Data Cache

64 KB
4-way

Data TLB
48-entry

Store Buffer
72-entry

L2
 C

a
ch

e
2

5
6

/5
1

2
 K

B
8

-w
a
y

U
n
ifi

e
d
 S

T
LB

1
2

8
0

-e
n

try
; 5

-w
a
y

4-Way Decode
Decoder Decoder Decoder Decoder

Front
End

CachesBack End

Execution Unit

In
te

g
e
r

M
S
H

R
2

0
-e

n
try

M
S
H

R
4

6
-e

n
try

16B/cycle

Queue
16-entry

Queue
16-entry

Queue
16-entry

Queue
16-entry

Queue
16-entry

Queue
12-entry

Queue
12-entry

R
e
-o

rd
e
r B

u
ff

e
r (1

2
8

-e
n
try

)

ALU

IMAC

(B) Issue Queues (D) Execute

Vector
Register File

SIMD
FU

SIMD
FU

Inst. Entries

Dispatch Commit

(A) Operand Fetch (E) Write-back

(C) Schedule

(D)

(C)

(B)

(A,E)

Figure 3.3: Details of the SIMD execution engine in the out-of-order microarchitecture. This work will focus on
exploiting narrow-width in the SIMD execution pipelines, by modifying the integer vector units and their
corresponding issue queues.

be added to identify which instructions have narrow operands and mark that information in the issue

queue. Then, when the issue scheduler port chooses which operations are assigned to the available

functional units, it can take that information into account to schedule the execution more efficiently, by

assigning only a portion of the functional unit to packed narrow vector computations or by combining

several of these operations for simultaneous execution.

3.3 Profiling integer intensive applications

Having introduced the notion of packing (compressing) narrow-width elements in vector computations

for efficient execution, this section will evaluate the occurrence of these computations in several bench-

marks. However, it should be noted that although several of the considered applications have a sig-

nificant fraction of floating-point operations (or even floating-point SIMD operations), optimizing these

computations is outside the scope of this study. Reducing the number of digits in a floating-point repre-

29

sentation is not as straightforward as with integer (or fixed-point) values, due to how the mantissa values

are typically normalized (the most significant bit is an implicitly ”one”) and because it can result in a

precision loss.

3.3.1 Benchmarked applications

The opportunity to exploit narrow-width in vector operations was evaluated by profiling several bench-

mark applications, with a particular focus on integer intensive applications. This profiling was performed

using a modified version of the gem5 simulator [55], by considering a high-performance 8-wide Out-of-

Order core model and using the ARMv8 Instruction Set Architecture (ISA) with the NEON (Advanced

SIMD) vector extension, as further detailed in Chapter 5. Several applications of the SPLASH-2 [56],

PARSEC 3.0 [57], and SPEC20061 benchmark suites were profiled (see Table 3.1), which cover a wide

variety of computing domains (e.g. scientific computing, media processing, signal processing, and data

mining). However, these benchmark suites are not well prepared for SIMD architectural exploration [58],

as the degree of vectorization that can be achieved is low.

Hence, since this thesis work aims to propose mechanisms for optimizing the execution of intense

loads of vector operations, an adequate evaluation can only be performed by finding applications that

make significant use of the vector capabilities offered by modern processors. In fact, although modern

compilers can perform auto-vectorization, the degree of vectorization that can be extracted in many ap-

plications is minimal, in great part because they are not implemented in a SIMD-friendly way. However,

libraries of kernels optimized to take advantage of vector extensions were made available, as it is the

case for the Arm NEON extension. In this thesis work, the Eigen2, Arm Compute3, and Ne104 libraries

were used, which provide an implementation of a variety of algebra, signal, and image processing ker-

nels. Several computationally intensive sample applications were prepared with these libraries’ kernels,

using sample images and randomly generated data as input.

These kernels are complemented by some real-world mini-applications, which are also optimized for

Arm NEON:

• IntegerNeuralNetwork: An implementation5 of a feed-forward neural network with one hidden

layer and using integer weights and inputs, modified to use the Eigen library to vectorize linear

algebra operations;

• StreamVByte: A fast byte-oriented integer compression library optimized using SIMD instructions6,

1SPEC2006: https://www.spec.org/cpu2006/
2Eigen Library Version 3: http://eigen.tuxfamily.org
3Arm Compute Library: https://developer.arm.com/ip-products/processors/machine-learning/compute-library
4Ne10 Library: https://projectne10.github.io/Ne10/
5Integer Neural Net repository: https://github.com/spolsley/integerNeuralNetwork
6StreamVByte Repository: https://github.com/lemire/streamvbyte

30

https://www.spec.org/cpu2006/
http://eigen.tuxfamily.org
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://projectne10.github.io/Ne10/
https://github.com/spolsley/integerNeuralNetwork
https://github.com/lemire/streamvbyte

which is used in databases (UpscaleDB) and in information retrieval systems (RediSearch and

Trinity) [59].

• Cartoon: Cartoonify image application, by combining the Gaussian convolution and canny edge

detector kernels. The implementation is based on the Arm Compute library.

Table 3.1: Complete list of profiled benchmarks

Suite Benchmark Domain Description

SPLASH-2
barnes Scientific Computing N-body simulation
raytrace Graphics 3D rendering
fft-splash Signal Processing Complex 1-D FFT

PARSEC3 freqmine Big-Data Data mining
swaptions Big-Data Financial analysis

SPEC2006 libquantum Scientific Computing Quantum computer simulation
hmmer Scientific Computing Gene sequencing

Mini-Apps
streamvbyte Big-Data Integer compression
integerNN Machine Learning Integer feed-forward neural network
cartoon Image Processing Cartoonify image

Kernels

sqnrm2

Algebra

Squared vector l2 norm
ger Rank-1 general matrix update
amax Vector absolute max
asum Vector absolute sum
gemv General matrix-vector multiplication
gemm General matrix multiplication
fft

Signal Processing
Fast fourier transform

conv 2-D Convolution
median 2-D Median filter

img integral

Image Processing

Integral image
img hist Image grayscale histogram
erode Image erosion
canny Canny edge detector

3.3.2 SIMD unit usage analysis

Figure 3.4a presents the fraction of issued instructions by operation type for each benchmark, where

integer operations (including arithmetic, multiplication and SIMD instructions) represents between 50%

(for the img integral benchmark) and 90% (median) of the issued instructions. The focus of this work

is on integer SIMD instructions, which ranges from almost no occurrence (freqmine and swaptions) to

being the most frequent instruction type (e.g. in the median and erode kernels, where it represents 75.6%

and 63.5% of the issued instructions). For a more detailed analysis, Figure 3.4b shows the number of

active SIMD units used by percentage of clock cycles, for each application. From the obtained results, it

can be observed that the activity in the SIMD unit is relevant for most of the mini-apps and kernels, which

use up to three units in a significant fraction of the execution cycles. Each time these additional units are

31

required, it represents a significant energy consumption penalty, as the sleep state must be interrupted.

Hence, it would be very advantageous if the same execution throughput could be maintained using fewer

units.

fre
qm

in
e

sw
ap

tio
ns

bar
nes

ra
yt

ra
ce

fft
-sp

las
h

lib
quan

tu
m

hm
m

er

st
re

am
vb

yt
e
in

tN
N

ca
rto

on ger

sq
nrm

2
am

ax
as

um
gem

v

gem
m fft

co
nv

m
ed

ian hist

im
g_in

te
gra

l

ca
nny

er
od

e
0

20

40

60

80

100

Is
s
u

e
d

 i
n

s
tr

u
c
ti

o
n

s
 [

%
]

FP SIMD FP Int SIMD Int Mem
Class

(a) Fraction of instructions issued by operation class

fre
qm

in
e

sw
ap
tio
ns

ba
rn
es

ra
yt
ra
ce

fft
-sp
las
h

lib
qu
an
tu
m

hm
m
er

st
re
am

vb
yt
e
in
tN
N

ca
rto
on ge

r

sq
nr
m
2
am

ax
as
um
ge
m
v

ge
m
m fft

co
nv

m
ed
ian hi

st

im
g_
in
te
gr
al

ca
nn
y

er
od
e

0

20

40

60

80

100

C
lo

c
k
 c

y
c
le

s
 [

%
]

1 2 3
Active SIMD Units

(b) Number of active SIMD units per percentage of clock cycles

Figure 3.4: Evaluation of the usage of the SIMD unit for the selected benchmarks

This thesis will focus only on applications with high SIMD unit activity, where its power consumption

is more relevant and there is an opportunity to increase the efficiency. Figure 3.5 presents the fraction

of issued vector computations grouped in ranges defined by the width they require, for a subset of the

considered benchmarks with a significant degree of vectorization. As explained in Section 3.1, the width

of a vector instruction is evaluated as the sum of the bit-width required by each operand lane. For

these applications, between 29% (for the img integral kernel) and near 100% (for the integerNN, ger,

32

sqnrm2, gemm, and hist benchmarks) of the issued SIMD instructions can be executed using only half

or less of the total vector width, if the vector computations are packed to discard unneeded sign bits.

Hence, there is an opportunity for optimizing narrow-width vector computations, enabling a significant

reduction in power consumption.

st
re
am

vb
yt
e
in
tN
N

ca
rto
on ge

r

sq
nr
m
2
am

ax
as
um
ge
m
v

ge
m
m fft

co
nv

m
ed
ian hi

st

im
g_
in
te
gr
al

ca
nn
y

er
od
e

0

20

40

60

80

100

Is
s
u

e
d

 S
IM

D
 i
n

s
tr

u
c
ti

o
n

s
 [

%
]

1-32 33-64 65-96 97-128
Width Range [bits]

Figure 3.5: Analysis of the width required by integer vector operations for a subset of applications with significant
SIMD unit activity.

A more detailed cycle-by-cycle tracing of the SIMD units’ activity, together with the measurement of

the width required by each vector operation, was performed for the considered mini-applications. The

observed sample execution intervals are presented in Figure 3.6. Although several of the three available

SIMD units are in use in most cycles, the combined (i.e. summed) width required by all issued vector

operations is only a smaller fraction of the total width provided (i.e. 3×128 = 384 bits), for most cycles. In

the cartoon sample (Fig. 3.6a), in the cycles where all the three units are in use (18.5% of the sample),

the average used width is 154 bits, which is only 40% of the full width. For the whole streamvbyte

sample (Fig. 3.6b), the maximum required width is only 216 bits, which means that the third unit could

be kept turned off for the whole interval. For the integerNN sample (Fig. 3.6c), the third unit is only

required in 0.55% of the cycles, while without optimized execution it is used in 9.2%. Even when a

single unit is active, the average width usage is 56%, 48%, and 36%, for the cartoon, streamvbyte,

and integerNN samples, respectively. Hence, the active integer SIMD units are significantly underused.

If these operations were compressed to discard the unnecessary bit-width and packed together for

execution on the same unit, the third or even the second unit would no longer be necessary for most of

the cycles. These units could be switched off without a significant performance impact.

33

0

1

2

3

A
ct

iv
e
 S

IM
D

 U
n
it

s

0 250 500 750 1000 1250 1500 1750 2000
Clock Cycle

0

128

256

384

W
id

th
 [

b
it

s]

(a) cartoon

0

1

2

3

0 250 500 750 1000 1250 1500 1750 2000
0

128

256

384

Clock Cycle

A
ct

iv
e
 S

IM
D

 U
n
it

s
W

id
th

 [
b
it

s]

(b) streamvbyte

0

1

2

3

0 250 500 750 1000 1250 1500 1750 2000

0

128

256

384

W
id

th
 [

b
it

s]
A

ct
iv

e
 S

IM
D

 U
n
it

s

Clock Cycle

(c) integerNN

Figure 3.6: Number of active SIMD units in each clock cycle when compared with the combined width of the corre-
sponding (packed) vector operations, for sample intervals of the mini-apps.

3.4 Envisaged energy savings

As it was referred before, this thesis aims to exploit narrow-width operations for reducing the energy

consumption of vector SIMD units. As it was presented in Section 2.2, power consumption can be

divided into two main components, dynamic power and leakage power. As given by Equation 2.1, the

dynamic power consumption of a component is approximately proportional to its average activity. For

the case a functional unit, the activity is highly correlated with the average number of accesses to that

time unit. Each clock cycle a functional unit (or a portion of one) is idle represents a saving in dynamic

energy, as the corresponding logic blocks are not switching. The dynamic power reduction is even higher

if the clock signal of these idle blocks is turned off, with clock gating, as it represents a large portion of

the dynamic dissipation. In current designs, clock gating can often be triggered with finer granularity,

both during short periods (e.g. a single clock cycle) and in specific circuit blocks (e.g. a single functional

unit, or even a portion of one).

Hence, narrow-width vector operations represent an opportunity for reducing the dynamic energy

consumption, as the clock signal of the ALU blocks corresponding to unneeded width in the functional

34

unit can be turned off, reducing the activity fraction (α) in the dynamic power Equation 2.1. To obtain

a preliminary estimate of the maximum dynamic energy savings that can be expected in the profiled

applications, the fraction of each unit that is active in each operation was calculated, by dividing the

width used by the full vector register size. The new activity fraction, α̂, of these units is given by:

α̂ = α

(
1

N

N∑
i=0

WidthUsed

WidthRegister

)
= α

(∑N
i=0WidthUsed

N WidthRegister

)
= αβ, (3.1)

where α is the original unit’s activity, β is the average fraction of width that is actually used, N is the

number of operations executed, and WidthUsed and WidthRegister are measured in bits. Then, the

relative energy savings, in fraction, are obtained from:

Esavings =
PdynamicT − P̂dynamicT

PdynamicT
= 1− α̂CVDD

2f

αCVDD
2f

= 1− β, (3.2)

where T is the execution time (which is considered constant); Pdynamic and P̂dynamic are the original

and new dynamic power consumptions, respectively. The estimated dynamic energy savings for each

considered benchmarks are presented in Figure 3.7, representing an average reduction as high as

56.4%. Although these values represent a rather optimistic scenario, that would require suppressing

all the dynamic power consumption in the unused portions of the ALU, they show that there are very

interesting efficiency gains that can be obtained from this opportunity.

st
re
am

vb
yt
e

in
tN
N

ca
rto
on ge

r

sq
nr
m
2
am

ax
as
um
ge
m
v

ge
m
m fft

co
nv

m
ed
ian hi

st

im
g_
in
te
gr
al

ca
nn
y

er
od
e

0

20

40

60

80

100

E
s
ti

m
a
te

d
 D

y
n

a
m

ic
 E

n
e
rg

y
 S

a
v
in

g
s
 [

%
]

Figure 3.7: Maximum expected dynamic energy savings in the SIMD unit if each vector instruction is executed
using the optimal width.

Leakage power is an increasingly significant fraction of the power dissipation in microprocessors,

35

due to the reduction in the transistors’ size. Since it is always dissipated, even when a functional unit

is idle, reducing the units’ activity is not a solution. However, leakage power can be reduced by turning

off the power supply of unneeded logic blocks (as explained in Section 2.2), with a mechanism called

power gating.

Power gating a functional unit is only advantageous when that unit is kept turned off for extended

periods (e.g. around the tens or hundreds of cycles), as there is a high energy and delay penalty

when transitioning between sleep and active states (recall Fig. 2.4). On the other hand, when executing

operations with narrow operands, the unused width in each unit could be used to execute additional

instructions. This way, the same execution throughput could be sustained using fewer units, and the

remaining could be power gated for longer periods of time (or even removed from the design) without a

significant performance impact. The leakage power increases with the number of logic gates with power

supply in the circuit. Hence, the leakage dissipation in the execution unit is correlated with the number of

available functional units. Each vector unit that is removed from the design or power gated corresponds

to a fraction of leakage energy that is saved every cycle.

3.5 Summary

This chapter showed that for a variety of applications with significant activity in the integer SIMD unit,

most vector computations make use of only a fraction of the with of the available vector units. This

opportunity will be exploited for optimizing the vector execution unit, by detecting when ready instructions

in the issue queues have narrow operands and packing their vector elements to discard the unneeded

sign bits. On average, 56.4% of the width in the SIMD unit is wasted (in the profiled applications), so

this a very interesting opportunity for reducing energy consumption. The following chapter will address

some architectural mechanism that allow an efficient exploitation of narrow-width operations, in order to

achieve these envisaged energy gains.

