
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Energy-Efficient Computing: Adaptive Structures and

Data Management

Nuno Filipe Simões Santos Moraes Neves

Supervisor: Doctor Nuno Filipe Valentim Roma

Co-Supervisor: Doctor Pedro Filipe Zeferino Aidos Tomás

Thesis approved in public session to obtain the PhD Degree in

Electrical and Computer Engineering

Jury final classification: Pass with Distinction

2019

UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Energy-Efficient Computing: Adaptive Structures and

Data Management

Nuno Filipe Simões Santos Moraes Neves

Supervisor: Doctor Nuno Filipe Valentim Roma

Co-Supervisor: Doctor Pedro Filipe Zeferino Aidos Tomás

Thesis approved in public session to obtain the PhD Degree in

Electrical and Computer Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Doctor Isabel Maria Martins Trancoso, Instituto Superior Técnico, Universidade

de Lisboa

Members of the Committee:

Doctor João Manuel Paiva Cardoso, Faculdade de Engenharia, Universidade do Porto

Doctor Horácio Cláudio de Campos Neto, Instituto Superior Técnico, Universidade de Lisboa

Doctor Arnaldo Silva Rodrigues de Oliveira, Universidade de Aveiro

Doctor Nuno Filipe Valentim Roma, Instituto Superior Técnico, Universidade de Lisboa

Doctor Ricardo Miguel Ferreira Martins, Instituto Superior Técnico, Universidade de Lisboa

FUNDING INSTITUTION

Fundação para a Ciência e a Tecnologia (FCT)

2019

Acknowledgements

The work presented in this thesis would not be possible without the support of many people

and institutions.

Firstly, I would like to thank my Ph.D. supervisors Pedro Tomás and Nuno Roma for the tremen-

dous amount of support they gave to me during all these years. This support does not only cover

their invaluable guidance and dedication to the entire work, but also all the personal aspects by

teaching me how to become a better researcher and constantly challenging me and pushing me

out of my comfort zone. Thank you for your trust, your patience, and all the opportunities you gave

(and are still giving) me over all these years.

Furthermore, I would like to thank Fundação para a Ciência e a Tecnologia for the financial

support under the Ph.D. grant SFRH/BD/100697/2014, project UID/CEC/50021/2019 and project

HAnDLE (ref. PTDC/EEI-HAC/30485/2017). I would also like to thank INESC-ID for hosting me,

for providing all the conditions necessary for performing my work in the best way, and for the

financial support required for the publications and international conferences.

To all the members of the SiPS group for the solidarity and teamwork, as well as to Ana,

Aurélia and Elisabete for the provided administrative support. I would like to thank all my closest

colleagues João, Nuno, Paulo, Pedro, Roger, Tiago, and Professor Leonel, for their partnership,

collaboration and all the good times throughout the years.

To all the co-authors of my publications and people I had the pleasure to work with, especially

to Adrien Mussio, Fabien Gonçalves, Henrique Mendes, Nuno Horta, Ricardo Chaves, and Rui

Neves. Thank you for your help, recommendations and provided scientific background.

To all my friends, namely Duarte, Gonçalo, João, Pedro and Sónia for their friendship and

support from as far back as I can remember.

To all my family and relatives for the incentive they provided during these five years, especially

to my mother, Maria de Lurdes, and my father, José.

To Joana for all the support, patience and comprehension during the most difficult times of this

journey, for the friendship and for the unconditional love.

Finally, to all of those whom I do not mention here but that directly or indirectly have contributed

and helped me to achieve my goals.

Abstract

Computing efficiency is often regarded as the most challenging goal to achieve cost-effective

exascale computing. While the computing market has driven the research for heterogeneous

and specialized many-core architectures, several issues must still be addressed to attain the ef-

ficiency goals established by the High-Performance Computing (HPC) community. In particular,

the processing performance of current computing systems is often conditioned by power con-

straints and thermal dissipation, forcing most of the chip area to be dimmed or powered down

during long periods of time. This issue limits the achievable computing performance, by mak-

ing the utilization of the available chip area ineffective. Furthermore, most of the research has

been focused on the performance-energy efficiency of new processing infrastructures, with the

underlying data communication subsystems relying on conventional multi-level cache structures,

to mitigate the data access latencies. However, these structures struggle when the application

dataset is very large and does not fit in the cache memory, or in the presence of complex mem-

ory access patterns, where data-locality cannot be efficiently exploited. This results in costly

contention issues that tend to degrade the data transfer throughput and, in turn, limit the sys-

tem’s achievable performance. To tackle all these issues, this dissertation proposes new adaptive

computing mechanisms to cope with the efficiency demands of the next generations of comput-

ing systems. The research is initially focused on compile-time memory access pattern analysis

and code transformations, to enable data streaming mechanisms in conventional cache-based

infrastructures. Such mechanisms allow the exploitation of hybrid data communication schemes,

targeting runtime data movement adaptation and memory throughput maximization. The devised

mechanisms showed to reduce data transfer overheads with efficient data fetching, reutilization,

and management techniques, in turn countering the contention that is usually observed in shared

interconnections. The same application analysis principle is also exploited for adaptable process-

ing acceleration, through runtime hardware adaptation. It is explored the viability of using par-

tial reconfiguration to balance the raw performance with the corresponding energy consumption,

according to the runtime context. The resulting adaptable processing framework allows for sig-

nificant performance gains and energy consumption reductions, resulting in increased computing

efficiency.

iii

Keywords

Computing Efficiency, Compiler-Time Analysis, Data Streaming, Adaptable Data Communica-

tion, Reconfigurable Computing

iv

Resumo

A eficiência da computação é muitas vezes reconhecida como o objetivo mais desafiante

para se alcançar uma capacidade de computação em exa-escala. Para atingir esse objetivo, têm

sido desenvolvidas inúmeras arquiteturas multiprocessador heterogéneas, com diversos nı́veis

de especialização. No entanto, existem ainda várias questões que terão de ser convenientemente

abordadas para alcançar as metas de eficiência estabelecidas pela comunidade de computação

de elevado desempenho. Em particular, o desempenho dos sistemas de computação atuais é

condicionado por restrições de energia e dissipação térmica, forçando a maior parte dos recursos

do sistema a estarem desligados durante uma parte significativa do tempo. Este problema torna a

utilização dos recursos disponibilizados pelo sistema pouco eficiente, limitando, assim, o desem-

penho computacional que é realmente atingı́vel. Além disso, a maior parte da investigação feita

nos últimos anos tem sido principalmente focada em novas infraestruturas de processamento, e

no seu desempenho e eficiência energética. Em compensação, os subsistemas de comunicação

de dados são geralmente suportados em estruturas de cache convencionais, de forma a mitigar a

latência de acesso aos dados. No entanto, estas estruturas continuam a não conseguir lidar com

conjuntos de dados com dimensão superior à capacidade da memória cache, nem com padrões

complexos de acesso à memória, em que a localidade de dados não é eficientemente explo-

rada. Isto resulta em problemas de contenção que diminuem a taxa de transferência de dados,

e, por sua vez, limitam o desempenho do sistema. De modo a abordar estes problemas, esta

dissertação propõe novos mecanismos de computação adaptativos para alcançar os nı́veis de

eficiência necessários para as próximas gerações de sistemas de computação. A investigação

é inicialmente focada na análise de padrões de acesso à memória em tempo de compilação e

em transformações de código, de modo a criar um suporte para a utilização de mecanismos

de manipulação de cadeias de dados em infraestruturas de cache convencionais. Os mecanis-

mos desenvolvidos permitem a exploração de esquemas hı́bridos de comunicação, permitindo

uma adaptação ao nı́vel do esquema de transferência de dados em tempo de execução e uma

maximização da largura de banda da memória. Os mecanismos propostos mostraram ser ca-

pazes de mitigar penalizações associadas à transferência de dados tirando partido de técnicas

eficientes de aquisição, reutilização e gestão de dados, contrariando, por sua vez, os problemas

de contenção que são normalmente observados em barramentos de comunicação partilhados.

v

O mesmo princı́pio de análise de aplicações é também explorado no contexto da aceleração do

processamento, através da adaptação da arquitetura em tempo de execução. Para o efeito, é

explorada a viabilidade da utilização de mecanismos de reconfiguração parcial para balancear

o desempenho do sistema com o seu consumo de energia, de acordo com o contexto de

execução. As estruturas de processamento adaptáveis propostas permitem atingir ganhos de

desempenho significativos e consequentes reduções de consumo de energia, resultando, assim,

numa eficiência de computação elevada.