36

4
Architectural Mechanisms to Exploit

Narrow-width

Contents

4.1 Proposed Mechanisms . 38

4.2 Integration in conventional processor architectures 48

4.3 Summary . 50

After identifying the opportunity to optimize the execution of narrow-width integer vector operations,

three complementary mechanisms for exploiting it are proposed in this chapter: width encoding, operand

packing, and operation fusing. Width encoding consists in detecting the width required by each lane

in a vector operation and efficiently encoding this information in a width mask. The operand packing

mechanism compacts the vector operands efficiently, by discarding the unnecessary bit-width in each

vector element, reducing the total width required to execute an operation. Operation fusing consists in

simultaneously issuing several independent instructions to the same functional unit when each operation

uses only a portion of the available width.

Then, this chapter details the necessary architectural changes to implement these mechanisms in the

out-of-order microarchitecture presented in Chapter 2. These include changes to the existing functional

unit structures (i.e. issue queues, Single Instruction Multiple Data (SIMD) functional units, and issue

schedulers) and the addition of new structures, to calculate the width required by vector operations and

execute them efficiently.

37

4.1 Proposed Mechanisms

4.1.1 Width encoding

The proposed optimization of the execution of narrow-width operations starts by first detecting the width

required by each sub-operation, at run-time, i.e. when the actual values are available. Such a procedure

is implemented by adding an extra step in the execution of vector instructions after their operands are

fetched, which is henceforth called width encoding (see also Section 4.2). In this step, the width

required by each lane in a vector operation is determined and encoded in a bit-array, that it is transferred

along the execution pipeline with the corresponding instruction.

The encoded width values are restricted to multiples of a fixed width-block (e.g. 8 bits), rounding

values up. For example, in an architecture with an 8-bit width-block, a value with a bit-width of 12 bits

is detected as a 16 bits operand (16 = 2 × 8 bits ≥ 12 bits). This minimum width-block parameter (that

will be also denoted as w) is set at design time and allows for a portion of wasted width to be traded

for a much simpler implementation, as it allows the width of each lane to be encoded with fewer bits.

Figure 4.1 depicts the wasted bit-width when comparing the original width values (which correspond

to a 1-bit width-block) to designs with a 4-bit and 8-bit width-block. Naturally although using a larger

width-block results in more bit-width being wasted in each computation, it significantly simplifies the

implementation of this detection and encoding mechanism, as will be shown in the following paragraphs.

Vector (128-bit)

(decimal)

(hexadecimal)0007FFFCh FFFFFFFFh 0000002Bh FFFFFF00h

Op 1

Op 1

524284 -1 42 -256

Lane 3 Lane 2 Lane 1 Lane 0

20 bits 1 bit 7 bits 9 bits Total: 37 bitsOriginal Width

Total: 44 bits20 bits 4 bits 8 bits 12 bits4-bit Width-Block

Total: 56 bits24 bits 8 bits 8 bits 16 bits8-bit Width-Block

Figure 4.1: Examples of the widths detected with different width-block sizes, in an architecture with 128-bit vectors
and an operand in the 4×32-bit vector mode. Each vector element is presented in decimal and hex-
adecimal notation, and in the hexadecimal representation, the digit with the sign bit is highlighted in red.
The total width required in each case is the sum of the width values for each lane.

Figure 4.2 presents the proposed width encoding stage for an example instruction with two 4×32-bit

vector operands, written both in decimal and hexadecimal formats (see parts (A) and (B)). At this step,

the width required by each vector lane is detected and encoded in a width mask (D). This mask is

composed of a group of bits per vector lane, where each bit-set encodes the number of bits actually

used by the corresponding lane, i.e. after removing excess sign bits. In this example architecture, with

128-bit vectors and an 8-bit width-block, each lane in the 4x32-bit vector is encoded using only 2 bits,

38

for a total mask size of 8 bits.

This width encoding stage is divided into two steps: a first step (I) where the masks for each vector

operand (C) are encoded separately; and a second step (II) where the masks for the two operands are

combined to generate the mask for the whole instruction (D). In this second step, the code for each lane

in the combined mask is the maximum code of the corresponding lanes in the two operand masks.

Vector (128-bit)

(decimal)

(hexadecimal)
0007FFFCh FFFFFFFFh 0000002Bh FFFFFF00h

FFFFFEADh 00000000h 000001EDh 00000058h

Vector (128-bit)

Op 1

Op 2

Op 1

Op 2

10 00 00 01

01 00 01 00

Mask (8-bit)

Mask 1

Mask 2

24 bits

Mask (8-bit)

Inst.
Mask

8 bits 16 bits 16 bits

Useful Width = 64 bits

Encode
Operands

Combine
Masks

524284 -1 42 -256

-339 0 493 88

00 01 01

(A)

(B)

(D) 10

(C)

(I)

(II)

Figure 4.2: Width encoding for an example with a 4×32-bit vector operation with two vector operands, considering
an 8-bit width-block. In the hexadecimal representation (B), the unneeded bit-blocks are represented in
light grey. In the width masks in (C) and (D), the colouring in the symbol below each 2-bit set indicates
the bit-blocks which are useful in the corresponding operand (light-grey), and those that are wasted
(darker grey).

The process of computing the width mask for each operand is divided into two parts, the block

reduction (I.a) and the encoding (I.b) steps, which are presented with more detail in Figure 4.3. Firstly,

in the block reduction step (I.a), the vector bit-array ((A) in Fig. 4.3) is divided into blocks with the width-

block size (B), that are processed independently. In this example, when considering an 8-bit width-block

(w = 8), each 32-bit lane is represented as four groups of 8 bits, as shown in (B), where each bit in

these w-bit blocks is denoted as bi. Each block is then reduced to a 2-bit pre-mask representation

(x1, x0), where one bit (x1) corresponds to the block leading bit (x1 ← bw−1). The other bit (x0) states

whether the remaining bits are equal to the sign bit (x0 ← x1 if ∀ i < w − 1, bi = bw−1), or are different

(x0 ← x1 if ∃ i < w− 1 : bi 6= bw−1), as in (C). These two bits have the minimum information required to

determine if the leading sign bit is in the corresponding block, by encoding both the sign of the block (x1),

39

and whether that sign is propagated to the next block (x0). Note that using one bit to encode whether all

bits are zero or one is not enough, as it would not handle the case where a block with all ones is followed

by all zeros, and vice versa. It is worth noting that this reduction step is agnostic to the element mode,

and can be implemented using few logic gates, as it is a logic function with a small number of entries

(e.g. 8 bits) and two outputs.

Vector (128-bit)

Encode
Operands

Vector
(128-bit)

0..0
Blocks

(16x8-bit)
1..11..11..1

00111111

0..0

10110100
3

...
2 1 0

Reduce
Blocks

Sign Bit
Encoders

Pre-mask
(16x2-bit)

3 2 1 0

10

Mask
(8-bit)

(B)

(C)

(D)

... 1..100000000b

0007FFFCh 11111111h 0000002Bh FFFFFF00hOp 1

1..100 ...

Op 1

10 00 00 01
Mask 1

01

(x1x0)

(hexadecimal)

(binary)
0..01111111111111111100b

0..0111 1..1

(I)

(I.a)

(I.b)

(A)

(b7..b0)

Figure 4.3: Details of the width encoding procedure of a single operand, using the first vector operand from the
example in Fig. 4.2. In steps (B) and (C), the 0 and 1 bits are highlighted in opposite colour (red and
green, respectively), so that it is easier to visualise how the bits (x1, x0) in the pre-mask are generated.

In the second step ((I.b) in Fig. 4.3), a priority encoder identifies the width-block containing the leading

sign bit, for each group of blocks that corresponds to a lane (D). In the considered example (with the

4×32-bit mode), each lane corresponds to a group of four blocks in the pre-mask, and the index of

the sign bit can be encoded using 2 (log2 4) bits. The resulting codes are concatenated to obtain the

complete width mask, which in this example has 8 bits.

It should be noted that this encoding step depends on the considered vector mode (e.g. 8, 16, 32, or

64 bits) since it determines the size and the number of encoders used (i.e. the number and size of the

lanes). However, the encoders used by different modes can share the same logic, as a larger priority

encoder can be implemented using smaller ones. Moreover, the same 8 bits are enough to store the

width-mask for all the vector modes that are supported, only changing how these bits are grouped (see

Fig. 4.4). The 16-bit and 64-bit modes would require 8 and 6 bits, respectively, whereas the 8-bit mode

is not supported with an 8-bit width-block (all the width in each lane is always used). Also note from this

example that the total width usage, for the same vector, varies depending on which mode is considered,

as the width mask itself also changes.

Hence, this width mask can be computed using an array of leading sign bit detectors, one for each

40

- - - - - - -

2x64-bit

4x32-bit

8x16-bit

Width-block (8-bit)

0 0 0 0 0 0 10

01000010

X110 X100

Width Mask (8-bit)Mode Total Width Usage

96 bits

56 bits

72 bits

Vector (128-bit)

0007FFFCh 11111111h 0000002Bh FFFFFF00h (hex.)Op 1

16x8-bit - 128 bits

Figure 4.4: Width masks examples for different vector modes, using the same Operand 1 from Figures 4.2 and 4.3.
The same 8 bits are grouped differently for the different vector modes. For the 2×64-bit mode, only 3
bits are required per lane (log2(

64
8
) = 3), so 1 + 1 bits in the mask are not used (marked as X). The

16×8-bit mode is not supported with this width-block, and so the full width is always used (128-bit).

vector element. Since the width values only have to be determined with the granularity defined by the

width-block, only the index of the block with the leading sign bit has to be detected, and not the index of

the bit itself. Therefore, the detection step can happen after the blocks are reduced, as 2 bits per block

are enough to determine if it contains the leading sign bit. This greatly decreases the number of entries

and the complexity of the detectors.

Notice that the number of bits per lane of the width mask, which depends on the vector mode, can be

determined as log2(
m
w), where m represents the number of bits per lane in that mode and w is the width-

block size. For an n-bit vector, the total size of the width mask (all lanes) corresponds to n
m log2(

m
w), when

considering that n, m, and w are powers of 2. Naturally, it only makes sense to consider vector mode

values which are greater than the width-block (m > w) for the width encoding step, as otherwise, the

width for each element is always the maximum (when rounding towards the width-block). For example,

an 8-bit element always uses all the bits when choosing an 8-bit width-block. When considering an

architecture supporting multiple vector modes, but sharing the width mask bits across all of them, the

mode that requires the larger number of bits is the one with the smallest element size, which corresponds

to m = 2w. Hence, the upper bound for the mask size required for a given architecture is obtained from

n

2w
log2(

2w

w
) =

n

2w
. (4.1)

As we expected, this expression shows that the impact of generating, transferring, and storing the width

mask can be significantly reduced by increasing the width-block parameter (w).

The actual number of bits required for the width mask also depends on which modes are supported

41

Table 4.1: Width-mask size trade-off for an architecture with 128-bit vectors (n = 128), for different width-block sizes
(w) and with the typical vector mode sizes (m). The upper bound is determined by using the expression
n
2w

, and the maximum corresponds to the width required by the chosen modes.

Width-block m = 8 m = 16 m = 32 m = 64 Upper Bound Maximum Mask Fraction of Vector

[bits] Mask Size [bits] [bits] Size [bits] Size [%]

w = 1 48 32 20 12 64 48 37.5
w = 2 32 24 16 10 32 32 25.0
w = 4 16 16 12 8 16 16 12.5
w = 8 — 8 8 6 8 8 6.25
w = 16 — — 4 4 4 4 3.13
w = 32 — — — 2 2 2 1.56

in that architecture, and typically m ∈ {8, 16, 32, 64}. Table 4.1 presents the size of the mask in the case

of a 128-bit vector (n = 128) when considering these modes, for several different width-block sizes (w),

considering that it is not useful to have width masks for vector modes lower or equal to the width-block.

This table confirms that increasing the width-block parameter greatly reduces the overhead of the width

mask. In this example, when a width-block of 8 bits (w = 8) is applied to an architecture with 128-bit

vector registers, the width mask of an operation requires 8 bits, corresponding to 6.25% of the vector

size (∼3% when considering the size of two vector operands). When the original width value is encoded

directly (i.e. w = 1), the width mask requires 48 bits, which corresponds to 37.5% of the vector size and

represents a very high overhead.

4.1.2 Packing narrow-width vector operands

Having encoded the width required for each vector sub-operation, one of the possible optimizations in

the execution unit is to clock-gate unneeded portions of the functional units, to reduce the waste of

dynamic power with unneeded circuit activity. However, although this power efficiency technique can

already be performed with fine granularity (i.e. to specific logic blocks), it still requires an overhead in the

control logic that is necessary to trigger it. Applying it to specific element portions of each vector unit,

that change every cycle, can degrade the benefit it would provide.

Hence, a new mechanism is proposed to simplify this clock gating control: operand packing. This

mechanism consists in allowing the elements in a vector operand to have different sizes, by compressing

the vector to remove the unneeded bits in each data element. This way, only a fraction of the available

functional unit’s width is required to execute that instruction, and the unused blocks are contiguous

and can be clock gated with simpler control logic. An example of a 4x32-bit integer vector addition

in a processor with a 128-bit vector size is presented in Figure 4.5, where each sub-operation can be

performed using a smaller width than the 32-bit element size. If the operands are all packed to fit in the

least significant bits of the vector, this instruction can execute using only 56 bits of the unit, instead of

42

128 bits. Furthermore, with this mechanism, the activity of the functional units will tend to concentrate

in the lower portion of the unit (for example), and the higher portion will tend to remain clock gated

for several contiguous clock cycles. Since, triggering and recovering from clock gating also generates

transients and has an energy penalty, even if much smaller than power gating. This packing allows the

clock gating to be interrupted less frequently, making the power efficiency gains higher.

Vector operands are packed using the information in the operation’s width mask. When there are

two or more vector operands, each vector lane must be properly aligned (reserving the size used by the

widest element, as it is illustrated in Figure 4.5), so that the operation can still be performed using the

existing vector arithmetic units. In the write-back stage, after the operation is executed, the result vector

can be unpacked using the same width mask, recovering the original result.

3348896

128-bit

0-1

4x32-bit

1-1

1511

-1

Add

Add

56-bit

8-bit

Figure 4.5: Vector operand packing in a SIMD Add operation. With an 8-bit width-block, this 128-bit (4×32-bit)
operation can be compressed to use only 56 bits of the SIMD ALU. The bit-width portion required in
each operand lane (of the 32 bits) is represented in light grey.

The packing and realignment of vector operands take advantage of the width-block concept already

introduced, as a coarser granularity simplifies the additional logic that is necessary. In particular, if

the chosen width-block is a multiple of the smallest vector element size supported in that architecture

(typically 8 bits), the overhead in the functional units is minimal. Futhermore, adding support for the

execution of packed instructions with irregular element sizes can take advantage of the hardware that

already enables vector functional units to support different element size modes. In the designs proposed

in the literature for these vectorized units (see Subsection 2.3.3), the same hardware is shared for

operations of different element size by dynamically changing the element boundaries accordingly to the

mode signal. Supporting more elaborate element patterns is mostly a matter of extending the control

signals that change these boundaries to use the width mask as an additional input.

The proposed implementation of a vector adder unit with support for irregular element sizes is based

on the 128-bit carry-propagate adder design presented in [49]. This unit consists of several intercon-

43

nected 4-bit Carry-Lookahead Adder (CLA) blocks and should be similar to the SIMD units’ implemen-

tations in current processor designs. The element boundaries are changed by inhibiting (killing) the

corresponding carries between blocks through the addition of an additional 2-input AND gate to the 4-bit

CLA blocks (see Figure 4.6), which the authors argue does not increase the critical path delay. This

design can be modified to support irregular element boundaries by extending the control circuit that

generates the carry-kill signals. Whereas in their design the carry-kills only depended on the element

mode, these can be extended to also take into account the width mask.

A[127:120]
Operands

A[119:112] A[111:104] A[23:16] A[15:8] A[7:0]

B[127:120] B[119:112] B[111:104] B[23:16] B[15:8] B[7:0]

128-bit Carry Propagating Adder (CPA) with Carry Kills

R[127:0]

8 8 8 8 8 8 8 8 8 88 8

15

88 8 8 88

Result

Carry Kills

Figure 4.6: Implementation of a 128-bit vectorized adder unit, which allows for irregular element boundaries, with
an 8-bit width-block.

For the multiply and multiply-accumulate operations, the architectures presented in [49] and [50] can

also be extended to support irregular element sizes, by modifying the control logic that selects which

partial products are added, while maintaining most of the existing multiplier hardware. As long as the

partial products for each element do not overlap (see Figure 4.7), the same hardware can be shared for

different element boundaries. Supporting mixed element sizes is a matter of allowing a finer granularity

of control over which partial products are suppressed, and making sure there are no carries in the

addition stage between different elements. The base architecture, proposed in [50], which uses an array

multiplier for the partial product generation, is the most interesting for this implementation. This design

needs less control logic for changing the element boundaries, as it does not require suppressing the

carries at boundaries in the reduction tree and final addition steps.

For correctness, the execution of packed instructions must also support the overflow of sub-operations

with a lower width than the original element size, as this is not an actual overflow. For the addition oper-

ation, the carries between element boundaries are verified, despite not being propagated. In case of an

overflow, the encoding of the corresponding element in the width mask is increased, and the element’s

size is expanded to fit the additional bit. For the multiplication, the bits corresponding to the higher half

of each element’s multiplication are already generated when reducing the partial products (e.g. an 8-bit

by 8-bit multiplication generates a 16-bit result in the final adder). When an overflow fits in the original

width, these bits must be multiplexed to the result vector, and the corresponding width mask code is

increased. A significant portion of the extra logic that is required to multiplex the most significant part of

44

(x6x5).(y6y5)

y0y1y2y3y4y5y6y7

x

x0.y0x1.y0x2.y0x3.y0x4.y0x5.y0x6.y0x7.y0

x0.y1x1.y1x2.y1x3.y1x4.y1x5.y1x6.y1x7.y1

x0.y2x1.y2x2.y2x3.y2x4.y2x5.y2x6.y2x7.y2

x0.y3x1.y3x2.y3x3.y3x4.y3x5.y3x6.y3x7.y3

x0.y4x1.y4x2.y4x3.y4x4.y4x5.y4x6.y4x7.y4

x0.y5x1.y5x2.y5x3.y5x4.y5x5.y5x6.y5x7.y5

x0.y6x1.y6x2.y6x3.y6x4.y6x5.y6x6.y6x7.y6

x0.y7x1.y7x2.y7x3.y7x4.y7x5.y7x6.y7x7.y7

8-bit 16-bit 8-bit 8-bit 24-bit

+

(64-bit)

x0x1x2x3x4x5x6x7

x7.y7 x4.y4 x3.y3 (x2x1x0).(y2y1y0)

16-bit 32-bit 16-bit 16-bit 48-bit

(128-bit)

Legend

xi, yi 8-bit operands

xi.yj 16-bit partial
product

Operands

Partial
Products

Result

Figure 4.7: Selection of partial products for an irregular element size multiplication, using the existing hardware
in an example 64-bit SIMD unit (compare with Fig. 2.10). The partial products between blocks from
different elements (marked in light grey) are discarded.

the multiplication result should already be present in SIMD functional unit implementations. In fact, there

are instructions in most vector extensions that keep the entire multiplication result, normally by increas-

ing the element size of the result. For example, in the ARM NEON extension, one of these instructions

is SMULL, signed multiply long (vector).

4.1.3 Fusing vector operations

As it was referred before, the main goal of packing vector instructions is to reduce the energy con-

sumption of the execution unit, by switching-off unneeded portions of the Arithmetic Logic Unit (ALU).

However, if several (independent) packed instructions are simultaneously ready for execution in the pro-

cessor’s issue queues, whenever two or more of these instructions fit in the full vector width of the ALU,

they can be issued together to the same arithmetic unit. This mechanism will henceforth be denoted as

operation fusing (see Fig.4.8). It should be noted that while these instructions are combined during the

execution stage, they continue to be regarded as independent instructions, writing to different registers

and committing (or even being squashed) independently.

Hence, if a significant fraction of the instructions can be fused for execution in the same unit, the

execution throughput can be sustained using fewer SIMD functional units. The remaining units can

be completely clock gated, or, whenever they are not needed for long execution intervals, they can

even be power gated or removed from the microprocessor design. Power gating also reduces leakage

45

128-bit

Add

56-bit

Sub

72-bit

8-bit

ALU

Figure 4.8: Fusing two similar vector operations (an addition and a subtraction) that fit in the 128-bit ALU.

dissipation but has the disadvantage of introducing a high state transition overhead and only provides

relevant energy savings when it is not interrupted frequently.

On the other hand, in execution intervals with very intensive SIMD unit usage, instead of reducing the

number of functional units, this mechanism can be leveraged to increase the processor performance,

by increasing the maximum throughput of the vector pipelines. Whenever this approach significantly

reduces the execution time, it can also result in energy savings, as energy is the product of power and

time (E = PT). Moreover, as the fusing mechanism also reduces the total number of accesses to the

SIMD units (each pair of fused instructions is one less cycle in which that unit is active), it can allow for

a very interesting combination of execution time reduction and energy efficiency.

One possible implementation of this fusing mechanism is to execute together only instructions with

the same arithmetic operation, which does not add extra complexity to the existing ALU design and can

be seen as a type of auto-vectorization. However, it can still be advantageous to allow for different (but

similar) operation types to be fused (see Fig. 4.8), in order to increase the number of opportunities found

for multiple issuing, even if at the cost of a slight increase in the ALU complexity.

4.1.4 Gating functional units

As it was already explained, the proposed operand packing and operation fusing mechanisms can be

translated into dynamic energy reduction when combined with clock gating techniques, either by switch-

ing off the clock signal for unused portions of the functional units, or even the entire unit. Clock gating

the whole unit, as frequently allowed by operation fusing, can be more advantageous than gating two

half units, as a result of operation packing, as the whole scheduling and control logic in that unit can be

switched off. However, there might not be enough instructions to fuse in a given cycle (or their width

might not be compatible), so even with operation fusing it is useful to enable partial clock gating of a unit.

As it was also already presented, when operation fusing allows the average number of needed func-

tional units to be reduced, and for long execution periods, it can also be combined with power gating to

46

enable for leakage power reduction, without significant performance penalties. Hence, the best results

enabled by the proposed mechanisms should be obtained by a combining the usage of clock and power

gating techniques in the vector execution units, as illustrated in Figure 4.9.

Vector Functional Units

Fully used

Partially
Clock Gated

Clock Gated

Power Gated

Figure 4.9: Example of opportunities for clock and power gating vector functional units. For an execution engine
with four units, the three vector instructions issued in this cycle were packed and executed using only
two functional units, one of which has a portion that can be clock gated. The third unit is not active
in this cycle and can be clock gated, and the fourth has not been needed for a longer period and was
power gated.

Dynamically triggering the power gating of some vector units according to the current execution

workload (namely depending on the occurrence rate of vector instructions and on the width of the integer

data) requires a decision mechanism similar to those proposed in [12, 32, 33]. However, implementing

this decision mechanism is out of the scope of this thesis, and is left as future work (see Section 7.2).

Nevertheless, this study will show that the proposed fusing mechanism facilitates the application of

power gating. The main difficulty when choosing the correct instant to trigger the sleep signal is the

performance impact of shutting down the unit too soon. In case the unit is required shortly after, there is

a heavy penalty because of the delay in powering it up. As the fusing mechanism allows an increased

throughput with the existing units, it amortizes the impact of not having the gated unit ready and can

even postpone the need for waking it up. This allows a higher energy saving margin to be obtained, with

simpler decision mechanisms.

Finally, the fact that functional units (especially vector units) are almost always pipelined, and that the

different stages in the pipeline may be in different usage states, has not been mentioned so far. However,

this only implies that the gating mechanisms (in particular, clock gating) should be implemented to allow

different portions of the pipeline to be in different states at the same time (isolated by the pipeline

stage transition registers). This is achieved by also pipelining the gating trigger signals. Even more,

the existence of the execution pipeline allows the gating control mechanism to look ahead, and to start

preparing state transitions earlier.

47

4.2 Integration in conventional processor architectures

Implementing the set of optimization mechanisms proposed in the previous section only requires some

minor architectural changes in the processor execution engine. In the particular case of an out-of-order

core, it requires some adaptations in the vector pipelines and, in particular, in their issue queues, SIMD

functional units, and issue schedulers.

Width Mask

(B) Issue Queues (E) Execute

Vector Register File Width
Encoder

SIMD
FU

Gating Unit

SIMD
FU

Gating Unit
Inst. Entries

Dispatch Commit

Operand Fetch
& Encoding

(A)

Packing &
Pre-Schedule

(C)

Unpacking
& Write-back(F)

Fusing &
Schedule

(D)

Figure 4.10: Detailed changes proposed to the execution pipeline of vector instructions, in the out-of-order execu-
tion engine presented in Fig. 3.3. Apart from the additional width encoding step in the operand fetch
(A), operation fusing in scheduling (D), and unpacking in write-back (F), a new stage is added for
packing and pre-schedule by width buffers (C).

Figure 4.10 depicts the proposed modifications to the vector execution engine. The width encoding

step is performed at the same time as each operand is fetched into the issue queue (A), and its result

is used to update the width mask for that instruction in (B) (using the max operator). Thus, the width

information required for each vector instruction can be encoded using a single additional field in the issue

queue (B). For the particular example of a design with an 8-bit width-block and 128-bit vectors, this field

only has 8 bits, which is minimal when compared to the size of the vector operands that are stored

in the queue. Hence, adding support for width encoding is simply a matter of extending the operand

fetch mechanism (part (A) in Fig. 4.10), whether the values are fetched from the physical register file

or directly from the Common Data Bus (CDB). This step should not cause a significant increase in the

critical path, as the encoding process is simple (recall Fig. 4.2), and can be performed as soon as the

previous (source) instruction writes on the CDB.

The, the vector operands can only be packed when the width mask for the instruction has been fully

updated, i.e. when all the operands have been fetched (and that instruction is ready to issue). In order

to avoid any penalization in terms of the critical path, with a consequent degradation in the processor

performance, a new pipeline stage is added to the vector unit between issuing and execution (C). In

48

this new stage, the operands for ready instructions are packed, and the instructions are reorganized in

buffers according to their width (and instruction type) so that they can be easily fused and issued. The

consequent increase of the vector pipeline latency (by one cycle) is mostly hidden by the out-of-order

execution. Hence, the resulting performance penalty is not significant (sometimes it is even mitigated by

the fusing mechanism) and is largely outweighed by the consequent energy savings.

Operation fusing is accomplished by implementing an extension to the issue queue scheduler, in

order to monitor the width masks of ready instructions, trying to issue more than one at the same time

whenever possible (D). The vector operands of these additional instructions are then shifted (or multi-

plexed), so that there are no overlaps in the functional unit, being issued using the remaining bandwidth

in the issue port. The width masks of the fused instructions are used to encode the boundaries between

elements (in the same instruction or between fused ones) for packed execution in the ALU (E), which

is extended to support irregular element sizes. After the instruction is executed, in the write-back stage

(F), the resulting vector is unpacked with the information in the width mask.

Since each execution port usually has its independent issue queue, some fusing opportunities might

be lost because those instructions are in different pipelines. This problem is circumvented by the new

packing and pre-issue stage, which is also used to exchange instructions between pipelines, when

organizing them in buffers according to their width (part (C) in Fig. 4.10), and thus allows more pairs of

compatible instructions to be found.

An essential remark in this modified issuing stage is that some degree of priority should be given to

the execution of instructions that were fetched earlier, even if this means missing some opportunities to

fuse later instructions. Otherwise, an instruction that does not have a fusing candidate might not find

an opportunity for execution, stalling the pipeline. This can be done by respecting the order by which

the instructions were inserted in the pre-issue buffers (C), and by using a round-robin mechanism when

choosing from which buffers to schedule (D).

The clock or power gating mechanisms of the processor are triggered by the gating control units,

which are added to each vector functional unit (see part (E) in Fig. 4.10). Each control unit monitors

the activity of its vector unit and clock gates the entire unit (or portions of it) when it is idle. These

control units also decide when to trigger power gating, whenever the unit is expected to remain idle for

a long period (namely by using a decision mechanisms inspired by [12, 32, 33]). While a vector unit is

in the sleep mode (i.e. power gated), the instructions in its issue queue are handled by the remaining

units, thanks to the new shared stage in the issuing step. This way, its reactivation is postponed until a

significant increase in throughput is required.

49

4.3 Summary

This chapter described how an out-of-order microarchitecture can be extended to efficiently execute

narrow-width SIMD operations, with limited overhead and using most of the hardware already existing in

these processors. The proposed design efficiently encodes the width required by a vector instruction in

a compact mask (e.g. that takes up only ∼ 3% of the bits required by the operands) and propagates this

information so that these instructions are efficiently executed in the corresponding units. The microar-

chitecture adaptation proposed in this chapter is also transparent to existing applications and libraries,

increasing its applicability, and no changes in the compiler are required.

50

5
Prototyping and Experimental

Workflow

Contents

5.1 Architectural simulation tools . 52

5.2 ARM ISA and the NEON vector extension . 55

5.3 Implementation of the architectural changes . 56

5.4 Traces and performance counters . 58

5.5 Power modelling . 60

5.6 Experimental workflow . 61

5.7 Summary . 62

Following the proposal of the mechanisms and architectural changes to exploit narrow-width in vector

operations, this chapter describes how these changes were implemented and evaluated using a state-

of-the-art computer architecture simulation framework, gem5, combined with a power, area and timing

modelling framework, McPAT.

Section 5.1 introduces the architectural simulator and the baseline processor models, and Sec-

tion 5.2 presents the Instruction Set Architecture (ISA) that will be used for prototyping. Section 5.3

details how the original model was modified, and Section 5.4 presents the new performance metrics

which were added to evaluate the impact of this Thesis’ proposal. Then, Section 5.5 explains how these

metrics were used to model the power efficiency of the modified core. Finally, Section 5.6 provides an

overview of the experimental workflow.

51

5.1 Architectural simulation tools

Processor simulation is widely used in the initial ideation and evaluation stages of new optimization

opportunities and architectural features, both in the academic and in the industry backgrounds. It allows

for fast prototyping of new ideas and for extensive design space exploration (i.e. different configurations

can be evaluated easily).

When comparing different simulation levels (see Fig. 5.1), the most accurate evaluation is usually

obtained through Register-Transfer Logic (RTL) specifications such as VHDL or Verilog. However, RTL

simulation is very limited in terms of design space exploration, and it is highly time-consuming, both

in terms of specification and simulation time [60]. Alternative processor models include mathematical

estimation models (e.g. implemented in Python or MATLAB), functional executable models (e.g. QEMU

or gem5 in a functional mode), and cycle-accurate models (e.g. gem5 in a cycle-accurate mode). These

more abstract models trade different levels of accuracy for faster evaluation and exploration times (as

depicted in Fig. 5.1). Consequently, they are a better fit for an early evaluation of new architectural ideas,

as it is the case of exploiting narrow-width in vector operations. Moreover, there are no publicly available

complete RTL specifications of modern out-of-order processors, which are the focus of this work. In

contrast, very accurate models are available at higher abstraction levels.

A
b

st
ra

ct
io

n

High

Low

Fl
e
x
ib

ili
ty

Design Space

Abstract Executable

Estimation Models

Cycle-Accurate

Models

Models

Models

RTL

High

Low

A
cc

u
ra

cy

Figure 5.1: Comparison of different processor specification and modelling levels [60]. Models that are lower in the
pyramid are more accurate, but are less flexible to changes, and are more constrained in terms of the
available design space (i.e. the pyramid base in the figure is narrower). For this work, a cycle-accurate
model was used.