Palavras-Chave

Computação Eficiente, Análise em Tempo de Compilação, Manipulação de Cadeias de Dados,

Comunicação de Dados Adaptativa, Computação Reconfigurável

vi

Contents

1 Introduction 1

1.1 Motivation and Objectives . 3

1.2 Contributions . 5

1.3 Outline . 7

2 Background and State-of-the-Art 9

2.1 Overview of Modern Computing Systems . 10

2.2 Data Communication Schemes and Paradigms . 13

2.2.1 Compiler Static Analysis and Memory Access Optimization 14

2.2.2 Data Prefetching Techniques . 16

2.2.3 Data Streaming Architectures . 20

2.2.4 Discussion . 22

2.3 Adaptive Computing . 23

2.3.1 Power Supply Management . 24

2.3.2 Dynamically Reconfigurable Systems . 24

2.3.3 Dedicated Programming Frameworks and Execution Optimization 28

2.3.4 Reconfigurable Communication Systems 30

2.3.5 Discussion . 31

2.4 Summary . 32

3 Data-Pattern Analysis and Stream Transformations 33

3.1 Modeling of Complex Data-Patterns . 35

3.1.1 Affine Mathematical Model for Data Indexing 37

3.1.2 Memory Access Description Specification 39

3.2 Compile-Time Stream Code Generation . 42

3.2.1 Compiler Module Overview . 43

3.2.2 Context Representation Language . 46

3.2.3 Stream Code Generation . 49

3.3 Preliminary Experimental Evaluation . 53

3.3.1 Methodology . 53

vii

Contents

3.3.2 Data-Pattern Encoding Efficiency . 56

3.3.3 Source Code Reduction Evaluation . 58

3.3.4 Discussion . 59

3.4 Summary . 60

4 Data Stream Communication 61

4.1 Data Stream Generation . 63

4.1.1 Data Stream Controller Architecture . 63

4.1.2 Streaming Infrastructure Interface and Programming 67

4.2 Data Stream Prefetching . 67

4.2.1 Case Study A: Stream Prefetching on GPGPUs 68

4.2.2 Case Study B: Data Streaming on Modern General-Purpose CPUs 75

4.2.3 Discussion . 83

4.3 In-Cache Stream Communication Paradigm . 84

4.3.1 In-Cache Stream Controller . 85

4.3.2 Communication Infrastructure and Protocol 89

4.3.3 Memory-Aware Data Stream Generation . 91

4.4 In-Cache Streaming Evaluation . 93

4.4.1 Methodology . 94

4.4.2 Hardware Resources Overhead . 96

4.4.3 Stream Generation Efficiency and Main Memory Throughput 98

4.4.4 Prototype Evaluation . 99

4.5 Summary . 103

5 Adaptive Processing Structures 105

5.1 Reconfigurable Many-Core Accelerator . 107

5.1.1 Many-Core Processing Infrastructure . 108

5.1.2 Data Access and Interconnection Networks 109

5.1.3 Hypervisor and Accelerator Management 110

5.1.4 Reconfiguration Engine . 111

5.1.5 Implementation Considerations and Constraints 113

5.1.6 Accelerator Configuration and Implementation 113

5.2 Reconfiguration Management . 116

5.2.1 Runtime Learning and Reconfiguration Policies 117

5.2.2 Compile-time Modeling and Optimization 119

5.3 Experimental Validation . 129

5.3.1 Methodology . 129

5.3.2 Case Study A: Learning-based Automatic Reconfiguration 131

viii

Contents

5.3.3 Case Study B: Compiler-Assisted Reconfiguration 135

5.3.4 Case Study C: Resource Management for Dynamic Workloads 138

5.4 Summary . 143

6 Conclusions and Future Work 145

6.1 Conclusions . 146

6.2 Main Contributions . 147

6.3 Future Work . 148

Bibliography 151

Publications 165

ix

Contents

x

List of Figures

2.1 Examples of current multi- and many-core system organizations 10

2.2 GRAPHITE for GCC . 14

2.3 Polly for LLVM IR . 15

2.4 Common spatial prefetching mechanisms. 16

2.5 AMPM Prefetcher . 17

2.6 VLDP Prefetcher . 18

2.7 Offset Prefetchers . 19

2.8 APMC Stream Controller . 21

2.9 HotStream Framework DFC . 22

2.10 Plasticine CGRA compute unit . 26

2.11 ReMAP Architecture . 27

3.1 Stream controller topologies . 34

3.2 Example affine representation . 38

3.3 Example affine representation of indirect memory accesses 39

3.4 Context Descriptor specification . 40

3.5 Access Descriptor encoding for a triangular matrix access 41

3.6 Access Descriptor encoding for indirect memory indexation 42

3.7 Clang AST example . 43

3.8 Overview of the compilation tool . 44

3.9 Compilation tool translations and code transformations 45

3.10 Context Representation Language reference . 46

3.11 Example of an AST translation to CRL . 49

3.12 CRL to descriptor representation translation . 50

3.13 Indirection representation and descriptor encoding 51

3.14 Stream code transformation illustration . 52

3.15 Considered synthetic data-patterns . 57

3.16 Context descriptor efficiency . 58

4.1 Data Stream Controller architecture. 64

xi

List of Figures

4.2 GPU architecture and memory hierarchy overview. 69

4.3 Application profiles . 70

4.4 Stream prefetching mechanism integration . 71

4.5 GPU benchmark results . 74

4.6 CPU integration of the proposed DSC . 75

4.7 L1 hit rate comparison . 80

4.8 IPC comparison in absolute values. 80

4.9 Overall speedup comparison . 81

4.10 Speedup breakdown in data streaming and code reduction 81

4.11 In-cache stream communication infrastructure overview 84

4.12 Cache memory hybridization . 86

4.13 In-cache stream controller architecture . 87

4.14 Message-passing protocol . 89

4.15 Memory access optimization illustration . 92

4.16 Reorder buffer architecture . 93

4.17 Main memory throughput and memory access latency 99

4.18 Comparison of the ICS-SMC with the BASE, AMPM and uICS setups 100

5.1 Reconfigurable many-core accelerator overview . 107

5.2 Internal block diagram of a processing cluster . 109

5.3 Accelerator Controller . 111

5.4 Reconfiguration engine architecture . 112

5.5 Execution plan example . 120

5.6 Example of a system specification . 121

5.7 Example of an architecture model . 122

5.8 NSGA-II extension . 123

5.9 Individual encoding . 126

5.10 DSE operators . 127

5.11 Example of an execution queue . 129

5.12 Real-time adaptation of the processing architecture A 132

5.13 Real-time adaptation of the processing architecture B 132

5.14 System real-time adaptation - Maximum performance 133

5.15 System real-time adaptation - Power ceiling . 134

5.16 System real-time adaptation - Minimum performance 135

5.17 Arithmetic benchmark application model . 136

5.18 Arithmetic benchmark architecture configuration 136

5.19 Objective function interaction in the Pareto front . 138

5.20 Execution-time optimization plan . 139

xii

List of Figures

5.21 Low peak power dissipation optimization plan . 139

5.22 Biological sequence alignment system model . 141

5.23 Relaxed execution plan . 143

5.24 Intensive execution plan . 143

xiii

List of Figures

xiv

List of Tables

3.1 Considered standard benchmarks and kernels . 55

3.2 Characterization of the considered synthetic kernels 57

4.1 GPGPU-Sim configuration and benchmark set . 73

4.2 Adopted x86-based CPU configuration. 77

4.3 Considered benchmarks and kernels for the evaluation setup. 78

4.4 Configurations for the reference prefetching and proposed DSC setups. 79

4.5 Benchmark applications and datasets . 96

4.6 Resource usage . 97

4.7 Address generation rate and descriptor size . 97

5.1 Characterization of each type of core . 115

5.2 Characterization of each cluster type . 115

5.3 Characterization of the accelerator’s supporting infrastructure 115

5.4 Execution time and energy results . 135

5.5 Arithmetic kernel benchmark characterization . 137

5.6 Biological sequence alignment case study . 141

xv

List of Tables

xvi

List of Algorithms

1 Execution Time Optimization . 118

2 Power-Ceiling Algorithm . 118

3 Minimum Assured Performance Algorithm . 119

4 Mapping Validation/Repair Operator . 127

5 Execution Plan Definition Operator . 128

xvii

List of Algorithms

xviii

List of Acronyms

AGU Address Generation Unit

ALU Arithmetic and Logic Unit

AMPM Access Map Pattern Matching

APMC Advanced Pattern-based Memory Controller

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction-set Processor

AST Abstract Syntax Tree

CCPO Clock Cycles per Operation

CGRA Coarse-Grained Reconfigurable Array

CLB Configurable Logic Block

CPU Central Processing Unit

CRL Context Representation Language

CTA Cooperative Thread Array

DFC Data-Fetch Controller

DMA Direct Memory Access

DSC Data Stream Controller

DSE Design Space Exploration

DSP Digital Signal Processor

DVFS Dynamic Voltage and Frequency Scaling

EA Evolutionary Algorithm

EDP Energy-Delay Product

xix

List of Acronyms

FIFO First-In First-Out

FP Floating-Point

FPGA Field-Programmable Gate Array

FPU Floating-Point Unit

FSM Finite-State Machine

GCC GNU Compiler Collection

GHB Global History Buffer

GPP General Purpose Processor

GPU Graphics Processing Unit

HPC High-Performance Computing

IC Integrated Circuit

ICAP Internal Configuration Access Port

ICS In-Cache Stream

ISA Instruction Set Architecture

ISB Irregular Stream Buffer

IoT Internet-of-Things

IPC instructions-per-cycle

IR Intermediate Representation

LRU Least Recently Used

LUT Look-Up Table

MCU Modifier Chain Unit

MOEA Multi-Objective Evolutionary Algorithm

MOO Multi-Objective Optimization

MSHR Miss Status Hold Register

NoC Network on Chip

NSGA-II Non-dominated Sorting Genetic Algorithm II

xx

List of Acronyms

NVM Non-Volatile Memory

OPS operations-per-second

PARE Power-Aware pRefetch Engine

PC Program Counter

PE Processing Element

RISC Reduced Instruction Set Computer

SIMD Single-Instruction Multiple-Data

SIMT Single-Instruction Multiple-Thread

SM Streaming Multiprocessor

SMC Stream Management Controller

SoC System-On-Chip

TLB Translation Lookaside Buffer

VLDP Variable Length Delta Prefetcher

VLIW Very Long Instruction Word

xxi

List of Acronyms

xxii

1
Introduction

Contents

1.1 Motivation and Objectives . 3

1.2 Contributions . 5

1.3 Outline . 7

1

1. Introduction

The ever-increasing demand for computational processing power has reached a critical point

in the past decade since the straightforward scaling of current technology is no longer viable [1].