Gem5 is a highly configurable, modular, and extensible open-source computer system simulation

framework [55]. It is prepared to emulate a variety of processor models and ISAs (e.g. ARM, ALPHA,

and x86), with varying degrees of detail and accuracy. It is actively developed by leading industry

52

and academic partners, such as ARM, AMD, Princeton, and MIT, and has been used in hundreds of

publications. In particular, this simulator provides a very detailed out-of-order processor model, O3 (out-

of-order), which adequately models the superscalar pipelines with cycle-accurate timing, at the cost

of long simulation time. For example, O3 models the issue queues and functional unit states, and it

accurately handles dependencies between instructions. However, its implementation is more complex

than the remaining in-order models, such as (see Fig. 5.2): AtomicSimple, a minimal functional emulator;

TimingSimple, an extension of atomic with timing in memory references; InOrder, a pipelined in-order

cycle-accurate model.

Gem5 provides two simulation modes (see Fig. 5.2): system-call emulation mode (SE), where the

external devices and the operating system are not modelled, and system calls are emulated by the host

system; and full-system mode (FS), where both user-level and kernel-level instructions are executed,

and the complete architecture is simulated (i.e. with an operating system and IO devices). Full-system

emulation allows for Linux images to be booted, which enables a wider variety of applications and bench-

marks to be run, and provides more realistic and accurate results, at the cost of quite longer simulation

times and a more complex simulation setup. However, gem5 provides the ability to record snapshots of

the processor state in interesting instants (e.g. after the system boots), which saves time by resuming

execution from that checkpoint.

CPU Model

System
Mode

Full-System

System-Call

Emulation

Atomic
Simple

Timing
Simple O3

In
Order

Accuracy

Speed

Figure 5.2: Comparison of gem5 simulation modes and models, in terms of the speed-accuracy compromise [55].
In this work, the evaluation was performed using full-system simulation with the O3 model.

In accordance, the evaluation of the narrow-width opportunity in vector computations, presented

in Chapter 3, was performed using the gem5 simulator framework. This simulator was also used to

estimate the impact of the optimization mechanisms and architectural changes proposed in Chapter 4.

Futhermore, the experimental work was performed with the O3 CPU model, as it is an accurate model

of a superscalar out-of-order core. The full-system simulation mode was also used, both because it

generates more realistic results than system-call emulation, and because it is required by several of the

53

profiled applications (e.g. PARSEC and SPEC2006 suites).

The changes to the vector pipeline were prototyped using the ARMv8 Advanced SIMD (NEON) ex-

tension (see Section 5.2 for more details), because of the maturity of this extension (i.e. when compared

to ARM SVE). At the time the experimental work was performed, there was a wider variety of applications

and libraries vectorized for this extension, better compiler support, and full implementation in gem5.

Two different out-of-order CPU configurations (based on the O3 model) were used for the experi-

mental simulations, whose baseline parameters are presented in Table 5.1: a model of an ARM’s 4-wide

Cortex-A76 core; and a model of an 8-wide High-performance core model, which is a scaled version

of the A76 model with the functional units pool configuration based on public information of the 8-wide

Apple Vortex Core1.

Table 5.1: Baseline parameters of the CPU models

Cortex-A76 High-performance

Frequency 2.0GHz

Fetch Width 4 insts/cycle 8 insts/cycle

Dispatch/Issue Width 8 insts/cycle 12 insts/cycle

Issue Queue 120 entries 180 entries

Load Queue 68 entries 68 entries

Store Queue 72 entries 72 entries

ROB 128 entries 192 entries

Integer Reg. File 256 registers 384 registers

FP/SIMD Reg. File 256 registers 384 registers

Functional Units 3 Int ALU (1 cycle) 6 Int ALU (1 cycle)

1 Int Mul/Div (2/12 cycles) 2 Int Mul/Div (4/8 cycles)

2 FP/SIMD units: 3 FP/SIMD units:

- SIMD ALU (2 cycles) - SIMD ALU (2 cycles)

- SIMD Mul (4 cycles) - SIMD Mul (3 cycles)

- FP ALU (2 cycles) - FP ALU (3 cycles)

- FP Mult (3 cycles) - FP Mult (4 cycles)

Private L1 ICache 64KB / 4-way (8 MSHRs)

1-cycle latency

Private L1 DCache 64KB / 4-way (20 MSHRs)

2-cycle latency

Shared L2 Cache 256KB / 8-way (46 MSHRs)

9-cycle latency

DRAM DDR3 1600MHz 8x8GB

1Apple A12: https://www.anandtech.com/show/13392/the-iphone-xs-xs-max-review-unveiling-the-silicon-secrets

54

https://www.anandtech.com/show/13392/the-iphone-xs-xs-max-review-unveiling-the-silicon-secrets

5.2 ARM ISA and the NEON vector extension

ARMv8-A is the latest generation of the general-purpose ARM Instruction Set Architecture (ISA), which

is implemented in ARM’s Cortex-A processor series, as well as by several other microprocessor cores

from sublicensee companies, such as Qualcomm’s Falkor, Samsung’s M4, and Apple’s A12 Vortex and

Tempest. ARMv8-A is a 64-bit ISA, with a wide physical and virtual addressing space, and a large

architectural register bank, with thirty-one 64-bit general-purpose registers. The ARM ISA was initially

designed as a Reduced Instruction Set Computing (RISC) architecture, with a simpler but more efficient

set of instructions, but has since evolved to include a wide variety of specialized features, namely vector

extensions. The ARM ISA is currently the most widely used, in great part due to its ubiquity in the mobile

and embedded sectors, but it is slowly entering the desktop and server markets. More powerful cores

are available each generation, and there is an increasing support in terms of available toolchains and

libraries.

ARM NEON is the advanced SIMD vector extension for the Cortex-A series processors. NEON is

a packed vector extension, which (for the ARMv8-A version) uses 32 quadword (128-bit) architectural

register, accommodated in a separate register bank that is shared with floating-point registers2. For

each NEON instruction, the input register operands are considered as a vector of data elements of the

same type, which can be signed or unsigned integers with 64, 32, 16, or 8 bits, or single or double

precision floating-point. This vector extension is designed for a wide range of application domains, from

high-performance computing to multimedia.

In general, NEON vector instructions perform the same operation in parallel over all lanes, but there

are specific instructions that either operate over only one element, perform reductions across the whole

vector, or handle pairs of side-by-side elements (see Fig. 3.2a). Most instructions have the same element

size for the two source vector operands, but there are special instructions where these sizes differ,

namely long, wide, and narrow instructions (see Fig. 3.2b). NEON also includes some instructions

which handle vector elements in more elaborate ways, as is the example of the table vector lookup

instruction (TBL), which uses the values of one source vector as indexes to select values from up to

three other vectors, and the ZIP instruction which mixes alternate elements from two source vectors. A

comprehensive list of the instructions in the NEON extension is provided in Appendix B, with a focus

on the subset of instructions with integer vector operands that were given support for the proposed

mechanisms in the presented prototype.

2ARM Neon programming quick reference: https://community.arm.com/developer/tools-software/oss-platforms/b/

android-blog/posts/arm-neon-programming-quick-reference

55

https://community.arm.com/developer/tools-software/oss-platforms/b/android-blog/posts/arm-neon-programming-quick-reference
https://community.arm.com/developer/tools-software/oss-platforms/b/android-blog/posts/arm-neon-programming-quick-reference

5.3 Implementation of the architectural changes

Gem5 (in particular its O3 CPU model) is implemented in C++ and Python, following the object-oriented

programming paradigm [55]. Its architectural components, such as functional units, instruction queues,

and register files, are represented by interconnected objects (see the object diagram in Fig. 5.3, which

mimics the example microarchitecture presented in Fig. 2.1). Gem5 is a discrete-event simulator, where

time (in clock cycles) is simulated as a series of discrete events that instantaneously change the system

state. These events (e.g. accesses to memory, transitions of instructions between stages, etc.) are

scheduled accordingly to their dependencies in a priority queue, by increasing order of trigger instant.

As an example, the parameterization of the execution latency of each operation class provides the delay

between the issuing and write-back events for an instruction of that class.

O3 CPU

ICache Port DCache Port

Fetch

ICache Port

 PC

BPU

 BTB

 History

 Return Stack

Decode

Rename

Free List

RAT

Scoreboard

IEW

DCache Port

IQ

 Dependency Unit

 Width Encoder

 Ready Insts Queues

FU Pool

 Simple ALUs

Complex ALUs

FP SIMD

RegFile

 Int Status

 Float Vector

LSU

Load Queue

Store Queue

Commit

ROB

Legend

PC Program Counter

BPU Branch Prediction
Unit

BTB Branch Target
Buffer

RAT Register Alias
Table (Rename Map)

IEW Issue, Execute,
Writeback

IQ Instruction Queue

LSU Load Store Unit

ROB Re-order Buffer

FU Functional Unit Modified

New

Figure 5.3: Modifications made to the internal structure of gem5’s O3 (Out-of-Order) CPU model. Modified compo-
nents are highlighted in yellow, and new structures in green.

Each instruction is represented by two objects: the StaticInst and the DynamicInst. The StaticInst

keeps the immutable state for each different decoded instruction, such as the operation code and the

architectural registers’ names, and is shared by all instructions with the same machine code (for an ef-

ficient memory usage). The DynamicInst object stores the dynamic state for each different instruction

instance, such as the renamed physical registers and the current pipeline stage.

56

Every simulation object is implemented by two classes: a wrapper in Python, that specifies its pa-

rameters and interface, which is instantiated in the configuration scripts; and the actual definition in C++,

which defines the object behaviour and stores its state.

Although gem5 is designed to be extensible, implementing a radically new mechanism, such as the

proposed instruction issuing dependent on the operands’ width, requires changing several components

at various abstraction layers of the simulator. In the particular case of the presented work, prototyping

the width encoding, operand packing, and operation fusing mechanisms required editing around 40

source files, with more than 5000 lines of code changed or added3. This represents 10% of the 50000

lines that implement the O3 CPU model, most of which had to be read to understand how the model

operates.

The main modifications to the simulator were the following (they are highlighted in Figure 5.3):

• Extension of the decoding stage, to extract the information that is required to compute the instruc-

tion width, i.e. element size, number of vector operands, and vector addressing mode;

• Extension of the vector issue queues, to introduce additional fields with the new decoded infor-

mation and to store the instruction width mask;

• Addition of a new component, the width encoder, which uses the decoding fields in the instruction

queue and the operand register values to compute the width mask. This structure also aligns

the packed elements in the operands’ registers and assigns the ready vector instructions to the

adequate width queue;

• Addition of new queuing structures, the queues by width, which buffer the ready vector instruc-

tions, organized by the required Arithmetic Logic Unit (ALU) width, so that they can be efficiently

issued by the scheduler;

• Extension of the vector execution scheduler, to optimize the issuing of vector instructions, trying

to perform operation fusing according to the type and width of the instructions. Additional control

logic was also added to keep track of which portions of the vector functional unit were already used

in that cycle;

• Modification of the vector functional units, so that a packed vector instruction can be executed

using only a portion of the unit’s width, and each unit executes additional instructions if possible.

The changes in the decoding stage are the ones that represent the lowest abstraction levels, as they

are dependent on the specific ISA, and require modifications in each particular instruction group. Most

of the instructions in the ARM NEON vector extension were extended to add support for width optimiza-

tions. The complete list of supported instructions is highlighted in Appendix B. As already explained (see
3The modified source code is available at https://github.com/miguelpinho/gem5-thesis

57

https://github.com/miguelpinho/gem5-thesis

Section 3.1), the width of a vector instruction depends not only on the actual operand values but also on

the vector element size (i.e. 32-bit, 16-bit. . .) and operation mode (e.g. regular, pairwise. . .). This extra

information has to be propagated to the execution engine, so new fields are added to the instruction

queues. In the actual simulator, this was accomplished by extending the StaticInst and DynamicInst

classes.

A new component, the WidthEncoder, uses this new decoding information and the operand values

(as soon as they are available) to generate the width mask. The mask is stored as a new object,

the WidthMask, in the DynamicInst object. The WidthEncoder was included in the InstructionQueue

component, which is responsible for monitoring dependencies and issuing ready instructions. It already

uses a set of priority queues to organize ready instructions by operation type, so these are extended

to also group instructions by operation width. The issue scheduler logic in the InstructionQueue was

also extended to try to fit several compatible instructions in the same functional unit, by using new state

variables in the functional units, which record the remaining width.

Gem5 also allows adding new parameters to its components by extending the Python wrappers

and the configuration scripts. The O3 CPU implementation was extended to add the new width-block

parameter. The corresponding integer value (in bits) is passed as an argument when initializing the

WidthEncoder component, and it is used when computing the width mask.

5.4 Traces and performance counters

To evaluate the gains obtained by exploiting narrow-width in vector operations and to estimate the impact

of the proposed architectural changes, both in terms of power efficiency and performance, gem5 was

also extended to record several new relevant execution metrics and counters. The gem5 simulation

framework is very extendable in terms of measured statistics and provides several default object types

to represent common metrics, such as histograms, averages, and formulas. Each component has a

specific interface for defining its metrics, which can then be updated in the component’s behaviour

description. Unfortunately, these statistics are not already outputted in a structured format (e.g. JSON

or CSV) and are instead dumped into a text file, requiring additional effort for parsing them.

The statistics are automatically outputted at the end of the simulation (corresponding to the whole

execution interval), but they can also be reset and dumped at specific instants during execution. This can

be done with custom shell commands (in the full-system mode), or by using special reserved machine

code instructions, which can be added through assembly macros in the application source code. A

common practice is to reset the statistics at the start of the Region Of Interest (ROI) in the code (after

the code segment with the initialization of variables and input reading), and to dump them at the end

(before output generation), so that only the relevant application portion is evaluated.

58

In accordance, several new statistics were added in the scope of this work, focusing on the width

distribution of vector elements and operations, on the functional unit usage, and on the operation fusing

effectiveness:

• histograms of the number of decoded and issued vector instructions, by instruction type and ele-

ment size;

• histograms of operand’s width, both per individual elements and whole packed vectors, grouped

by instruction type and element size;

• histograms of the number of active vector functional units at each clock cycle, and the width used

in the units;

• counter of the number of instructions that were fused for execution in the same functional unit;

• counter of the number of otherwise compatible instructions that could not be fused because there

was not enough width remaining in a vector functional unit.

By default, gem5 also generates other needed statistics, such as the simulated execution time, queue

states, and register and functional unit accesses counters, which are also used for power and energy

consumption estimation.

For debugging and more detailed execution analysis, gem5 also provides tracing capabilities. Traces

differ from the gem5 statistics, as they correspond to the state in specific instants and not to the sum-

mary over large intervals. These traces are generated by adding specific macros in the simulator code

(similar to a print function), which are associated to a flag. These flags allow a fine degree of control

over which information should be outputted, and are usually related to specific components (e.g. the

InstructionQueue). For more complete traces, gem5 also provides compound flags, e.g. a flag for all

components related to the execution stage. The trace output is a text file with a simple format, where

each line stores the clock tick and the message that was generated.

However, as trace messages are usually outputted at each cycle, they can easily reach tens or

hundreds or GiB, even for small applications. Their size can be reduced by generating traces only for

precise simulation intervals (e.g. some hundreds of cycles before a clock tick where there was an error)

and by compressing the output.

In the presented work, these traces were mostly used for debugging changes in the simulator. For

example, a trace was generated each time the width mask for an instruction is created, including the

values and widths for each operand element. Similarly, snapshots of the functional unit state were taken

each cycle, recording how many units were used and what portion of their width is required. During the

debugging stage, I usually used the System-call Emulation mode (SE), which allows for quicker testing.

59

These traces were also used in the results section to analyze small intervals of specific applications (see

Section 6.2), to obtain a time-series view of the width and unit usage.

5.5 Power modelling

The McPAT power, area, and timing modelling framework [61] was used to estimate the impact of the pro-

posed changes in the dynamic and leakage energy consumption of the Central Processing Unit (CPU)

core’s components, in particular in the Single Instruction Multiple Data (SIMD) unit. McPAT can model the

microarchitectural components of out-of-order processor cores, such as functional units, issue queues,

and register files. Two distinct out-of-order architecture models are available to be used with McPAT:

one based on distributed reservation stations, where values are fetched directly from the Common Data

Bus (CDB); and another where values are fetched from the physical register file.