Moreover, driven by the Internet-of-Things (IoT) and Cloud Computing era, an ever-increasing

number of computing platforms, ranging from battery-powered mobile devices to supercomput-

ing clusters, has been hitting the limits of performance and energy efficiency. In fact, computing

efficiency has been recognized as the most challenging goal to achieve cost-effective exascale

computing by 2020 (as established by the High-Performance Computing (HPC) community) [2].

Accordingly, the scientific community recognizes that the research on new node/chip-level ar-

chitectures, circuitry management mechanisms and memory packaging technologies, represents

promising strategies that can still contribute an estimated 5x improvement in performance and

energy efficiency [3].

To attain such a goal, the computing market has been pushing the research on alternative

heterogeneous and high-performance many-core processing systems, that combine multiple ar-

chitectures (with different degrees of parallelism and specialization) to improve the system’s pro-

cessing efficiency. By deploying resource and power management mechanisms, they can balance

raw performance and energy consumption according to the aimed execution context. However,

processing systems are still struggling to provide the required levels of computing efficiency and

reach the exascale goal. In fact, their attainable performance is still limited by energy consumption

constraints and by the adverse impact of stalls resulting from long memory access latencies.

Specifically, computing throughput is still limited in many computing systems by power supply

management mechanisms that turn off parts of the device to save energy, effectively reducing

the amount of available processing resources. Moreover, their general purpose nature imposes a

processing throughput limit, caused by a gap between flexibility and specialization to the applica-

tion processing requirements. On the other hand, most systems are still relying on conventional

cache-based memory subsystems. However, although they have been widely exploited to reduce

the impact of long memory access latencies, the limitations and contention issues of cache struc-

tures are well-known [4], as their performance is bound by the characteristics of the application

data access pattern.

Accordingly, knowing an application’s characteristics (e.g., type of computing operations, the

degree of parallelism or memory access patterns) can provide the necessary insights to make its

execution as efficient as possible. Such a premise has long been exploited by compilation tools

to optimize machine code according to the features of the target architecture [5–10] and by power

management and performance throttling mechanisms to reduce energy consumptions [11–15].

It is also the basis for memory access optimization mechanisms (such as data prefetchers [16–

24]) that analyze the data indexing behavior of a running application to predict future accesses.

However, such solutions are mostly used to mitigate execution and energy overheads or costly

data operations and are bound by the general purpose computing nature of off-the-shelf systems.

2

1.1 Motivation and Objectives

On the other hand, while application-specific approaches can be tailored according to an applica-

tion’s characteristics to provide the necessary computing efficiency, their inherent loss in flexibility

makes them unsuited for the diverse HPC market.

One viable approach to bridge this performance-efficiency gap is the introduction of runtime

adaptation in general purpose multi/many-core infrastructures. Specifically, by performing analy-

ses of the application at compile-time and/or at runtime, it is possible to extract its computational

requirements and data access characteristics and adapt its execution by: i) performing indepen-

dent data acquisition operations according to its memory access pattern; ii) adapt the data com-

munication scheme between the system’s processing cores and the main memory; iii) perform

hardware adaptation of the cores according to the type of executed operations; and iv) manage

the type and amount of active processing resources according to the system’s execution context.

Accordingly, by demarking themselves from off-the-shelf approaches that solely try to hide

or mitigate known performance limitations in conventional systems, alternative solutions can be

designed that exploit the adaptation of a processing system and modify its infrastructure to meet

the running application requirements, without eliminating the system’s general purpose computing

capabilities. Such solutions can be attained by the combination of compile-time application anal-

ysis and optimization tools and the introduction of dynamically reconfigurable architectures and

adaptable data communication structures in conventional processing systems. Such structures

can also be paired with intelligent execution management modules that leverage the information

provided by the compilation tools, with the goal of increasing the system’s processing throughput

and reducing its energy consumption, in turn increasing the overall computing efficiency.

1.1 Motivation and Objectives

Embracing the energy-efficiency constraints and the current HPC demands, multi-core hetero-

geneous systems are usually composed of differently balanced architectures to maintain higher

levels of performance available while providing low-power execution contexts [12, 15]. Despite

being now widely deployed in mobile platforms, such systems still rely on mechanisms based on

task migration and aggressive voltage scaling and power-gating. As such, they may require that

some (usually most) of the transistors remain dimmed or powered down most of the time, due

to the observed divergence between device-level energy efficiency and transistor density [1], in

turn pushing the dark silicon problem in current computing systems. Such a problem adds an

inefficient utilization of the available processing resources on top of the overheads that are also

imposed by task migration mechanisms.

Conversely, application-specific accelerators [25–28] have shown to be capable of leading to

high application acceleration with low power supply demands. Such an efficiency often results

from the significantly lower architectural footprints and low power dissipation characteristics of

3

1. Introduction

such structures, when compared to conventional processing systems. However, the provided

specialization often incurs in a loss in general purpose computing capabilities. Moreover, each

system must be tailored to a particular application domain and applications must be carefully

dimensioned to exploit as much performance-energy efficiency as possible [28].

However, the actual throughput that is offered by modern computing systems is currently lim-

ited by the power/performance impact of data transfers and general data indexing in the memory

subsystem. This is a result of the standard adoption of conventional local (and often multi-level)

cache structures to avoid high memory access latencies. Although they can significantly reduce

latency in the presence of computationally intensive applications, they struggle when the appli-

cation is bound by the characteristics of its memory accesses. Hierarchical cache structures

especially struggle when the application dataset is large and does not fit in one or more cache

levels, or in the presence of complex memory access patterns, where data-locality cannot be

efficiently exploited.

Typically, the first steps to mitigate the impact of long memory access latencies are performed

at compile-time. In particular, compilers have long utilized specialized tools to reorganize an

application’s sequence of instructions and hide memory access latency behind computation [29,

30]. The deployed algorithms statically analyze the original code and optimize it, with the goal

of bridging the gap between application code characteristics and the capabilities of the target

processing architecture and memory subsystem [5–10].

By following a similar principle, data prefetching techniques [16–19, 19–24, 31–33] are de-

signed to deal with the intrinsic characteristics of the memory access patterns at runtime. In

particular, they analyze an application’s sequence of memory requests to predict future accesses

and obtain data ahead of time, hence mitigating the impact of long memory access latencies.

However, despite their throughput improvements, the incremental gains provided by each new

generation of prefetchers are becoming limited. This is mostly because prediction inaccuracies

can still occur when dealing with complex data patterns, which affect the memory access cover-

age. On the other hand, they must rely on costly runtime memory access monitoring, which can

result in added time-consuming penalties.

Furthermore, to achieve higher prediction accuracies, such data prefetching schemes not only

require larger amounts of hardware resources to implement the predictive algorithm but also

added memory space to trace recent accesses [20, 22–24]. Moreover, when applied to pro-

cessing systems with large numbers of physical cores, the prefetching structures can suffer from

the same increased contention that occurs with conventional cache-based systems, resulting from

a flood of prefetching requests in the memory subsystem [16].

Accordingly, by considering that application-specific architectures have limited use in a gen-

eral purpose HPC context, adaptive computing systems (exploiting hardware reconfiguration

and dynamic data communication schemes) represent a promising approach to provide the nec-

4

1.2 Contributions

essary mechanisms to bridge that gap and to push the limits of computing efficiency. Naturally,

the viability of such adaptive systems implies that the running application is thoroughly analyzed

by compiler tools that can extract information regarding its computational requirements (including,

but not limited to, types of processing operations, instruction and data parallelism, data com-

munication schemes and memory access patterns) and provide it to the system’s processing

infrastructure, so it can adapt itself to the execution context and improve its overall performance

and energy efficiency.

Acknowledging that conventional processing systems and memory organizations are hardly

coping with the throughput demands of current applications and with the challenges recognized by

the HPC community, the main objective of this thesis is the investigation of new adaptive comput-

ing techniques and mechanisms (acting both at compile-time and runtime) to provide the means

to improve the performance and energy efficiency of future generations of computing systems.

1.2 Contributions

To attain the described objectives, the presented research is initially focused on compile-time

memory access pattern analysis and encoding, combined with code transformations, to enable

data stream communication in conventional cache-based infrastructures. Such mechanisms al-

low the exploitation of new data communication and stream prefetching schemes, resulting in

runtime data movement adaptation and memory throughput maximization. The same principle of

compile-time application analysis and optimization is also explored for reconfigurable processing

acceleration through a comprehensive study on runtime architecture adaptation. In the particular

context of Field-Programmable Gate Array (FPGA) implementation technologies, it is explored the

viability of using partial reconfiguration to increase the processing efficiency. This mechanism is

used as an alternative to voltage/frequency scaling and power/clock-gating mechanisms to deploy

throughput-energy balancing mechanisms to improve overall computing efficiency.

Accordingly, the contributions of this Thesis can be summarized in the following paragraphs,

together with the enumeration of the resulting publications in peer-reviewed journals and confer-

ences where these contributions were made available to the scientific community:

• A memory access description specification, based on a multi-level affine model that allows

the encoding of data dependencies between accesses. This specification is capable of

efficiently encoding memory access patterns through improved description flexibility and ef-

ficiency, providing support for arbitrarily complex deterministic access patterns and indirect

memory accesses;

– N. Neves, P. Tomás, and N. Roma, “Efficient data-stream management for shared-

memory many-core systems,” in 25th International Conference on Field Programmable

Logic and Applications (FPL). IEEE, 2015, pp. 508–515

5

1. Introduction

– N. Neves, P. Tomás, and N. Roma, “Adaptive in-cache streaming for efficient data

management,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 25, no. 7, pp. 2130–2143, March 2017

– N. Neves, P. Tomás, and N. Roma, “Stream data prefetcher for the gpu memory inter-

face,” The Journal of Supercomputing, vol. 74, no. 76, pp. 2314–2328, June 2018

• A compile-time static analysis tool to identify, describe and encode the application’s memory

access pattern using the proposed representation. As a result of this data access encoding,

the explicit representation of the memory access pattern makes the corresponding data in-

dexation and address calculation redundant and unnecessary. Accordingly, the compilation

tool also performs a code transformation pass that replaces the array subscript indexation

of each encoded data load with a stream reference (represented by a pointer), ultimately

resulting in a reduced number of instructions and accelerating the execution of the code;

• A new In-Cache Stream (ICS) communication model supporting both memory-addressed

and packed-stream data accesses, as well as adaptive mixed memory-addressed /packed-

stream accesses, specially suited for applications composed of compile-time predictable

(described as a set of streams) and non-predictable memory access patterns. The physical

implementation of the ICS model also deploys several efficient memory access optimization

techniques, such as bandwidth optimization, data reorganization and reutilization, and in-

time stream manipulation;

– N. Neves, A. Mussio, F. Gonçalves, P. Tomás, and N. Roma, “In-cache streaming: Mor-

phable infrastructure for many-core processing systems,” in Euro-Par 2016: Parallel

Processing Workshops. Springer International Publishing, 2017, pp. 775–787

– N. Neves, P. Tomás, and N. Roma, “Adaptive in-cache streaming for efficient data

management,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 25, no. 7, pp. 2130–2143, March 2017

• A reconfigurable hundred-core heterogeneous architecture, capable of adapting its process-

ing characteristics according to runtime application requirements. This architecture is partic-

ularly suited to take advantage of the partial dynamic reconfiguration capabilities of modern

FPGA devices. The system is capable of autonomously determining and reconfiguring each

processing core to the most suitable architecture through a set of runtime optimization poli-

cies to balance the number and micro-architecture of the instantiated cores, according to

instantaneous application and system requirements and constraints;

– N. Neves, H. Mendes, R. J. Chaves, P. Tomás, and N. Roma, “Morphable hundred-core

heterogeneous architecture for energy-aware computation,” IET Computers & Digital

Techniques, vol. 9, no. 1, pp. 49–62, 2015

– N. Neves, P. Tomás, and N. Roma, “Host to accelerator interfacing framework for high-

throughput co-processing systems,” in XI Jornadas sobre Sistemas Reconfiguráveis

6

1.3 Outline

(REC), 2015, pp. 31–38

• A compile-time analysis and optimization tool for efficient scheduling and mapping of pro-

cessing tasks into reconfigurable architectures. The conceived tool is based on a combina-

tion of Multi-Objective Optimization (MOO) and Design Space Exploration (DSE) techniques

and is capable of deriving multiple sets of adaptive task mapping plans, which establish dif-

ferent compromises between the application’s performance, system power consumption,

and energy efficiency.

– N. Neves, R. Neves, N. Horta, P. Tomás, and N. Roma, “Multi-objective kernel map-

ping and scheduling for morphable many-core architectures,” Expert Systems with

Applications, vol. 45, pp. 385–399, 2016

1.3 Outline

The dissertation is organized in the following chapters. After this introductory part, Chapter 2

presents a revision of the current state-of-the-art and technical background in the research do-

mains related to application analysis, data prefetching, data-stream and adaptive communication

techniques, and reconfigurable processing systems. The new memory access description specifi-

cation is detailed in Chapter 3, together with the conceived static analysis and code transformation

tools. Chapter 4 describes the proposed data streaming mechanisms and their implementation

and evaluation in a Graphics Processing Unit (GPU), in a General Purpose Processor (GPP) and

an FPGA accelerator, together with comprehensive comparisons with state-of-the-art solutions.

Chapter 5 presents a study on dynamically adaptable processing architectures and describes

the implementation of a fully functional reconfigurable accelerator prototype. The study is com-

plemented with the implementation of a DSE compile-time optimization tool to support the task

scheduling and mapping into reconfigurable hardware. Finally, a discussion of the achieved contri-

butions is presented in Chapter 6, together with the enumeration of some possible future research

guidelines.

7

1. Introduction

8

2
Background and State-of-the-Art

Contents

2.1 Overview of Modern Computing Systems . 10

2.2 Data Communication Schemes and Paradigms 13

2.2.1 Compiler Static Analysis and Memory Access Optimization 14

2.2.2 Data Prefetching Techniques . 16

2.2.3 Data Streaming Architectures . 20

2.2.4 Discussion . 22

2.3 Adaptive Computing . 23

2.3.1 Power Supply Management . 24

2.3.2 Dynamically Reconfigurable Systems . 24

2.3.3 Dedicated Programming Frameworks and Execution Optimization 28

2.3.4 Reconfigurable Communication Systems 30

2.3.5 Discussion . 31

2.4 Summary . 32

9

2. Background and State-of-the-Art

This chapter provides a brief overview of the currently prominent computing system archi-

tectures, followed by a review of the most important state-of-the-art approaches in the areas of

reconfigurable computing architectures and data communication techniques and infrastructures.

2.1 Overview of Modern Computing Systems

Since the decay of the single-core General Purpose Processor (GPP) era that chip power con-

sumption has been regarded as one of the most pressing concerns in the development of modern

High-Performance Computing (HPC) architectures. Acknowledging that raw processing power

inevitably leads to high energy consumption, early solutions relied on the complexity reduction of

general-purpose processing architectures and their replication in multi-core infrastructures (de-

picted in Fig. 2.1.A), allied with voltage and operating frequency management techniques (e.g.,

power-gating or Dynamic Voltage and Frequency Scaling (DVFS)). However, such a lower struc-

tural complexity led to reduced processing capabilities per core, thus limiting the achievable core

performance as a trade-off for lower energy consumptions.

Accordingly, several current solutions try to surpass this per-core lower performance with in-

creased levels of parallelism. This is often done by deploying infrastructures with large numbers

of processing cores, either on the same chip (such as Graphics Processing Units (GPUs), as de-

picted in Fig.2.1.D) or by interconnecting several processors (such as data-center clusters). How-

ever, the increased number of processing units incurs, by itself, on added energy consumption

in the whole system. This is due to the amount of logic required to deploy and control massively

parallel architectures and the underlying data communication infrastructures.

Figure 2.1: Examples of current multi- and many-core system organizations.

10

2.1 Overview of Modern Computing Systems

To circumvent this issue, instead of massively parallelizing architectures to increase raw per-

formance, heterogeneous systems with different co-existing architectures have been regarded

as viable solutions. Such systems are often based on combinations of both high-performance

and low-power general-purpose architectures or on the deployment of System-On-Chips (SoCs)

combining several different dedicated architectures on a single chip, as depicted in Figs. 2.1.B

and 2.1.C. While the first approach allows a precise balance between processing performance

and energy consumption, the latter acknowledges that specialized architectures lead to straight-

forward application accelerations (with low power dissipation) [25]. This results in significantly

lower energy consumptions, often aided by the lower architectural footprint and power dissipation

characteristics of those processing structures. Nevertheless, despite the broad range of dedi-

cated architectures that can be deployed in heterogeneous systems (e.g., GPPs, Digital Signal

Processors (DSPs), GPUs, mobile communication or localization modules), such a specialization

often incurs in a loss in general-purpose computing capabilities. Moreover, each system must be

tailored to a particular application domain, and each task has to be scheduled and migrated to its

corresponding dedicated architecture. In fact, since each computing unit is usually best-suited to

run a specific type of application, the amount of existing dedicated architectures and parallelism

require a careful balance to avoid long module power-down times [1].