McPAT is prepared to receive low-level configuration details and activity statistics through a flexible

XML interface (see Fig. 5.4). This interface allows this framework to be used with a variety of perfor-

mance simulators, in particular with gem5.

User Input

Cycle-accurate
Processor
Simulator

McPAT

Chip
Representation

Optimizer

Power/Area/
Timing Model

Arch. Circuit. Tech.

Timing

Area

Power

Dynamic

Leakage

XML Interface

O
p
ti

m
iz

a
ti

o
n

C
o
n
fi
g
u

re
S
ta

ts

(Micro)Architecture Param
 Frequency, Vdd, In-order,
 OoO, Cache size, NoC type,
 Core count, Multithreaded? ...
Circuit Parameters
 SRAM, DRAM, DFF, Crossbar...
Tech Parameters
 Device, Wire Type

(Micro)Architecture Param
 Max area/power deviation
 Optimization function

Machine Stats
 Hardware utilization
 P-state / C-state config

Runtime Power Stats
Thermal Stats
 If thermal model plugged in

Figure 5.4: Block diagram of the McPAT framework [61]

To compute the timing, area, and power of the design, McPAT uses detailed models that simulta-

neously integrate these three parameters, to ensure that the results are consistent. These models are

hierarchically organized in three levels with increasing detail: architectural, circuit, and technology. At

the architectural level, the microprocessor is divided into major components, such as cores, caches,

and clock. At the circuit level, the architecture components are mapped into wires, arrays, logic blocks,

and clock networks. Finally, at the technology level, the physical parameters of devices and wires are

computed, namely resistances, capacitances, and current densities.

The dynamic power consumption for each component is modelled using Equation 2.1 [61], where

the supply voltage and frequency are specified in the configuration input, and the load capacitance is

calculated using models of the corresponding circuit blocks. The activity factor is computed using the

60

access statistics for that component, which is coherent with the estimation model deduced in Section 3.4.

The two parcels of the leakage current, sub-threshold and gate leakage currents (recall Equation 2.2),

are computed based on the transistors width and device state, using detailed models for the CMOS

technology. McPAT also models power-saving techniques, namely clock gating and power gating. Clock

gating is modelled using the activity factor of each component and the corresponding clock network

parameters, and power gating is computed using the circuit state statistics passed by a performance

simulator.

In the conducted experimental work with gem5, an XML file was generated for each simulation run

using a base template. The template is filled in with the configurations for the emulated core (e.g. the

number of functional units and the fetch width) and with the run-time statistics obtained from the simulator

(i.e. the performance counters). Apart from these parameters, the McPAT model was configured with

a 28 nm technology process and an operating temperature of 340K. The out-of-order model where the

values are fetched from the physical register file was chosen, has it better resembles the Cortex-A76

architecture.

The number of accesses to the SIMD unit is one of the most relevant run-time metrics for this anal-

ysis, as each fused instruction counts as one less access to the unit, reducing the dynamic energy

consumption. In turn, changes in the fetch/issue width and in the functional unit pool configurations

significantly impact the leakage energy and circuit area results. Since the considered model does not

include a SIMD pipeline, the register file and functional unit configurations and the accesses to these

units were added to the corresponding floating-point parameters instead. However, twice the number of

units and accesses had to be considered, since the prototyped ISA extension considers a vector length

(i.e. 128-bit) that is twice the double-precision floating-point format.

5.6 Experimental workflow

The full experimental procedure using gem5 and McPAT is complex and error-prone, which is aggra-

vated by the large number of benchmarks and configurations that were evaluated. Near 4000 individual

simulation runs were necessary to obtain the final results. Hence, most of the process had to be au-

tomated using a collection of scripts4 in Bash, AWK, and Python, as presented in Figure 5.5. These

scripts include more than 10000 lines of code and automate tasks such as running gem5 with each

configuration, parsing the inputs and outputs from McPAT, and analysing the final results.

Firstly, each full-system simulation in gem5 requires preparing a disk image for the emulated system

((A) in Fig. 5.5), similarly to a virtual machine. For this work, a disk image was prepared with a slightly

modified version of Ubuntu 14.04 LTS for ARM, and the needed benchmarks and libraries were compiled

4These scripts are available at https://github.com/miguelpinho/thesis-scripts

61

https://github.com/miguelpinho/thesis-scripts

natively using the QEMU emulator and the gcc 7.4.0 compiler toolchain. The full-system simulations

also require preparing a boot script for each different benchmark (B), which runs the application with

the desired arguments after the emulated system finishes booting. Similarly, each different configuration

and parameter variation is specified using a Python module (C). These boot scripts and configuration

files were generated automatically from templates.

The statistics and system description files created by gem5 (E) for each run are parsed into an XML

file for input in McPAT (F), using a specific template for each CPU model (D). The statistics outputted by

gem5 and McPAT (E, G), in text format, are parsed into a collection of CSV files with the needed results

(H, I), e.g. the execution time and average power consumption. Finally, these results are analysed and

summarised in plots and tables (J) using a collection of Jupyter notebooks and the pandas library [62].

The full workflow itself is automated using Bash and Python scripts (K) and parallelized using the very

powerful GNU Parallel utility [63].

.py

System
Config

.rcS

Benchmark
Bootscript

.img

Disk
Image

.xml

CPU
Template

(XML)

Modified gem5
(Full System)

.cpp .py

(C++, Python)

gem5 to
McPAT Parser

.py

(Python)

.xml

McPAT Input
(XML) McPAT

.txt

McPAT
Output

Power
Parser

.py

(Python)

.txt

Trace
(several GiB)

.txt

Statistics
(some MiB)

.json

Config File
(JSON)

.csv

CPU
Metrics
(CSV)

.csv

Power
Metrics
(CSV)

Data
Analysis

(Python)

.py

.svg

Plots
(SVG)

Statistics
Parsers

(AWK, Python)

.awk .py

.py

Automate
Workflow

.sh .py

(Bash, Python)

(Bash)

(Python)

(A)

(B)

(C)

(D)

(E)

(H)

(I)

(J)

.tex

Tables
(LaTeX)

(K)

(F)

(G)

t

Figure 5.5: Description of the experimental workflow

5.7 Summary

This chapter presented a comprehensive description of the prototyping and evaluation environment that

was used to obtain th profiling study presented in Chapter 3 and the evaluation results that will be

62

presented in Chapter 6. This description included the necessary context on which simulation tools, ISA,

processor and power models were used and on how they were connected in the experimental workflow.

Hence, whereas the previous chapters had been mostly agnostic to the specific architecture and

ISA, this chapter concretized the used prototyping environment, namely the CPU models and the ISA.

However, it is worth noting that this evaluation represents only a proof of concept, since the proposed

mechanisms could be equally applied to other architectures.

63

6
Experimental Evaluation

Contents

6.1 Evaluation methodology . 64

6.2 Experimental results . 67

6.3 Summary . 75

This chapter presents and discusses the results of the conducted experimental evaluation to assess

the impact of the proposed mechanism, in terms of energy consumption in the Single Instruction Multiple

Data (SIMD) units and execution time. Several different configurations are evaluated, by varying the

number of units and the mechanisms that are enabled, using several representative benchmarks and

two processor models. The impact of changing the width-block parameter introduced in the proposed

architecture is also explored.

6.1 Evaluation methodology

6.1.1 Considered configurations and benchmarks

In order to evaluate the impact of the proposed mechanisms in terms of the functional unit usage, energy

consumption, and execution time, the Cortex-A76 and the High-performance core models were simu-

lated by considering several different execution modes, as labelled and presented in Table 6.1. In partic-

ular, the core models were simulated without any of the proposed mechanism enabled (Original), only

with the operand packing enabled (Packing), and with packing and fusing enabled (Fusing). The pro-

posed packing and fusing modes were also evaluated with an additional latency of one clock cycle in the

64

Table 6.1: Considered simulation modes: the Original mode is the baseline.

Label Mode

Original No mechanisms enabled.
Packing Operation packing enabled.
Fusing Operation packing and fusing enabled.

PackingExtraStage Operation packing enabled, with an extra latency cycle.
FusingExtraStage Operation packing and fusing enabled, with an extra latency cycle.

SIMD pipeline to implement these mechanisms (labelled PackingExtraStage and FusingExtraStage,

respectively), to model the impact of this new stage in the resulting performance.

Each core model and proposed mechanism were evaluated with a different number of integer SIMD

units, to measure the impact of power gating units (both in terms of energy savings and execution

time). Each different simulated configuration is labelled as x-y-z, where x ∈ {A76, HP} refers to the

core, y is the mechanism mode, and z ∈ {1FU, 2FU, 3FU} is the number of considered units. The

A76-Original-2FU and HP-Original-3FU labels denote the baseline configurations for the Cortex-A76

and High-performance cores, respectively.

Several values of the width-block parameter were also evaluated to explore its impact on the energy

savings: 1-bit, 2-bit, 4-bit, 8-bit, 16-bit, and 32-bit. The 1-bit width-block corresponds to the case where

no width is wasted, and only the required bits are used for each operation. When not stated, the default

width-block parameter for all configurations is 8 bits.

By following the same profiling procedure that was performed in Section 3.3, the complete list of

benchmarks selected for this evaluation is presented in Table 6.2. The amax and asum kernels are very

similar, and the results obtained for both were almost identical, so only the amax kernel will be presented.

Table 6.2: Selected benchmarks for this evaluation

Mini-Apps Kernels

Algebra Signal Image

streamvbyte sqnrm2 fft hist

integerNN amax conv img integral

cartoon gemv median canny

gemm erode

For the mini-apps, the considered input datasets correspond to real-world data. In particular, an

already trained neural network was considered for integerNN, a large list of integers for streamvbyte,

and a collection of large photos for cartoon. The same photos were used for all the image kernels, and

for the conv and median kernels. For the algebra and the fft kernels, the input data was generated

randomly, as detailed in Appendix A. In this appendix, the impact in the results of different input data

distributions is also analysed.

65

For each benchmark, a Region Of Interest (ROI) in the application code was chosen, by discarding

the code regions where the parameters and input files are read, and the output is generated. The results

presented in the next section correspond only to this compute-intensive code section.

In addition to enabling and disabling the proposed mechanisms and varying the number of func-

tional units, the impact of varying other design parameters was also evaluated. In particular, by also

including two CPU models with different front-end and back-end widths (i.e. fetch and dispatch/issue

width, respectively) it was possible to evaluate the impact in the fusing mechanism of increasing the

instruction window size. Moreover, several different width-block sizes were experimented for the packing

mechanism, with the only restriction of choosing powers of two: 1, 2, 4, 8 (default), 16, and 32 bits.

As already explained, larger width-block values (coarser granularity) trade wasted operation width (and

hence wasted energy) for less complex control logic and hardware overhead. A 1-bit width-block is the

optimal case when strictly considering the minimum width required for each sub-operation. In contrast,

a 32-bit block ignores the optimization mechanisms for vector element modes of 8, 16, and 32 bits.

6.1.2 Evaluated metrics

The most important metrics to evaluate the impact of the proposed narrow-width optimization mecha-

nisms are the energy consumed in the SIMD unit, which is split into the dynamic and leakage energy, and

the execution time in the ROI. These metrics were accurately benchmarked for each configuration and

application through simulation with the gem5 and McPAT frameworks. The average power estimates, P ,

obtained from McPAT are used to compute the energy spent in that interval, E:

E = Pt, (6.1)

where t is the execution time in the ROI estimated by gem5.

For a meaningful comparison of these metrics between different benchmarks, the energy and execu-

tion values are normalized against the reference configuration for that CPU model, which corresponds

to the baseline configurations on Table 5.1 without any optimization mechanism enabled (the Original

mode in Table 6.1). This normalization is crucial for a correct interpretation of energy values, as the

obtained absolute values are highly dependent on the particular McPAT model, whereas the normalized

values give a more meaningful relative comparison. For the normalized execution times, a value higher

than 1 represents a slow-down compared to the baseline, while a lower corresponds to a speed-up.

For each configuration and benchmark, several simulation runs were performed using different (but

identic) input sets, in order to reduce the bias from a particular run of a benchmark. The normalization

of each metric was performed against the reference value obtained with the same input set. To sum-

marize the results for each benchmark and configuration, the geometric average was used instead of

66

the arithmetic average. As these are normalized values, the arithmetic mean has no meaning, while

the geometric mean is the more adequate measure [17, 64]. This is mainly due to the multiplicative

property of the geometric mean, which states that the mean of the products equals the product of the

means. Moreover, the geometric mean gives the same results regardless of which configuration is cho-

sen as reference for the normalization. For example, the normalized energy for each benchmark and

configuration (over n runs) is given by:

E = n

√√√√ n∏
i=1

Ei

Eref i

, (6.2)

where Ei is the energy estimated for each run i, and Eref i is the energy obtained for the reference

configuration with the same input set.

6.2 Experimental results

6.2.1 Energy and performance impact of the proposed mechanisms

Figures 6.1 and 6.2 present the obtained energy saving results when evaluating the proposed pack-

ing and fusing mechanisms with the considered set of benchmarks, for the Cortex-A76 and High-

performance cores, respectively. The estimated energy consumption is broken down in terms of its

dynamic and leakage parcels. They also depict the execution time for each benchmark and configura-

tion, normalized against the baseline configuration for each core model, namely A76-Original-2FU for

the Cortex-A76 and HP-Original-3FU for the HP core.

When maintaining the original number of functional units, the packing mechanism reduces the total

energy consumption in the SIMD unit by 21.5% and 20.6% (on average), for the A76 and HP cores,

respectively. These energy savings are slightly increased to 23.3% and 22.4%, respectively, when the

fusing mechanism is also enabled. Since the number of switched-on units is maintained, these savings

are mostly provided by a reduction in dynamic power, as idle and unused portions of the functional units

are clock gated.

However, an interesting aspect is observed with the three benchmarks which use the SIMD unit

more intensively: gemm, median, and erode. Since they are bounded by the SIMD units throughput,

the fusing mechanism allows for an average speed-up of 26.9% and 29.0%, for the Cortex-A76 and HP

cores, respectively, by allowing the execution of additional narrow-width instructions in the same units.

For these benchmarks, this increase in the maximum throughput (using the same number of units), with

a consequent reduction of the execution time, also contributes to a leakage energy decrease, resulting

in a higher total energy reduction of 37.4% and 38.1% (which explains why the average energy savings

with fusing are slightly higher).

67

intNN

streamvbyte

cartoon

sqnrm2

amax

gemv

gemm

fft

conv

median

img_integral

hist

canny

erode

-10 0 10 20 30 40 50

Dynamic Energy
Reduction [%]

0 10 20 30 40 50

Leakage Energy
Reduction [%]

-10 0 10 20 30 40 50

Total Energy
Reduction [%]

0.0 0.5 1.0 1.5 2.0

Normalized
Execution Time

Configuration:
A76-Original-1FUA A76-Fusing-1FUE

A76-Fusing-2FUD
A76-Packing-1FUC

A76-Packing-2FUB

A
B

C
D

E

Figure 6.1: Energy reduction (broken down in the dynamic and leakage parcels) in the SIMD unit and normalized
execution time for each benchmark with the Cortex-A76 core configurations. The baseline configuration,
A76-Original-2FU, is used as a reference and is not included.

68

intNN

streamvbyte

cartoon

sqnrm2

amax

gemv

gemm

fft

conv

median

img_integral

hist

canny

erode

-20 0 20 40 60

Dynamic Energy
Reduction [%]

0 20 40 60

Leakage Energy
Reduction [%]

-10 0 10 20 30 40 50

Total Energy
Reduction [%]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Normalized
Execution Time

Configuration:
HP-Original-2FUA
HP-Original-1FUB

HP-Packing-3FUC
HP-Packing-2FUD

HP-Packing-1FUE

HP-Fusing-3FUF
HP-Fusing-2FUG
HP-Fusing-1FUH

A
B

C
D

E
F

G
H

Figure 6.2: Energy reduction in the SIMD unit and normalized execution time for each benchmark with the High-
performance core configurations. The baseline configuration, HP-Original-3FU, is used as a reference
and is not included.