The recent reemergence of reconfigurable systems [41–44] has driven the development of

alternative mechanisms to deploy dynamic processing specialization while achieving a more ef-

ficient resource utilization. Instead of turning off specific processors (or processor components),

leaving part of the device unused, reconfigurable architectures reuse the same resource area to

provide different dedicated processing structures and schemes to better suit several applications

and system constraints. Hence, they can provide the means to make the execution as efficient

as possible, both in terms of performance and energy consumption [45–48]. Furthermore, by

adopting such structures, it is possible to achieve throughput and efficiency levels similar to those

offered by application-specific accelerators [49], without losing general-purpose computing capa-

bilities.

However, although reconfigurable architectures can provide higher levels of processing effi-

ciency, the design of such architectures is usually focused on the processing blocks and their

adaptation, often neglecting the power/performance impact of data transfers and general data

indexing in the memory subsystem. A standard approach to tackle this problem is to only rely

on conventional local (and often multi-level) cache structures (as depicted in Fig. 2.1) to avoid

high memory access latencies. However, as the number of cores on a cache-coherent system

increases, its contention and overall energy consumption tend to grow. As a result, it can even

reach a point where the addition of more cores is no longer useful [4], hence limiting the sys-

tem’s achievable processing throughput. Moreover, such structures struggle when the application

dataset is very large and does not fit in the cache, or in the presence of complex memory access

11

2. Background and State-of-the-Art

patterns, where data-locality cannot be efficiently exploited.

Nevertheless, some adaptive schemes targeting energy efficiency have already been deployed

in the communication infrastructure [50–52]. However, they mostly focus on the management of

memory resources, to reduce energy consumption through architectural adaptation. Although it

has been proved viable for processing infrastructures, the communication infrastructures struggle

to efficiently exploit the advantages of adaptive mechanisms (e.g., attained by dynamic reconfigu-

ration or gating mechanisms). This is mostly due to the fact that data communication in many-core

infrastructures is already itself constrained in what concerns data transfer latency, mainly result-

ing from its high contention and request concurrency. Hence, the potential overheads that would

result from adapting the communication infrastructure not only would impose additional latency

constraints but also would require a careful synchronization between the data transfers and the

adaptation process, to avoid data losses and coherency/consistency issues.

Conversely, data prefetching techniques have recently reemerged [18–21] as viable solutions

to optimize the sequence of issued memory requests and to mitigate the impact of long memory

access latencies. Several methods have been designed to deal with the intrinsic characteristics of

the memory access patterns, such as reduced data-locality [21, 31], complex access patterns [17,

19, 32, 33] or large datasets that do not fit in the cache [53]. Moreover, due to their successful

memory access improvements, a wide range of device classes has been targeted, from typical

multi-core GPP architectures [17] to GPU devices [16]. In fact, this technology has evolved to a

point where the main concern is no longer memory access pattern detection and prediction, but

instead the timeliness and effectiveness of the prefetching procedure. This led to the emergence

of new prefetchers [20, 22–24] that combine multiple hardware modules, with different data fetch

granularities and prediction heuristics, across different cache levels.

However, despite the improved throughput, the gains provided by each new generation of

prefetchers are becoming limited. In particular, depending on the complexity of the prefetcher,

prediction inaccuracies can still occur when dealing with complex data patterns, which affect

the memory access coverage and can result in time-consuming penalties. Hence, instead of

mitigating memory access latencies, such drawbacks can result in added pressure to the mem-

ory subsystem. On the other hand, if a prefetcher deploys more sophisticated techniques to

achieve higher prefetching accuracies, it not only utilizes larger amounts of hardware resources

to implement the predictive algorithm, but it also requires added memory space to trace recent

accesses [20, 22–24]. Furthermore, when applied to processing systems with high levels of

parallelism (i.e., with large numbers of physical cores), the prefetching structures tend to require

precise synchronization mechanisms and intensity balancing [16]. Otherwise, they can suffer from

the same increased contention that occurs with conventional cache-based systems, resulting from

a flood of prefetching requests in the memory subsystem.

To circumvent such issues, stream-based communication schemes have been regarded as a

12

2.2 Data Communication Schemes and Paradigms

viable alternative to cache-based systems and pure-prefetching structures [26, 34, 54]. Instead

of having a processing core performing its main memory requests, they are based on the prin-

ciple that it is possible to exploit the memory access pattern to transparently buffer and transmit

(stream) the requested data to the corresponding core. Hence, by explicitly decoupling the data

indexation/communication and processing infrastructures, data transfers can effectively be hid-

den behind computation, in turn decreasing the data transfer path and counteracting most of the

contention observed in the shared communication structures.

However, due to their application-specific nature, streaming architectures have only been de-

ployed in custom dedicated accelerators [26, 27, 34]. Moreover, they typically require the program-

mer to manually encode the memory access pattern corresponding to each data stream. Hence,

without proper compilation tools, its viability becomes limited for general purpose contexts. Fur-

thermore, since an accurate memory access pattern description is limited to applications with

arbitrarily complex, but still deterministic, memory access patterns, purely stream-based infras-

tructures can hardly deal with certain types of applications. As an example, they struggle in the

presence of pointer-based data structures or dynamic indexing procedures, where the memory

access is either non-deterministic or generated at runtime. As such, they need to be combined

with conventional communication schemes to efficiently handle such cases without relying on

costly runtime memory access monitoring [54] and heuristic predictions [18].

2.2 Data Communication Schemes and Paradigms

While performance and efficiency are typically sought by improving the system’s processing

infrastructure, by making the computing architecture as fast and efficient as possible, the offered

throughput is still often limited by the impact of data transfers and general data indexing. This is

because the computing architecture in most systems can perform elementary operations much

faster than the time that is required to obtain data from the main memory. This data acquisition

latency is particularly high when off-chip memory modules are accessed and can lead to consid-

erable performance losses.

Typically, a preliminary mitigation of the impact of costly memory accesses is performed at

compile-time, by analyzing the sequence of instructions of an application. According to the target

architecture, the compiler performs instruction reorganizations to try to hide the high latency of

memory accesses behind other computational instructions, hence promoting instruction-level and

data-level parallelism.

On the other hand, at the hardware level, different communication paradigms have been

adopted to minimize the power/performance impact of the data management subsystem. In

particular, besides straightforward and aggressive data prefetching schemes, often associated

with high-energy consuming memory/cache hierarchies, more efficient and sophisticated stream-

13

2. Background and State-of-the-Art

Figure 2.2: Illustration of the compiler intermediate representation used by GRAPHITE [6] for

polyhedral analysis.

based communication systems have been explored. This section presents a review of the most

prominent compiler tools and data prefetching and streaming solutions.

2.2.1 Compiler Static Analysis and Memory Access Optimization

Historically, compilation tools have been used to optimize the sequence of computational op-

erations and hide memory access latency behind computation, bridging the gap between applica-

tion code characteristics and the capabilities of the target processing architecture. Sophisticated

compiler tools often rely on static code analysis [5–7] to extract application information regarding

instruction/data dependencies, memory access patterns and/or critical instructions [8]. With this

information, these tools subsequently apply code transformations to perform data access reorga-

nization [8, 10] or code optimizations [9], with the goal of increasing instruction-level parallelism to

hide the memory access latency. Moreover, the information provided by the compiler is also often

used at runtime for assisted execution [8] and/or assisted data acquisition schemes [18, 53].

2.2.1.A Polyhedral Analysis

Compilers have long adopted the polyhedral model to represent nested-loop programs [30]. It

is based on the assumption that each loop iteration (within a nested loop) can be described as

a lattice point inside mathematical objects called polyhedra (see Fig. 2.2-2). Such a represen-

tation allows the compiler to perform affine transformations over the original code and generate

optimized loop nests according to an optimization goal (such as vectorization or parallelization).

In an early approach, Pop et al. [6] recognized that polyhedral analysis and loop nest trans-

14

2.2 Data Communication Schemes and Paradigms

Figure 2.3: Illustration of the compiler intermediate representation used by Polly [5] for polyhedral

analysis.

formations are affordable approaches in production compilers. They proposed the GRAPHITE

intermediate representation for the GCC compiler [29] (see Fig. 2.2). It combined static analysis

with code transformations to effectively balance compilation time reduction and analysis precision.

Inspired by this early work, Grosser et al. [5] applied the same principle to the LLVM compiler [30]

(see Fig. 2.3), by recognizing that polyhedral techniques were limited to simple programs and

specific programming languages. Accordingly, they proposed Polly to automatically detect and

transform relevant parts of each program in a language-independent and syntactically transpar-

ent way. It deployed an advanced data dependency analysis and support for external optimizers

and most common programming languages and compilation targets (such as Central Processing

Units (CPUs), GPUs and hardware descriptions).