69

As it was discussed before, switching off functional units can further reduce the leakage power in

the SIMD execution unit. In fact, by enabling the operation fusing mechanism, more units can be power

gated (or removed), while maintaining a sufficient execution throughput. This is particularly interesting

both to limit the number of units in the design (thus saving area), and to power off some units on a non-

SIMD application phase (where most SIMD units can be turned off). In the later case, there is a costly

delay when units need to be powered-on again, which is compensated by the proposed mechanisms.

Moreover, the need for reactivating units can be even postponed. For the most intensive benchmarks

(i.e. gemm, median, and erode), when one of the three SIMD units in the HP core is removed, the total

energy consumption is reduced by 39.7%, while there is still an average speed-up of 1%. Without the

fusing mechanism, removing one unit leads to a slow-down of 41%. For the remaining benchmarks, two

units can be removed (in the HP core) with a slow-down of only 13%, on average, when it would be 23%

without fusing, resulting in a total energy reduction in the SIMD engine of 45.3%.

Before concluding, it is worth noting that the presented results for the dynamic energy savings are

significantly lower than the optimal values envisaged in Section 3.4, as the average savings are 34.3%

when compared to 56.4%. However, these are still significant reductions, especially when also consid-

ering the savings in leakage power. Firstly, part of the difference can be explained by the width-block

simplification in the width encoding step, as these results are for an 8-bit width-block. With an ideal (but

unrealistic) 1-bit width-block, the average reduction would be 43.1% (see Subsection 6.2.2). Moreover,

the initial analysis did not take into account other components of the dynamic power consumption of the

execution unit, that are now modelled with the McPAT simulator, such as dissipation in interconnects,

pipeline buffers, and the unit’s scheduler. For the case of the hist kernel, with the highest discrepancy

(94.5% compared to 31.2%), it is important to observe that the activity of the SIMD unit is quite low

for this specific benchmark (see Fig. 6.3), so the weight of the power in these components should be

very significant. Finally, as explained in Section 5.5, the SIMD and floating-point units are shared in the

McPAT power model. Hence, the energy results presented in this chapter also include the execution of

floating-point operations, which are not optimized in the proposed architecture.

Effectiveness of the fusing mechanism

Figure 6.3 depicts the active rate of the processor SIMD units during the execution of the considered

benchmarks either when fusing is disabled (Original) and enabled (Fusing). In particular, it is rep-

resented by the percentage of the execution time (clock cycles) when 1, 2, or all 3 units are active.

Naturally, there will be some fractions of time when none of the SIMD units are active, for example in

parts of the code where there is no vectorization being exploited, or whenever the SIMD issue queues

have already been emptied. The presented results show that the fusing mechanism significantly reduces

the average number of SIMD units active in each cycle. The average usage of the second SIMD unit in

70

the Cortex-A76 core is reduced from 38.4% to 28.9% when the fusing mechanism is enabled. For the

HP core, enabling the fusing mechanism reduces the usage of the third unit from 30.9% to 22.3%, and of

the second unit from 37.8% to 29.8%. Hence, these results confirm that the operation fusing mechanism

increases the average number of idle cycles of the SIMD units, reducing the activity factor (recall Equa-

tion 2.1) and consequently the dynamic energy consumption in these units. Moreover, as fewer units

are needed (on average), some units can be power gated more frequently without significantly affecting

the performance, which also reduces the leakage energy consumption.

0

20

40

60

80

100

C
lo

c
k
 C

y
c
le

s
 [

%
]

intNN streamvbyte cartoon sqnrm2 amax gemv gemm fft conv median img_integral hist canny erode average

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D

38.4%

1 2 3
Number of active SIMD units Configurations

A76-Original-2FUA A76-Fusing-2FUB HP-Original-3FUC HP-Fusing-3FUD

29.8% 30.9%

22.3%

Figure 6.3: Active rate of the processor SIMD units during the execution of the considered benchmarks for the
Original and Fusing configurations of the Cortex-A76 and High-performance cores. The empty portion
of each bar in the plot corresponds to when all the units are idle.

As it can be observed in Figure 6.4, in most benchmarks, the fusing mechanism allows for a very

significant fraction of the vector instructions to be issued and executed together with another instruction.

In particular, the fusing effectiveness is very high for the integerNN, gemm, and median benchmarks,

where (on average) 66.6% and 71.1% of the vector instructions are fused, for the Cortex-A76 and HP

cores respectively.

The average fraction of fused instructions is slightly higher in the HP core (43.2% compared to 37.1%

in the Cortex-A76, using the baseline number of SIMD units). In particular, for the sqnrm2 benchmark,

the fusing percentage goes from 1.2% in the Cortex-A76 core to 46.9% in HP. This increased effective-

ness of the fusing mechanism in the wider HP model can be explained by the larger instruction window

available, which allows more vector instructions to be waiting for execution in the same cycle, making

fusing opportunities more likely. In fact, there is also a slight average increase in the fusing percentage

when the number of units is reduced: from 37.1% to 39.3% in the Cortex-A76, and 43.2% to 45.6%

in HP. A likely explanation is that the reduction in the execution throughput causes the issue queues to

become fuller, so there is a higher chance that compatible instructions are waiting for execution in the

same cycle.

71

0

10

20

30

40

50

60

70

80

90

F
u

s
e
d

 I
n

s
tr

u
c
ti

o
n

s
 [

%
]

intNN streamvbyte cartoon sqnrm2 amax gemv gemm fft conv median img_integral hist canny erode

A76-Fusing-2FU A76-Fusing-1FU HP-Fusing-3FU HP-Fusing2FU HP-Fusing-1FU
Configuration

Figure 6.4: Percentage of issued instructions that are fused, for the Fusing configurations.

Impact of the extra pipeline stage

Figure 6.5 shows the impact of adding a new pipeline stage in the vector units to account for the addi-

tional steps in the packing and fusing mechanisms. As it can be observed, the energy savings are mostly

unchanged, while this extra latency does not cause a significant slow-down for most benchmarks, ex-

cept for the fft and conv benchmarks. In the HP core and only with the operand packing mechanism

(PackingExtraStage configuration), there is a slow-down of 19.5% and 21.1% for these benchmarks,

respectively. However, the fusing mechanism (FusingExtraStage) tends to slightly minimize the impact

of the additional latency by allowing an increase in throughput. In these benchmarks, it reduces the

slow-down to 18.6% and 20.5%.

Best configurations

Tables 6.3 and 6.4 report the best total energy reduction results obtained when varying the number of

available units, for each operation mode and benchmark, and with the Cortex-A76 and HP cores, re-

spectively. Only the configurations with a slow-down lower than or equal to 10% are considered, in

order to limit the degradation in the execution time, unless none of the configurations satisfies this req-

uisite (in which case the lowest execution time is reported). These tables confirm that the operation

packing mechanism allows for significant energy savings in all benchmarks, with average consumption

reductions of 31.5% and 40.1%, in the Cortex-A76 and HP cores, respectively. The operation fusing

mechanism enables higher energy reductions of 34.9% and 43.2% (on average). In the particular ex-

ample of the integerNN benchmark and the HP core, this is achieved by allowing an additional unit to

be power gated without any performance penalty, which increases the energy reduction from 39.6% to

54.4%. In the HP core, the fusing mechanism allows a very significant reduction in execution time for the

median and erode, with speed-ups of 46.8% and 25.9%, respectively.

72

HP-Packing-3FU HP-PackingExtraStage-3FU

HP-Fusing-3FU HP-FusingExtraStage-3FU

Configuration:

E

H

G

I

intNN

streamvbyte

cartoon

sqnrm2

amax

gemv

gemm

fft

conv

median

img_integral

hist

canny

erode

0 10 20 30 40
Total Energy Reduction [%]

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Normalized Execution Time

0 10 20 30 40
Total Energy Reduction [%]

0.0 0.4 0.8 1.2
Normalized Execution Time

Cortex-A76 Core High-performance Core

A76-Packing-2FU A76-PackingExtraStage-2FU

A76-Fusing-2FU A76-FusingExtraStage-2FU

Configuration:

A B

DC

A

C
B

D

E

G
F

H

Figure 6.5: Impact of adding a new pipeline stage in the vector unit in terms of the total energy reduction and nor-
malized execution time, for the packing and fusing modes, and the Cortex-A76 and High-performance
cores.

The presented results also further demonstrate that the impact of the additional latency cycle in

the vector pipeline is not significant, in most cases. In the HP core, the average energy reduction in the

SIMD unit only slight decreases to 37.4% and 40.9%, in the PackingExtraStage and FusingExtraStage

modes, respectively. These tables also confirm that there is only a significant execution time increase in

two benchmarks, fft and conv.

6.2.2 Design parameters exploration

The proposed architecture introduced the width-block design parameter, which significantly changes the

energy reductions that can be obtained. A higher width-block simplifies the necessary control logic but

causes more bit-width to be wasted in each computation. Figure 6.6 presents the energy reduction (bro-

ken down by dynamic and leakage components) for different width-block values, with the HP-Fusing-3FU

configuration and using some example benchmarks and the overall average.

As it was predicted before, for most benchmarks, the dynamic energy savings significantly decrease

73

Table 6.3: Best energy savings obtained for each mode in the Cortex-A76 core, while not allowing a significant
performance degradation.

Original Packing Fusing PackingExtraStage FusingExtraStage

Units
Saved Norm.

Units
Saved Norm.

Units
Saved Norm.

Units
Saved Norm.

Units
Saved Norm.

Energy [%] Time Energy [%] Time Energy [%] Time Energy [%] Time Energy [%] Time

integerNN 2 0.0 1.00 2 25.2 1.00 1 44.6 1.00 2 23.5 1.03 1 43.4 1.03
streamvbyte 1 21.2 1.00 1 42.1 1.00 1 42.1 1.00 1 41.8 1.00 1 41.9 1.00

cartoon 2 0.0 1.00 2 15.1 1.00 2 15.0 1.00 2 12.3 1.06 2 12.3 1.06
sqnrm2 1 24.5 1.00 1 39.6 1.00 1 39.6 1.00 1 40.4 0.99 1 40.4 0.99
amax 1 21.0 0.98 1 39.9 0.98 1 39.1 1.00 1 38.6 1.01 1 38.7 1.01
gemv 1 21.5 1.00 1 39.0 1.00 1 39.0 1.00 1 38.8 1.01 1 38.8 1.01
gemm 2 0.0 1.00 2 37.9 1.00 1 47.5 1.08 2 37.8 1.00 1 47.4 1.09

fft 2 0.0 1.00 2 29.2 1.00 2 30.2 0.96 2 28.9 1.01 2 29.6 0.98
conv 2 0.0 1.00 2 20.9 1.00 2 23.0 0.95 2 14.1 1.16 2 15.1 1.14

median 2 0.0 1.00 2 30.0 1.00 2 39.5 0.68 2 29.9 1.00 2 37.0 0.77
hist 1 27.7 1.00 1 41.4 1.00 1 41.4 1.00 1 41.1 1.00 1 41.1 1.00

img integral 1 21.0 1.00 1 31.8 1.00 1 31.9 1.00 1 31.1 1.02 1 31.2 1.02
canny 2 0.0 1.00 2 16.2 1.00 2 16.1 1.00 2 13.0 1.06 2 13.0 1.06
erode 2 0.0 1.00 2 24.2 1.00 2 29.9 0.81 2 24.0 1.01 2 27.4 0.89

average — 10.5 1.00 — 31.5 1.00 — 34.9 0.96 — 30.4 1.03 — 33.6 1.00

Table 6.4: Best energy savings obtained for each mode in the High-performance core, while not allowing a signifi-
cant performance degradation.

Original Packing Fusing PackingExtraStage FusingExtraStage

Units
Saved Norm.

Units
Saved Norm.

Units
Saved Norm.

Units
Saved Norm.

Units
Saved Norm.

Energy [%] Time Energy [%] Time Energy [%] Time Energy [%] Time Energy [%] Time

integerNN 2 14.9 1.00 2 39.6 1.00 1 54.4 1.00 2 37.6 1.04 1 53.0 1.05
streamvbyte 1 33.0 1.02 1 51.8 1.02 1 52.4 1.00 1 51.5 1.03 1 52.0 1.01

cartoon 2 12.4 1.02 2 26.7 1.02 2 27.0 1.01 2 23.8 1.09 2 24.1 1.08
sqnrm2 1 38.9 1.00 1 51.8 1.00 1 51.9 1.00 1 52.0 1.00 1 52.0 1.00
amax 1 32.8 1.00 1 49.3 1.00 1 49.3 1.00 1 48.8 1.02 1 48.9 1.02
gemv 1 34.6 1.00 1 49.7 1.00 1 49.8 1.00 1 49.5 1.01 1 49.4 1.01
gemm 3 0.0 1.00 3 38.4 1.00 2 49.3 0.91 3 38.2 1.00 2 48.8 0.93

fft 3 0.0 1.00 3 30.4 1.00 3 31.3 0.96 3 25.2 1.21 3 25.3 1.21
conv 2 9.3 1.05 2 29.0 1.05 2 30.5 1.01 3 10.9 1.19 3 11.3 1.19

median 3 0.0 1.00 3 30.9 1.00 3 39.7 0.68 3 30.8 1.01 2 39.1 0.94
hist 1 43.2 1.00 1 54.2 1.00 1 54.2 1.00 1 54.1 1.00 1 54.1 1.00

img integral 1 34.7 1.00 1 43.7 1.00 1 43.7 1.00 1 43.7 1.00 1 43.7 1.00
canny 2 12.6 1.02 2 27.6 1.02 2 27.9 1.01 3 10.6 1.08 2 24.6 1.09
erode 3 0.0 1.00 3 24.9 1.00 3 30.7 0.79 3 24.5 1.01 3 26.0 0.96

average — 20.6 1.01 — 40.1 1.01 — 43.2 0.95 — 37.4 1.05 — 40.9 1.03

with the increase of the width-block, as more width is wasted in each operation. On average, a 1-bit block

allows for a reduction in 43.1% of the dynamic energy, whereas with 8-bits it is slightly lower at 34.3%,

and with 32-bits it is only 13.2%. The leakage energy is mostly unchanged in Fig. 6.6 with different width-

blocks because the number of units is not changed (three SIMD units), and that is the most significant

factor. However, for the gemm kernel, the fusing mechanism is also responsible for significant leakage

energy savings, due to a noticeable reduction in execution time. As a result, for this benchmark, when

the width-block is increased so much that its instructions are no longer optimized, there is no longer

74

a reduction in leakage energy or execution time. This happens with a 32-bit width-block because this

kernel uses mostly 4×32-bit vector instructions, which are no longer optimized with this block size.

Hence, a larger width-block minimizes the overhead of implementing the new mechanisms but im-

plies that more bits will be wasted in each operation, limiting the resulting energy savings. The analysis

of Figure 6.6 indicates that an 8-bit width-block seems to be a good compromise for the considered pro-

cessor architecture (i.e. ARM NEON). In fact, an 8-bit block not only allows for significant energy savings,

but also corresponds to the smallest element size already supported in this vector extension, which sim-

plifies adding hardware support for the proposed mechanisms (as explained in Subsection 4.1.3).

1 2 4 8 16 32
Width-block [bits]

-20

0

20

40

60

D
y
n

a
m

ic
 E

n
e
rg

y
 R

e
d

u
c
ti

o
n

 [
%

]

1 2 4 8 16 32
Width-block [bits]

-20

0

20

40

60

L
e
a
k
a
g

e
 E

n
e
rg

y
 R

e
d

u
c
ti

o
n

 [
%

]

1 2 4 8 16 32
Width-block [bits]

-20

0

20

40

60

To
ta

l
E
n

e
rg

y
 R

e
d

u
c
ti

o
n

 [
%

]

1 2 4 8 16 32
Width-block [bits]

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
z
e
d

 E
x
e
c
u

ti
o
n

 T
im

e

gemm fft cartoon average

Benchmark

Figure 6.6: Comparison of energy savings (broken down into dynamic and leakage) and execution times with dif-
ferent width-block sizes, for the HP-Fusing-3FU configuration.