2.2.1.B Parallel Code Optimization

Other tools have also addressed the increased data transfer contention that characterizes

multi-core processors. Majo et al. [7] presented a study showing that many loop-parallel pro-

grams include mutually incompatible data access patterns that can result in a high fraction of

costly memory accesses. They proposed a set of language-level primitives for memory allocation

and loop scheduling, that are used together with simple program-level transformations to eliminate

mutually incompatible access patterns from OpenMP-style parallel programs. Similarly, Kiriansky

et al. [10] recognized that traditional compiler cache optimizations have not been sufficiently ag-

gressive to overcome the poor scaling of memory bandwidth in parallel applications. Accordingly,

they introduced the milk language extension to allow programmers to annotate memory-bound

loops for efficient parallelization with OpenMP. They used intermediate data structures to trans-

form random indirect memory references into batches of efficient sequential memory accesses.

15

2. Background and State-of-the-Art

Figure 2.4: Common spatial prefetching mechanisms.

2.2.2 Data Prefetching Techniques

With the existing contention issues of conventional cache-based systems and shared com-

munication infrastructures, prefetching had a strong reemergence in the past decade with the

exploration and combination of several new sophisticated techniques. Such methods are particu-

larly designed to deal with the intrinsic characteristics of particular types of applications, such as

reduced data-locality and complex memory access patterns, memory-bound kernels or very large

datasets that do not fit in the local memories.

Several solutions have been designed, by trading-off hardware complexity (area resources and

power dissipation), prefetching intensity (degree of fetch requests to future addresses), accuracy

(rate of correct fetch requests) and coverage (amount of prefetched data in the total dataset).

Hence, to maximize the accuracy and the attained coverage (and consequently, the system’s

throughput), they must rely on complex dedicated modules that dynamically analyze the most

recent memory access patterns and try to predict future accesses based on heuristic algorithms.

A selected list of techniques is presented in the next paragraphs.

2.2.2.A Spatial Prefetching

Just as caches, the simpler and most common prefetching solutions, take advantage of the

memory access spatial locality. By following this principle, sequential prefetchers try to preempt

data accesses by populating the cache with several lines ahead of the most recently accessed

address. In this category, next-line prefetchers (see Fig. 2.4.A) work by aligning a requested ad-

dress to its corresponding block (cache line) address and then requesting the next N subsequent

16

2.2 Data Communication Schemes and Paradigms

Figure 2.5: Temporal-based prefetching mechanism of the AMPM prefetcher [20].

lines (prefetch degree) from the memory hierarchy level.

Naturally, being this a hardly practical approach, the slightly more efficient stride prefetch-

ers analyze the most recently requested addresses and calculate the difference between them

(stride) to predict future accesses (see Fig. 2.4.B). To infer the correct sequence of addresses,

these prefetchers typically rely on the use of prediction table structures indexed by the instruction

address (Program Counter (PC)). As such, for each load/store instruction they register the last

accessed address, the difference between subsequently accessed addresses (stride) and a con-

fidence value (incremented every time the difference between addresses matches the calculated

stride). When the confidence value reaches a predefined threshold the prefetcher issues requests

to the next N strided addresses (as depicted in Fig. 2.4.B).

2.2.2.B Temporal Prefetching

Since memory access patterns can present characteristics more complex that strided address

sequences [20], spatial prefetching approaches are often enhanced with temporal-locality-based

heuristic prediction schemes to increase the achievable prefetch coverage. By following that prin-

ciple, Ishii et al. [20] proposed the Access Map Pattern Matching (AMPM) prefetcher (see Fig. 2.5)

to identify hot zones in memory and infer multiple patterns in the access stream. To make accu-

rate predictions, it uses a bitmap-like data structure to hold the information of memory accesses

occurred in the recent past. Next, it divides the memory address space into memory regions of

a fixed size and relates the memory access map to each region. Finally, it makes use of pattern

matching logic for inferring memory access patterns in each mapped region, detecting all pos-

sible strides at the same time. With the detected patterns, it predicts future memory accesses

independently of the order in which they are observed, in turn attaining a high prefetch coverage.

By recognizing that temporal address correlation often allows the detection of complex mem-

ory access patterns with higher accuracy, Global History Buffers (GHBs) [31, 33] were introduced

to represent a temporal address history. They hold the most recent memory accesses in a First-In

17

2. Background and State-of-the-Art

Figure 2.6: Temporal-based prefetching mechanism of the VLDP prefetcher [32].

First-Out (FIFO) buffer and use a linked list to store the sequence of accessed addresses. How-

ever, although being more efficient than prediction tables, in some cases it may involve a large

number of sequential accesses and modifications to the linked list, resulting in long latency in the

prediction of the addresses to be prefetched.

To mitigate such issues, GHBs are often combined with other prediction structures, allow-

ing researchers to efficiently exploit the history of accesses to calculate accurate future ac-

cesses [21, 32]. As an example, Shevgoor et al. [32] proposed the Variable Length Delta

Prefetcher (VLDP). It maintains local delta (stride) histories for each physical page accessed

by a given workload in multiple delta history buffers with different lengths. When a prefetching

opportunity is detected in one of the tracked pages, its delta history is used to perform lookups in

delta prediction tables (see Fig. 2.6) to infer the correct prefetches to issue. The utilization of mul-

tiple prediction tables (corresponding to different history lengths), allows the VLDP to maximize

prefetch coverage and accuracy, by preferring to use long histories to make accurate prefetches

and using shorter histories to fill in the gaps when long histories are unavailable.

2.2.2.C Irregular and Correlation Prefetching

Since spatial and temporal prefetching rely on the assumption that accesses maintain a cer-

tain regularity over time, they fall short when the memory access is not sequential or presents

some degree of irregularity. Hence, to deal with such situations, temporal and spatial correla-

tion heuristics have been deployed in some prefetchers. They usually deploy probabilistic and

automatic learning algorithms that analyze the recent address history and, instead of calculating

differences, identify regions of interest in the memory to be prefetched. As an example, in [55] it is

introduced a context-based memory prefetcher, which approximates spatial and temporal locality

by applying reinforced learning methods over system and code attributes, which provide valuable

hints for memory access prediction.

Recently, Pugsley et al. [23] introduced a new category of offset prefetchers, as a general-

ization of the classic next-line prefetching, supported by a sandbox method to dynamically select

the prefetch offset (see Fig. 2.7.A). It works on the principle of validating the accuracy of the

18

2.2 Data Communication Schemes and Paradigms

Figure 2.7: Schematic views of (A) the Sandbox Prefetcher [23] and (B) the Best-Offset

Prefetcher [22].

prefetchers in a safe, sandbox environment, where neither the real cache nor memory bandwidth

is disturbed. To do so, the proposed method issues ”fake” prefetch requests by recording them in

a bloom filter structure and calculating their accuracy by checking if a subsequent access hits in

the bloom filter. The actual prefetch candidates are then deployed in the real memory hierarchy

only if they prove that they can accurately prefetch useful data.

Following the same principle, Michaud [22] proposed the Best-Offset Prefetcher. It was de-

signed with prefetching timeliness in mind and implements an offset selection mechanism that dy-

namically sets the prefetching offset depending on the application behavior to maximize prefetch

coverage (see Fig. 2.7.B). This mechanism relies on a best-offset learning algorithm that tries to

find the best prefetch offset by testing several different offsets. It does so by recording the base

address of prefetch requests that have been completed in a recent requests table and inferring

the correct timeliness for a prefetch candidate based on how recently a cache line was accessed.

Due to its detachment from spatial and temporal locality, address correlation is also adopted

to deal with irregular applications (such as data-based accesses, graph- and list-oriented and

pointer-based applications). To deal with the irregular nature of graph structures, Zhang et al. [17]

proposed a worklist-directed prefetching technique, that takes advantage of the processing sys-

tem’s knowledge of upcoming work items to issue prefetch requests accurately. The prefetcher

is paired with a credit-based system to improve prefetch timeliness and prevent cache thrash-

ing. Jain et al. [19] proposed a structural address space that translates arbitrary pairs of corre-

19

2. Background and State-of-the-Art

lated physical addresses into consecutive addresses. This allows their proposed Irregular Stream

Buffer (ISB) to organize prefetching meta-data so that it is simultaneously temporally and spatially

ordered.

2.2.2.D Compiler-aided Prefetching

Although predictive approaches allow a high abstraction of the application from the prefetching

procedure, they can fall short when the application is characterized by complex memory access

patterns. Moreover, they impose an increased amount of resources, often related to the adopted

level of prefetching aggressiveness [18, 23].

Hence, alternative solutions have been considered [18, 53] that rely on compile-time proce-

dures, where the compiler pre-analyzes the code and tries to extract/model the application mem-

ory access pattern. Such information is then fed to on-chip prefetching modules, mitigating the

effort of their prediction procedures. By eliminating unnecessary requests, these approaches re-

duce the prediction overheads while also improving the accuracy of the prefetchers. They also

lead to far simpler hardware structures, since no runtime analysis is performed, in turn resulting

in lower-footprint and more energy efficient controllers, at the cost of an increased pre-processing

effort.