6.3 Summary

This chapter presented a comprehensive evaluation of the proposed mechanisms and architecture and

showed that very relevant (dynamic and leakage) energy savings in the SIMD execution unit can be

obtained while having a reduced or even negligible overhead. This increase in power efficiency is at-

tained without significantly compromising the performance, or even with considerable speed-ups, for

very computation-intensive kernels. After performing a design space exploration, by considering a pro-

totype based on the Cortex-A76 microarchitecture, it was concluded that an 8-bit width-block seems to

be the compromise for this parameter in this processor.

75

7
Conclusions and Future Work

Contents

7.1 Conclusions . 76

7.2 Future Work . 77

7.1 Conclusions

This thesis explored a previously ignored but highly relevant opportunity to exploit narrow-width vector

computations, in the context of the increasingly predominant Single Instruction Multiple Data (SIMD)

extensions in General Purpose Processors (GPPs). Several kernels and applications were profiled to

support this claim, observing that although a wide data type is often assigned at compile-time for vector

elements (e.g. 64 or 32-bit modes), for a large portion of vector operations, the actual values fit in a

much narrower width (e.g. 16 or 8-bit). The performed preliminary evaluation showed that, on average,

56.4% of the total vector width is wasted in vector computations, when summing the unused portion of

all vector elements, in the profiled benchmarks.

By following this preliminary assessment, two complementary mechanisms to exploit narrow-width

in vector operations for energy efficiency were proposed: operand packing, and operation fusing. In

these mechanisms, the elements in each vector operand are narrowed by discarding redundant sign bits

and packed in a smaller width vector. Then, these narrower vector operands open up the opportunity to

issue more than one instruction to the same functional unit (fusing), by using the remaining (available)

width of the unit.

A modified superscalar out-of-order architecture is proposed, implementing these mechanisms dy-

76

namically (at run-time) in the execution engine, with a low hardware overhead and transparently to

applications and libraries.

The prototyping and implementation of these mechanisms showed that they allow the usage of the

SIMD units to be dynamically optimized to the size of the input data, reducing the dynamic and leakage

energy consumption when combined with clock and power gating techniques. Furthermore, the fusing

mechanism allows an adequate execution throughput to be maintained when the number of units is

reduced. This is particularly advantageous in highly vectorized code regions and kernels, where the

proposed technique allows reducing the number of active units with no significant performance losses,

thus contributing to a reduction in energy consumption. Moreover, it is also advantageous in other code

regions, since it amortizes the performance penalty caused by the delay in powering up gated SIMD

units, thus facilitating the exploitation of power gating mechanisms.

The conducted experimental evaluation considered a prototyping architecture based on the ARM

Cortex-A76 out-of-order core (with the ARM NEON vector extension). It demonstrated that energy

savings in the SIMD unit as high as 54% could be achieved with the proposed implementation, while

having an average slow-down of 3%, with even some slight speed-ups in compute-intensive kernels.

Moreover, in a microarchitecture with three SIMD units, the propose mechanisms allow one or two units

to be removed (e.g. by power gating) for most applications without a significant performance impact.

7.2 Future Work

The presented study proposed a lightweight scheme for packing narrow-width vector operands and

operations, using a compact width mask for encoding the element size required by each lane. This

initial proposal exploited narrow-width SIMD vector values only in the execution unit, but it might be

very advantageous to extend this efficient vector representation to other portions of the datapath. In

particular, the register file and data cache are responsible for a very significant fraction of the processor

power consumption, so very relevant energy savings might be further obtained by optimizing these

structures. Packed narrow vectors require less storage space in the register file and data cache, and

unneeded portions could be gated to reduce energy consumption.

In the architecture that was proposed and evaluated in this study, the operands are packed before

each instruction is executed, and the result is unpacked when writing-back to the register file (recall

Fig. 4.10). Hence, the envisaged extension to this architecture would directly store the packed results

in the register file, with the corresponding width mask, as is presented in Figure 7.1. The packed vector

values would allow a large portion of the register file to be turned off, reducing its power consumption.

The extra register space that would be required to store the width mask (e.g. 8 bits) would be largely

outweighed by the savings enabled.

77

Moreover, if the width mask is directly fetched from the register file, it does not have to be computed

in the operand fetch step ((A) in Fig. 7.1). Hence, as the vector operands are already packed, the new

issuing stage (C) would be simplified, as it would only be required to realign the lanes between vector

operands. Therefore, the critical path overhead in these stages would be reduced. During write-back

(F), before storing the packed vector result, it would be advantageous to detect if the width of a lane was

reduced by the operation and to adjust the vector and the mask accordingly.

In a limit situation, only immediate operands and memory values would need to be explicitly encoded

and packed, but that would no longer interfere with the critical path of the execution engine. The imme-

diate operands are available early in the decoding stage, and the values loaded from memory can be

packed along the memory hierarchy (e.g. as early as the memory controller).

Width Mask

(B) Issue Queues (E) Execute

Vector Register File
(Packed)

SIMD
FU

Gating Unit

SIMD
FU

Gating Unit
Inst. Entries

Dispatch Commit
Aligning &
Pre-Schedule

(C)

Re-packing
& Write-back(F)Operand Fetch(A)

Fusing &
Schedule

(D)

Figure 7.1: Possible extension to the proposed architecture, focusing on the changes to the execution engine (com-
pare with Fig. 4.10). The packed vector is directly fetched from the register file with its width mask (A).
Since the operand vectors are already packed, they only have to be re-aligned (C). During the write-
back, the result vectors are re-packed only if the encoding of any lane has changed (F).

.

Hence, this architecture extension would not only increase the energy efficiency gains that can be

obtained from vector packing but would also reduce the overhead of this approach (in particular, the

critical path increase). However, some challenges would have to be addressed, namely those related

to the different element modes that vector operations support. As was already explained, the same

vector value has several different representations, depending on the vector mode. Hence, if there is

a mismatch between the element size of the producer and consumer instructions, that packed vector

can not be used directly and would have to be unpacked first. Moreover, in typical vector extensions,

memory operations are agnostic in terms of element size, so they do not give any indication of the vector

mode of the consumer instruction.

Another interesting extension that could be considered is to design and evaluate dynamic gating

decision mechanisms, that also take into account the width of the current data when deciding when to

turn off and on SIMD units. Tables 6.3 and 6.4 show that the number of vector units that allows for

78

the best compromise between energy savings and performance depends on the specific application.

Moreover, the execution traces in Figure 3.6 show that the number of required units varies during the

execution of an application, as code regions with intensive usage of vector computations alternate with

non-SIMD phases, and as the width of the input data varies. By dynamically varying the number of units,

better energy savings and performance compromises would be possible. However, the mechanism

designed for deciding when to turn units on and off should not trigger these changes too often, due to

the energy overhead and performance penalty of powering-up units.

Moreover, it would be interesting to prototype these architectural mechanisms with the novel ARM

Scalable Vector Extension (ARM SVE) [9]. This extension not only brings larger vector sizes and new

scatter/gather instructions but also introduces predication registers. Predicate registers are masks that

select which elements should be computed in a vector. Elements that are not required for a given

computation do not need to be fetched from the register file and can be exploited to further pack vector

operands, by extending the proposed scheme. At the time this work was developed, the support for

SVE in gem5 was still in development, and few libraries were optimized for this extension. However, this

situation is gradually changing.

Finally, it would be interesting to explore similar run-time mechanisms to support dynamic preci-

sion in floating-point (scalar and vector) operations. However, this would bring new challenges, namely

on how to shorten the floating-point representations without having significant precision losses during

computations.

79

Bibliography

[1] M. Taylor, “Is dark silicon useful? Harnessing the four horsemen of the coming dark silicon apoca-

lypse,” in Design Automation Conference. IEEE, 2012, pp. 1131–1136.

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark silicon and the

end of multicore scaling,” IEEE Micro, vol. 32, no. 3, pp. 122–134, 2012.

[3] T. Mudge, “Power: a first-class architectural design constraint,” Computer, vol. 34, no. 4, pp. 52–58,

2001.

[4] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and

V. Narayanan, “Leakage Current : Moore’s law meets static power,” Computer, vol. 36, no. 12, pp.

68–75, 2003.

[5] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Reducing power in high-

performance microprocessors,” in Design Automation Conference. ACM Press, 1998, pp. 732–

737.

[6] M. Hassaballah, S. Omran, and Y. B. Mahdy, “A review of SIMD multimedia extensions and their

usage in scientific and engineering applications,” The Computer Journal, vol. 51, no. 6, pp. 630–

649, 2008.

[7] D. Y. Hong, S. Y. Fu, Y. P. Liu, J. J. Wu, and W. C. Hsu, “Exploiting longer SIMD lanes in dynamic

binary translation,” in International Conference on Parallel and Distributed Systems. IEEE, 2016,

pp. 853–860.

[8] A. Barredo, J. M. Cebrian, M. Valero, M. Casas, and M. Moreto, “Efficiency analysis of modern

vector architectures: vector ALU sizes, core counts and clock frequencies,” The Journal of Super-

computing, pp. 1–20, 2019.

[9] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell, G. Magklis,

A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker, “The ARM scalable vector extension,”

IEEE Micro, vol. 37, no. 2, pp. 26–39, 2017.

80

[10] D. Habich, P. Damme, A. Ungethüm, and W. Lehner, “Make larger vector register sizes new chal-

lenges?: Lessons learned from the area of vectorized lightweight compression algorithms,” in Work-

shop on Testing Database Systems. ACM Press, 2018, pp. 1–6.

[11] R. Kumar, A. Martı́nez, and A. González, “Dynamic selective devectorization for efficient power gat-

ing of SIMD units in a HW/SW Co-designed environment,” in International Symposium on Computer

Architecture and High Performance Computing. IEEE, 2013, pp. 81–88.

[12] A. Youssef, M. Anis, and M. Elmasry, “Dynamic standby prediction for leakage tolerant microproces-

sor functional units,” in International Symposium on Microarchitecture. IEEE, 2006, pp. 371–381.

[13] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width operands to improve processor

power and performance,” in International Symposium on High-Performance Computing. IEEE,

1999, pp. 13–22.

[14] G. H. Loh, “Exploiting data-width locality to increase superscalar execution bandwidth,” in Interna-

tional Symposium on Microarchitecture. IEEE, 2002, pp. 395–405.

[15] O. Ergin, D. Balkan, K. Ghose, and D. Ponomarev, “Register packing: Exploiting narrow-width

operands for reducing register file pressure,” in International Symposium on Microarchitecture.

IEEE, 2004, pp. 304–315.

[16] G. Pokam, O. Rochecouste, A. Seznec, F. Bodin, G. Pokam, O. Rochecouste, A. Seznec, and

F. Bodin, “Speculative software management of datapath-width for energy optimization,” in Confer-

ence on Languages, Compilers, and Tools, vol. 39, no. 7. New York, New York, USA: ACM Press,

2004, p. 78.

[17] J. Hennessy and D. Patterson, Computer architecture: a quantitative approach, 6th ed., Elsevier,

Ed., 2017.

[18] S. Carroll and W. Lin, “A queuing model for CPU functional unit and issue queue configuration,”

Simulation Modelling Practice and Theory, vol. 87, pp. 327–342, sep 2018.

[19] J. E. Smith and G. S. Sohi, “The Microarchitecture of Superscalar Processors,” Proceedings of the

IEEE, vol. 83, no. 12, pp. 1609–1624, 1995.

[20] M. A. Postiff, D. A. Greene, G. S. Tyson, and T. N. Mudge, “The limits of instruction level parallelism

in SPEC95 applications,” ACM SIGARCH Computer Architecture News, vol. 27, no. 1, pp. 31–34,

1999.

[21] J. J. Sharkey and D. V. Ponomarev, “Efficient instruction schedulers for SMT processors,” in

Proceedings - International Symposium on High-Performance Computer Architecture, vol. 2006.

IEEE, 2006, pp. 293–303.

81

[22] I. Kuroda and T. Nishitani, “Multimedia processors,” Proceedings of the IEEE, vol. 86, no. 6, pp.

1203–1221, jun 1998.

[23] R. Dennard, F. Gaensslen, W.-N. Yu, L. Rideout, E. Bassous, and A. Le Blanc, “Design of Ion-

Implanted Small MOSFET ’ S Dimensions with Very Small Physical Dimentions,” IEEE Journal of

Solid State Circuits, vol. 9, no. 5, pp. 257–268, 1974.

[24] B. Davari, R. H. Dennard, and G. G. Shahidi, “CMOS Scaling for high performance and Low Power

next ten years,” in Proceedings of the IEEE, 1995, pp. 595–606.

[25] S. Li and S. Mishra, “Optimizing power consumption in multicore smartphones,” Journal of Parallel

and Distributed Computing, vol. 95, pp. 124–137, 2016.

[26] T. Patki, D. K. Lowenthal, A. Sasidharan, M. Maiterth, B. L. Rountree, M. Schulz, and B. R. De

Supinski, “Practical resource management in power-constrained, high performance computing,” in

International Symposium on High-Performance Parallel and Distributed Computing, 2015, pp. 121–

132.

[27] W. Lin, W. Wu, H. Wang, J. Z. Wang, and C. H. Hsu, “Experimental and quantitative analysis of

server power model for cloud data centers,” Future Generation Computer Systems, vol. 86, pp.

940–950, 2018.

[28] E. Ozen and A. Orailoglu, “The Return of Power Gating: Smart Leakage Energy Reductions in

Modern Out-of-Order Processor Architectures,” in International Conference on Architecture of Com-

puting Systems. Springer, 2019, pp. 253–266.

[29] S. Rele, S. Pande, S. Onder, and R. Gupta, “Optimizing static power dissipation by functional units

in superscalar processors,” in Conference on Compiler Construction, vol. 2304. Springer, Berlin,

Heidelberg, 2002, pp. 261–275.

[30] V. Venkatachalam and M. Franz, “Power reduction techniques for microprocessor systems,” ACM

Computing Surveys, vol. 37, no. 3, pp. 195–237, 2005.

[31] J. Kathuria, M. Ayoubkhan, and A. Noor, “A Review of Clock Gating Techniques,” MIT International

Journal of Electronics and Communication Engineering, vol. 1, no. 2, pp. 106–114, 2011.

[32] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose, “Microarchitec-

tural Techniques for Power Gating of Execution Units,” in International Symposium on Low Power

Electronics and Design. ACM Press, 2004, pp. 32–37.

[33] A. Lungu, P. Bose, A. Buyuktosunoglu, and D. J. Sorin, “Dynamic power gating with quality guaran-

tees,” in International Symposium on Low Power Electronics and Design, 2009, pp. 377–382.

82

[34] X. Wang and W. Zhang, “Execution units power-gating to improve energy efficiency of GPGPUs,”

in International Conference on Internet of Things and International Conference on Green Comput-

ing and Communications and International Conference on Cyber, Physical and Social Computing.

IEEE, 2019, pp. 711–718.

[35] B. Calhoun, J. Kao, and A. Chandrakasan, “Power Gating and Dynamic Voltage Scaling,” in Leak-

age in Nanometer CMOS Technologies, 2006, pp. 41–75.

[36] L. Bolzani, A. Calimera, A. Macii, E. Macii, and M. Poncino, “Enabling concurrent clock and power

gating in an industrial design flow,” in Design, Automation and Test in Europe, 2009, pp. 334–339.

[37] J. Seomun, I. Shin, and Y. Shin, “Synthesis of active-mode power-gating circuits,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 3, pp. 391–403, 2012.

[38] N. Wang, W. Zhong, S. Chen, Z. Ma, X. Ling, and Y. Zhu, “Power-gating-aware scheduling with

effective hardware resources optimization,” Integration, vol. 61, pp. 167–177, mar 2018.

[39] C. Cortes, H. Amano, and N. Yamasaki, “Break even time analysis using empirical overhead param-

eters for embedded systems on SOTB technology,” Conference on Design of Circuits and Integrated

Systems, vol. 2017-Novem, pp. 1–6, 2018.

[40] O. Rochecouste, G. Pokam, and A. Seznec, “A case for a complexity-effective, width-partitioned

microarchitecture,” ACM Transactions on Architecture and Code Optimization, vol. 3, no. 3, pp.

295–326, 2006.