Ebrahimi et al. [53] explored such an approach, through a hardware/software cooperative tech-

nique for the prefetching of linked data structures. They proposed a compiler-guided prefetch

filtering mechanism that informs the hardware about which pointer addresses to prefetch, and a

prefetch throttling mechanism that relies on runtime feedback to manage the operation of multiple

prefetching architectures. Another example is the Power-Aware pRefetch Engine (PARE) [18], a

compiler-assisted prefetching mechanism, which utilizes compiler information to selectively ap-

ply different hardware prefetching schemes based on predicted memory access patterns. It also

applies filtering techniques at compile-time and at runtime to reduce the number of accesses to

be prefetched by hardware, consequently reducing the L1 cache related energy overhead due to

prefetching.

2.2.3 Data Streaming Architectures

Despite the high accuracy provided by current prefetching approaches, their predictive nature

and necessary runtime monitoring impose inevitable inaccuracies and delays in the memory ac-

cess infrastructure. In particular, while the prediction delays are inevitable to maximize accuracy

and coverage in such scenarios, an increased amount of resources is required, often increasing

the system’s overall energy consumption [18]. Moreover, even the most sophisticated techniques

are not well-suited to processing systems with large numbers of processing cores, due to possi-

ble contention introduced in the shared interconnections caused by massive on-the-fly prefetch

requests. Such contention may even degrade the system’s throughput to the point where the

20

2.2 Data Communication Schemes and Paradigms

Figure 2.8: Overview of the APMC [54] (1) stream controller and (2) pattern descriptor represen-

tation.

benefits of the prefetching mechanism become obsolete.

Alternatively, by relying on data streaming approaches it is possible to deploy data acquisi-

tion mechanisms without directly relying on aggressive predictive schemes and structures. Such

approaches essentially reverse the conventional request-based memory access process by au-

tonomously generating the indexing of the memory and transparently sending data to the pro-

cessing system. This results in a significant mitigation of the contention in the communication

infrastructures and also allows exploiting runtime data manipulation mechanisms (e.g., on-the-fly

data reorganization and reutilization). Moreover, far simpler hardware structures are required,

since no runtime analysis is performed, in turn resulting in controller structures with lower area

footprints and higher energy efficiency.

Accordingly, several data streaming techniques have been proposed to improve the through-

put of the data management infrastructure. Park et al.[56] formally studied the problem of data

fetching from an external memory to a Field-Programmable Gate Array (FPGA) in the context of

stream-computing. Acknowledging that proper data re-utilization mechanisms are fundamental in

FPGA-based systems, the work was further extended to support the scheduling of simple data

operations (e.g., stripping, splitting or merging) in the context of multi-processor systems [57].

Meanwhile, Hussain et al.[54] proposed the APMC (see Fig. 2.8), which supports regular 1D,

2D and 3D data-fetching mechanisms, such as scatter-gather and strided accesses. A dedicated

scheduler, allied to an intelligent memory manager is also integrated into the controller, to facil-

itate the implementation of elaborated data movements, as well as simple computational tasks.

However, while the APMC represents a step forward towards the streaming of complex patterns,

it was designed for moving large and regular data chunks and falls short with irregular or complex

memory indexing. Irregular and pointer-based accesses are managed through runtime memory

access analysis and recording (similar to prefetching mechanisms).

The issue of complex data pattern generation and efficient data manipulation schemes was

addressed by Paiágua et al. [26]. They proposed the HotStream Framework, which relies on a

21

2. Background and State-of-the-Art

Figure 2.9: Overview of the HotStream Framework [26] (1) data-fetch controller, (2) address gen-

eration unit and (3) pattern description language.

micro-coded approach to program memory access patterns directly to on-chip Data-Fetch Con-

trollers (DFCs) (see Fig. 2.8). Each DFC is composed of an address generation controller (that

generates up to three-dimensional patterns) and managed by a custom micro-controller that com-

bines multiple patterns to generate higher dimensional address sequences. The DFCs also allow

the deployment of several data reutilization techniques that aim at maximizing the main memory

bandwidth. Although the considered programmable approach eases the description of higher di-

mensional data patterns without compromising the address issue rate, it still struggled with many

complex data access patterns.

Hence, although these streaming approaches provided a step forward in data transfer effi-

ciency, they have only been successfully deployed in custom dedicated accelerators. Moreover,

they still lack in viability since they require the programmer to encode the memory access pattern

of each application manually.

2.2.4 Discussion

The adoption of conventional cache hierarchies in current computing systems still imposes im-

portant limitations to the offered performance. Although they are capable of reducing the memory

access latency in several advantageous scenarios, their performance is bound by the character-

istics of the running application and the topology of the processing system, specifically:

• Poor memory access spatial and temporal locality can result in high numbers of early

cache line evictions and consequently increased miss rates. Such scenarios typically occur

when the application is characterized by large datasets that do not fit in the cache memory

22

2.3 Adaptive Computing

or by complex memory access patterns;

• Large numbers of processing cores in a cache-coherent system tend to increase its

contention and the overall energy consumption, resulting not only from increased on-the-

fly memory requests but also from the complexity of the underlying shared data transfer

infrastructures.

While prefetching techniques have shown success in mitigating the adverse characteristics of

running applications, and are capable of providing high data acquisition timeliness and effective-

ness [22, 23], they are reaching throughput limits caused by:

• Monitoring and prediction delays caused by the memory access analysis that must be

performed during application execution to predict future accesses;

• Prediction inaccuracies that result in unnecessary data acquisition requests, and can in

turn flood the shared communication structures.

Recent studies showed that data streaming is a viable alternative to conventional memory

access hierarchies in application-specific architectures [26, 54]. Not only do they detach the

memory access generation procedure from the processing infrastructure, but they also provide

efficient data transfer, reutilization, and manipulation schemes, that are not supported in conven-

tional systems. However, their applicability to general purpose systems is still limited to:

• Deterministic representations of the memory accesses, with limited data-pattern de-

scription complexity, and providing no support for the irregular accesses and pointer-based

accesses that characterize several HPC applications;

• Manual coding of the data streaming scheme resulting from the lack of proper compi-

lation tools that can extract and encode an application’s memory access pattern and data

communication scheme.

Hence, to effectively allow the deployment of data streaming in general purpose systems, it

is necessary to take a step further from typical static analysis tools that solely analyze memory

access patterns and perform code optimization at compile-time [5–7, 9, 10]. This can be done by

combining memory access pattern analysis with new dedicated representations that can encode

arbitrarily complex sequences of addresses.

2.3 Adaptive Computing

To avoid the disadvantages inherent to power-hungry high-end general purpose processing

systems or low-power and application-specific dedicated architectures, several systems have re-

cently adopted adaptive structures to simultaneously handle broader ranges of applications and

workloads. Partly driven by the increased integration levels that were observed over the past

decade, and by the consequent adoption of heterogeneous systems and new emerging technolo-

gies, new techniques are being explored that combine the advantageous characteristics of several

23

2. Background and State-of-the-Art

specific or dedicated approaches. In fact, while conventional approaches become less viable to

cope with the current performance-efficiency demands, several early solutions, often disregarded

due to the drawbacks of early technology (e.g., partial reconfiguration) are being revisited and

adapted to the current HPC context.

2.3.1 Power Supply Management

Several circuit management mechanisms have been proposed to tackle the increasing de-

mand for energy efficient platforms. This includes turning off parts of the processor [11, 13] or us-

ing dynamic voltage and frequency scaling approaches [14, 15] to decrease energy consumption

whenever the computational requirements decrease. Recently, researchers have also turned to

multi-core heterogeneous systems composed of high performance big cores and low-power small

cores to reduce the power consumption of the whole system, while providing adaptive processing

capabilites [12, 15]. These systems typically exploit a common Instruction Set Architecture (ISA)

among all the cores, to facilitate task migration from the big to the small cores (and vice-versa),

which allows for fast and efficient switching between high-performance and low-power scenarios,

depending on the application requirements and constraints.

However, to adequately exploit the existing resources on heterogeneous multi-core systems,

complex monitoring, task migration, and scheduling procedures need to be performed, which

also depend on the execution profile. In [58], key metrics are identified to characterize the ap-

plication under execution, including the core type that best suits its resource requirements. A

combination of static analysis and runtime scheduling is proposed in [59], to achieve an energy

efficient scheduling on Intel’s QuickIA heterogeneous platform [60]. The utilization of statistical

approaches has also been explored in [61], where a performance impact estimation is used as a

mechanism to predict which workload-to-core mapping is likely to provide the best performance.

2.3.2 Dynamically Reconfigurable Systems

Although the adoption of heterogeneous computing architectures has proved advantageous

in many scenarios, further energy savings can be attained by adapting the computing architec-

ture/communication topology to the characteristics of running multi-threaded applications. Some

possible approaches are either the application of network reconfiguration or adaptive core in-

terconnection topologies [47, 62], changing the cache configuration [63], or performing core

morphing [48, 64, 65]. Such solutions have been significantly aided by the recent advances in

FPGA [41, 42] and Coarse-Grained Reconfigurable Array (CGRA) [43, 44] technologies. These

systems rely on fast dynamic partial reconfiguration, which provides the possibility to reconfigure

a selected region of the device, while the remaining logic continues to operate in an uninterrupted

way [66].