[41] M. Özsoy, Y. O. Koçberber, M. Kayaalp, and O. Ergin, “Dynamic register file partitioning in su-

perscalar microprocessors for energy efficiency,” in IEEE International Conference on Computer

Design. IEEE, oct 2010, pp. 515–520.

[42] C. Lomont, “Introduction to Intel advanced vector extensions,” Tech. Rep., 2011.

[43] A. Waterman and K. Asanovi, “The RISC-V Instruction Set Manual, Volume I: Base User-Level ISA

Document Version: 2.2,” Tech. Rep., 2017.

[44] R. Canal, A. González, and J. E. Smith, “Software-controlled operand-gating,” in Symposium on

Code Generation and Optimization, CGO. IEEE, 2004, pp. 125–136.

[45] M. M. Islam and P. Stenstrom, “Characterization and exploitation of narrow-width loads: the narrow-

width cache approach,” in International Conference on Compilers, Architectures and Synthesis for

Embedded Systems. ACM Press, 2010, pp. 227–236.

83

[46] M. Sjalander and P. Larsson-Edefors, “Multiplication acceleration through twin precision,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 9, pp. 1233–1246, sep

2009.

[47] S. Balakrishnan and S. K. Nandy, “Arbitrary precision arithmetic - SIMD style,” in Conference on

VLSI Design. IEEE, 1998, pp. 128–132.

[48] P. S. Karthikeyan and P. S. Ranganathan, “More on arbitrary boundary packed arithmetic,” in Inter-

national Conference on High Performance Computing. IEEE, 1998, pp. 19–24.

[49] A. Danysh and D. Tan, “Architecture and implementation of a vector/SIMD multiply-accumulate unit,”

IEEE Transactions on Computers, vol. 54, no. 3, pp. 284–293, 2005.

[50] S. Krithivasan and M. J. Schulte, “Multiplier architectures for media processing,” in Asilomar Con-

ference on Signals, Systems & Computers, vol. 2, 2003, pp. 2193–2197.

[51] H. Libo, S. Li, D. Kui, and W. Zhiying, “A new architecture for multiple-precision floating-point

multiply-add fused unit design,” in Symposium on Computer Arithmetic, 2007, pp. 69–76.

[52] H. Zhang, D. Chen, and S. B. Ko, “Efficient Multiple-Precision Floating-Point Fused Multiply-Add

with Mixed-Precision Support,” IEEE Transactions on Computers, vol. 68, no. 7, pp. 1035–1048,

2019.

[53] ——, “New Flexible Multiple-Precision Multiply-Accumulate Unit for Deep Neural Network Training

and Inference,” IEEE Transactions on Computers, vol. 69, no. 1, pp. 26–38, 2020.

[54] P. Pujara and A. Aggarwal, “Restrictive compression techniques to increase level 1 cache capacity,”

in IEEE International Conference on Computer Design, vol. 2005. IEEE Comput. Soc, 2005, pp.

327–333.

[55] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, D. A. Wood, B. Beck-

mann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, and T. Krishna, “The

gem5 simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[56] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 programs,” pp. 24–36,

1995.

[57] G. Southern and J. Renau, “Analysis of PARSEC workload scalability,” in International Symposium

on Performance Analysis of Systems and Software. IEEE, 2016, pp. 133–142.

[58] J. M. Cebrián, M. Jahre, and L. Natvig, “Optimized hardware for suboptimal software: The case

for SIMD-aware benchmarks,” in ISPASS 2014 - IEEE International Symposium on Performance

Analysis of Systems and Software, 2014, pp. 66–75.

84

[59] D. Lemire, N. Kurz, and C. Rupp, “STREAM VBYTE: Faster byte-oriented integer compression,”

Information Processing Letters, vol. 130, pp. 1–6, 2018.

[60] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy evaluation of GEM5 simulator system,” in

International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip. IEEE,

jul 2012, pp. 1–7.

[61] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “McPAT: an inte-

grated power, area, and timing modeling framework for multicore and manycore architectures,” in

International Symposium on Microarchitecture. ACM Press, 2009, pp. 469–480.

[62] T. pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020.

[63] O. Tange, “Gnu parallel - the command-line power tool,” ;login: The USENIX Magazine, vol. 36,

no. 1, pp. 42–47, Feb 2011.

[64] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: The correct way to summarize

benchmark results,” Communications of the ACM, vol. 29, no. 3, pp. 218–221, 1986.

85

A
Considered Benchmark Datasets

The integer input data for the fft and the algebra (i.e. sqnrm2, amax, gemv, and gemm) kernels was

generated randomly by following tree different distributions:

• 8bit, a discretized Normal distribution (N (0, 652)) where around 95% of the values use 8-bits or

less;

• 12bit, a discretized Log-normal distribution (Lognormal(4, 2.22)) where around 95% of the values

fit in 12-bits or less;

• 16bit, a discretized Log-normal distribution (Lognormal(5, 3.32)) where around 95% of the values

fit in 16-bits or less.

The Normal distribution is ubiquitous in scientific, media, and other applications, and in contrast with

the Log-normal also generates negative values. However, its values tend to concentrate in lower widths

(further supporting the narrow-width relevance), so to obtain datasets with a wider spread the Log-

normal distribution was also used. All values from these datasets fit in a 32-bit integer data element,

which is used in these applications. Figure A.1 presents the cumulative distribution function for the width

of the values in these datasets, and Table A.1 presents some sample values from each dataset. The

results presented for these kernels in Section 6.2 correspond to the 16bit dataset, except for the fft

kernel, where the 12bit dataset is used.

The impact of these different input datasets in the results obtained for these kernels was also eval-

uated, and Figure A.2 depicts the total energy savings obtained for each dataset with these kernels, in

the HP-Fusing-3FU configuration. As expected, higher energy savings are possible with narrower data,

as there is more wasted width to exploit, but for most kernels (with the exception of fft) the difference

is not very significant. This is because even in the 16bit dataset most of the values use only half of the

32-bit data elements.

86

Table A.1: Sample values from each dataset

8bit 12bit 16bit

96 24 1
-78 2 89650
130 264 0
-62 79 208
-50 406 1
-42 5 18203
39 15 0
1 4 367

-183 135 1
-177 25 5225

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Width [bits]

0.0

0.2

0.4

0.6

0.8

1.0
0.95

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o
n

 F
u

n
c
ti

o
n

8bit 12bit 16bit

Dataset

Figure A.1: Cumulative distribution function of the bit-width of the values in the random datasets

8bit 12bit 16bit
Dataset

0

10

20

30

40

50

To
ta

l
E
n

e
rg

y
 S

a
v
in

g
s
 [

%
]

amax
fft
gemm
sqnrm2

Benchmark

Figure A.2: Energy savings for different datasets, for the HP-Fusing-3FU configuration

87

B
ARMv8 NEON Instructions

Table B.1 presents a comprehensive list of the instructions included in the ARMv8 NEON vector ex-

tension. Instructions for which support was added (in gem5) to prototype the proposed mechanisms

are marked in colour. The support for these instructions was gradually added as they appeared in the

compiled binaries of the considered benchmarks, but it ended up covering a major fraction of the NEON

extension, in particular when focusing on instructions with integer vector operands. A noteworthy ex-

clusion is the instructions that perform multiplication (and accumulation) between a vector and a scalar

element (e.g. MUL (by element)), but these were infrequent in the chosen applications.

Table B.1: List of ARMv8 NEON vector instructions, with modified and prototyped instructions marked in colour

Acronym NEON Instruction Mode

ADD Add Regular
SUB Subtract Regular
SABD Signed Absolute Difference Regular
UABD Unsigned Absolute Difference Regular
SABA Signed Absolute Difference and Accumulate Regular
UABA Unsigned Absolute Difference and Accumulate Regular
ADDP Add Pairwise Pairwise
ADDV Add Across Vector Across Vector
SQADD Signed Saturating Add Regular
UQADD Unsigned Saturating Add Regular
SQSUB Signed Saturating Subtract Regular
UQSUB Unsigned Saturating Subtract Regular
SHADD Signed Halving Add Regular
UHADD Unsigned Halving Add Regular
SRHADD Signed Rounding Halving Add Regular
URHADD Unsigned Rounding Halving Add Regular
SHSUB Signed Halving Subtract Regular
UHSUB Unsigned Halving Subtract Regular

Continued on next page

88

Acronym NEON Instruction Mode

SADDW Signed Add Wide Wide
UADDW Unsigned Add Wide Wide
SSUBW Signed Subtract Wide Wide
USUBW Unsigned Subtract Wide Wide
SADDL Signed Add Long Long
UADDL Unsigned Add Long Long
SSUBL Signed Subtract Long Long
USUBL Unsigned Subtract Long Long
ADDHN Add High Narrow Narrow
SABAL Signed Absolute Difference Accumulate Long Long
UABAL Unsigned Absolute Difference Accumulate Long Long
SUBHN Subtract High Narrow Narrow
SABDL Signed Absolute Difference Long Long
UABDL Unsigned Absolute Difference Long Long
SADDLP Signed Add Long Pairwise Pairwise
UADDLP Unsigned Add Long Pairwise Pairwise
SUQADD Signed Saturating Accumulate of Unsigned Value Regular
SQABS Signed Saturating Absolute Regular
SQNEG Signed Saturating Negate Regular
MUL Multiply Regular
MLA Multiply-Add Regular
MLS Multiply-Subtract Regular
MUL (by element) Multiply by Element Broadcast
MLA (by element) Multiply-Add by Element Broadcast
MLS (by element) Multiply-Subtract by Element Broadcast
SMULL Signed Multiply Long Long
UMULL Unsigned Multiply Long Long
SMLAL Signed Multiply-Add Long Long
SMLSL Signed Multiply-Subtract Long Long
UMLAL Unsigned Multiply-Add Long Long
UMLSL Unsigned Multiply-Subtract Long Long
SQDMULL Signed Saturating Doubling Multiply Long Long
SQDMLAL Signed Saturating Doubling Multiply-Add Long Long
SQDMLSL Signed Saturating Doubling Multiply-Subtract Long Long
SMULL (by element) Signed Multiply Long by Element Broadcast, Long
SMLAL (by element) Signed Multiply-Add Long by Element Broadcast, Long
SMLSL (by element) Signed Multiply-Subtract Long by Element Broadcast, Long
UMLAL (by element) Unsigned Multiply-Add Long by Element Broadcast, Long
UMLSL (by element) Unsigned Multiply-Subtract Long by Element Broadcast, Long
SQDMULL (by element) Signed Saturating Doubling Multiply Broadcast, Long

Long by Element
SQDMLAL (by element) Signed Saturating Doubling Multiply-Add Broadcast, Long

Long by Element
SQDMLSL (by element) Signed Saturating Doubling Multiply-Subtract Broadcast, Long

Long by Element
PMUL Polynomial Multiply Regular
PMULL Polynomial Multiply Long Long
SMAX Signed Maximum Regular
UMAX Unsigned Maximum Regular

Continued on next page

89

Acronym NEON Instruction Mode

SMIN Signed Minimum Regular
UMIN Unsigned Minimum Regular
SMAXP Signed Maximum Pairwise Pairwise
UMAXP Unsigned Maximum Pairwise Pairwise
SMINP Signed Minimum Pairwise Pairwise
UMINP Unsigned Minimum Pairwise Pairwise
SMAXV Signed Maximum Across Vector Across Vector
UMAXV Unsigned Maximum Across Vector Across Vector
SMINV Signed Minimum Across Vector Across Vector
UMINV Unsigned Minimum Across Vector Across Vector
CMEQ Compare Bitwise Equal Regular
CMGE Compare Signed Greater Than or Equal Regular
CMGT Compared Signed Greater Than Regular
CMHI Compare Unsigned Higher Regular
CMHS Compare Unsigned Higher or Same Regular
CMEQ (zero) Compare Bitwise Equal to Zero Regular
CMGE (zero) Compare Signed Greater Than or Equal to Zero Regular
CMGT (zero) Compare Signed Greater Than Zero Regular
CMLE (zero) Compare Signed Less Than or Equal to Zero Regular
CMLT (zero) Compare Signed Less Than Zero Regular
CMTST Compare Bitwise Test Bits Nonzero Regular
ABS Absolute Regular
NEG Negative Regular
CLS Count Leading Sign Bits Regular
CLZ Count Leading Zero Bits Regular
EOR Bitwise Exclusive OR Regular
AND Bitwise AND Regular
BSL Bitwise Select Regular
BIC Bitwise Bit Clear Regular
BIT Bitwise Insert if True Regular
ORR Bitwise Inclusive OR Regular
BIF Bitwise Insert if False Regular
ORN Bitwise Inclusive OR NOT Regular
SHL Shift Left Regular
SSHR Signed Shift Right Regular
USHR Unsigned Shift Right Regular
SQSHLU Signed Saturating Shift Left Unsigned Regular
SQSHL Signed Saturating Shift Left Regular
UQSHL Unsigned Saturating Shift Left Regular
SRSRA Signed Rounding Shift Right and Accumulate Regular
RSHRN Rounding Shift Right Narrow Narrow
USHLL Unsigned Absolute Difference Regular
DUP (general) Duplicate General-purpose Register to Vector Element
DUP (element) Duplicate Element Element
UMOV Unsigned Move Element to General-purpose Register Element
SMOV Signed Move Element to General-purpose Register Element
INS (general) Insert Vector Element from General-purpose Register Element
INS (element) Insert Vector Element Element
MOVI Move Immediate Immediate

Continued on next page

90

Acronym NEON Instruction Mode

MVNI Move Inverted Immediate Immediate
SCVTF Signed Integer Convert to Floating-point Regular
UCVTF Unsigned Integer Convert to Floating-point Regular
UQXTN Unsigned Saturating Extract Narrow Narrow
SQXTN Signed Saturating Extract Narrow Narrow
SQXTUN Signed Saturating Extract Unsigned Narrow Narrow
XTN Extract Narrow Narrow
EXT Extract Special
ZIP Zip Vectors Special
UZP Unzip Vectors Special
TRN Transpose Special
TBL Table Vector Lookup Special
REV64 Reverse Doublewords Special
REV32 Reverse Words Special
REV16 Reverse Halfwords Special
AES. . . Cryptography AES —
SHA. . . Cryptography SHA —
F. . . Floating-point Instructions —
LD. . . Load Instructions —
ST. . . Store Instructions —

91

	Titlepage
	Declaration
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis contributions
	1.4 Thesis outline

	2 Background and Related Work
	2.1 Contemporary GPP architectures
	2.2 Power efficiency in computer architectures
	2.2.1 Prevailing techniques for power efficiency
	2.2.2 Power gating unused functional units
	2.2.3 Reducing the SIMD units power dissipation

	2.3 Scalable width datapaths
	2.3.1 Software based techniques
	2.3.2 Dynamic hardware-based approaches
	2.3.3 Scalable width structures
	2.3.3.A Functional units
	2.3.3.B Register file
	2.3.3.C Caches

	2.4 Summary

	3 Narrow-width Opportunity in SIMD
	3.1 Defining narrow-width in SIMD computations
	3.2 Optimizing vector computations in out-of-order processors
	3.3 Profiling integer intensive applications
	3.3.1 Benchmarked applications
	3.3.2 SIMD unit usage analysis

	3.4 Envisaged energy savings
	3.5 Summary

	4 Architectural Mechanisms to Exploit Narrow-width
	4.1 Proposed Mechanisms
	4.1.1 Width encoding
	4.1.2 Packing narrow-width vector operands
	4.1.3 Fusing vector operations
	4.1.4 Gating functional units

	4.2 Integration in conventional processor architectures
	4.3 Summary

	5 Prototyping and Experimental Workflow
	5.1 Architectural simulation tools
	5.2 ARM ISA and the NEON vector extension
	5.3 Implementation of the architectural changes
	5.4 Traces and performance counters
	5.5 Power modelling
	5.6 Experimental workflow
	5.7 Summary

	6 Experimental Evaluation
	6.1 Evaluation methodology
	6.1.1 Considered configurations and benchmarks
	6.1.2 Evaluated metrics

	6.2 Experimental results
	6.2.1 Energy and performance impact of the proposed mechanisms
	6.2.2 Design parameters exploration

	6.3 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	Appendix A Considered Benchmark Datasets
	Appendix B ARMv8 NEON Instructions