Despite the similarities between their reconfiguration processes, different advantages (and

24

2.3 Adaptive Computing

drawbacks) make FPGAs and CGRAs better-suited for particular execution scenarios. The main

functional difference between these technologies lies in the granularity and diversity of their basic

reconfigurable elements. Specifically, FPGAs provide bit-level reconfigurability, with a wide vari-

ety of configurable resources (e.g., BRAMs, Look-Up Tables (LUTs), Configurable Logic Blocks

(CLBs)) and embedded elements (e.g., clocking, full CPUs). On the other hand, CGRAs provide

a data-path-level reconfigurability, with a more restrictive and custom-tailored range of config-

urable Processing Elements (PEs) (e.g., Arithmetic and Logic Units (ALUs), Floating-Point (FP)

units) embedded in SoCs, containing hardwired custom communication networks and memory

subsystems.

2.3.2.A Coarse-Grained Reconfigurable Arrays

Given the inefficiency of the reconfiguration procedures and resource limitations of early FPGA

technologies, the first viable reconfigurable architectures were deployed in CGRAs. Contrarily to

the bit-level reconfigurability of FPGAs, CGRAs provide data-path-level reconfigurability. Their

reconfigurable units include sets of predefined functional units and complex operators that can be

interconnected to create custom operations.

One of the earlier CGRAs was the MorphoSys [67]. It comprised a reconfigurable processing

unit organized in a Single-Instruction Multiple-Data (SIMD) fashion as an array of reconfigurable

cells with word-level granularity. A specialized streaming buffer handled the data transfers be-

tween external memory and the array. Reportedly, it achieved Application Specific Integrated Cir-

cuit (ASIC)-level performance with a single-cycle reconfiguration latency. On a different approach,

the ADRES framework [68] deployed a flexible Very Long Instruction Word (VLIW) processor ar-

chitecture template organized in an array of tightly coupled configurable processing cells. Its

architecture allowed the dynamic reconfiguration to be performed without stalling the array. Data

input from various possible sources was done with the help of configurable port sides in the func-

tional units.

While early CGRAs were critical in demonstrating the viability of reconfigurable architectures

for high-performance processing, it was the PACT XPP-III [69] processor that presented the most

significant step forward in reconfigurable processors. The XPP-III [69] is a strictly modular and

hierarchical design architecture that combines data stream processing in an array with runtime re-

configuration mechanisms. Each configuration is a parallel computation module derived from the

data-flow graph of a given application. The array provides high parallel processing performance

for typical stream-based applications, resulting from its run-time reconfiguration mechanisms that

allow entire applications to be configured and run independently on different parts of the array.

Despite the breakthroughs that were achieved at the time, only recently have CGRAs began

to reemerge, as a result of the recent advances in integration and production technology. One

example is the HARP [44] integrated platform that combines multiple CGRAs over a Network on

25

2. Background and State-of-the-Art

Figure 2.10: Architecture of a reconfigurable compute unit from the Plasticine CGRA [43].

Chip (NoC), where each CGRA is scaled and tailored for a specific application. Its loosely-coupled

architecture was designed to maximize the number of instantiated reconfigurable PEs, by placing

several heterogeneous and homogeneous accelerators around a CPU core. The processor is

used to supervise and control the PEs for independent and simultaneous execution of multiple

kernels over the platform. Recently, Prabhakar et al. [43], proposed the Plasticine reconfigurable

accelerator architecture designed to execute parallel patterns efficiently. It deploys a 2D array

of reconfigurable units (see Figure 2.10), including: i) compute units, that exploit fine-grained

SIMD and pipeline parallelism; iii) memory units, to exploit data-locality using banked scratchpad

memories with configurable address logic; iii) pipelined switches that implement control networks

with multiple granularities; and iv) address generators and coalescing units to efficiently perform

data accesses to DRAM.

2.3.2.B FPGA-based Reconfigurable Accelerators

Motivated by the same technology advances that drove the reemergence of CGRAs, several

high-performance and adaptive many-core heterogeneous systems have been proposed to exploit

the reconfigurable capabilities of FPGAs.

Early solutions envisaged the simultaneous instantiation of multiple architecture configura-

tions in the device. As an example, Garcia et al. [70] proposed a reconfigurable multiprocessor

system that allows multiple configurations to coexist by using reconfigurable coprocessors with

multiple cores. Caspi et al. [71] proposed a design that incorporates a single CPU and multiple

reconfigurable computing blocks, with data streams being transferred between the blocks over

a dedicated interconnect. On a lower level, Chen et al. [72] proposed the inclusion of reconfig-

urable ISA support in multi-core processors, allowing the exploitation of adaptive fine-grained and

coarse-grained parallelized architectures.

Some unconventional approaches have also been proposed that exploit the reconfiguration

26

2.3 Adaptive Computing

Figure 2.11: Architecture of the ReMAP heterogeneous accelerator [73].

capabilities of FPGA fabric in particular manners. One of such examples is the ReMap sys-

tem [73], which integrates reconfigurable computation modules within an accelerator’s intercon-

nection buses (see Fig. 2.11). Hence, the proposed approach provides acceleration by performing

computation operations to the data, while it is being transferred between the accelerators compo-

nents.

Despite the attainable levels of architecture specialization, dynamic reconfiguration has also

been used to optimize the processing system and save energy. To validate this idea, Lorenz

et al. [74] compared the energy that is required in the reconfiguration process with the potential

savings that are introduced by a dynamic and adaptive change of the computing units of the

processing system.

Recently, Ordaz et al. [42] proposed an architecture comprising a soft dual-processor system

augmented with a runtime reconfigurable SIMD engine. The deployed engine is automatically

split into multiple lanes according to the computational requirements of the running application.

The SIMD engine is integrated into the dual-processor system through a small set of special

instructions to invoke SIMD operations at runtime.

2.3.2.C FPGAs vs. CGRAs

Their fundamental technological difference makes FPGAs the most flexible reconfigurable de-

vices available today. In fact, any application can be designed and instantiated on a FPGA device

allowing, in particular cases, higher throughputs with lower energy consumptions, when compared

27

2. Background and State-of-the-Art

to static implementations in Integrated Circuit (IC) technology (as recently reported in[49]). How-

ever, computationally intensive applications can incur in significant overheads in terms of area and

latency, resulting from the bit-level routing penalties imposed by the implementation of complex

operations.

On the other hand, at the expense of some flexibility, CGRAs provide a set of predefined data-

paths and complex operators that can be interconnected to create custom operations. Despite

occupying a larger area than a CLB, the wider multiple-bit computing elements allow the total

number of instantiated elements to be much lower than in FPGAs, in turn requiring a lower global

area for routing. Furthermore, communication networks and memory access infrastructures are

typically hardwired, making such resources extremely efficient when compared to FPGAs. This

is mainly due to the fact that FPGAs require an explicit coding of the communication between

operators and the memory elements, typically occupying a significant percentage of the available

resources, due to routing and chained multiplexing.

Regarding market applicability, the viability of both approaches as co-processing devices in-

creased significantly over the last decade [41]. The integration of CGRAs in heterogeneous SoCs

as co-processors [75] is no different than any other custom module. Similarly, FPGAs are al-

ready supplied with embedded processor cores connected to the reconfigurable fabric [76]. How-

ever, both approaches still require a non-negligible development effort per application. In fact,

despite the emergence of new automated design tools (e.g., Xilinx Vivado [77], Altera SDK for

OpenCL [78], Maxeler Technologies’ MaxCompiler [79]) that automatically translate applications

to low-level hardware, the hardware implementation must still be carefully described and opti-

mized to maximize an application’s throughput, requiring a non-negligible designer’s effort.

2.3.3 Dedicated Programming Frameworks and Execution Optimization

Although several programming frameworks have already been developed with the particular

purpose of exploiting GPUs for general purpose computation (e.g., CUDA and OpenCL), not much

attention has been given to reconfigurable hardware accelerators, especially those deployed on

reconfigurable technology.

Conversely, several solutions have been proposed to manage and optimize the execution of

heterogeneous many-core processing systems. Some examples comprise dynamic task schedul-

ing [80–82], high-level and system-level synthesis approaches [83–85], application mapping tools

for multi-processor [86, 87] and heterogeneous systems [88], and routing and communication

topology optimization mechanisms [89]. However, these solutions do not take advantage of the

runtime reconfiguration/adaptation capabilities of the underlying hardware.

28

2.3 Adaptive Computing

2.3.3.A Design Space Exploration

Although the above-mentioned tools [77–79] provide the means for automatic task/kernel

translation into low-level hardware implementations and for mapping them to custom hardware,

the runtime reconfiguration of the architectures is usually not taken into account. To address

this lack of support, several Design Space Exploration (DSE) algorithms have been proposed to

specifically target dynamically reconfigurable platforms [48].

In the context of hardware implementations, DSE has been used to perform systematic anal-

yses of several design options (e.g., type and number of components, the degree of architec-

ture specialization, interconnection topologies) and parameterization choices (e.g., power, perfor-

mance, cost), according to a given optimization goal. This is usually done by trading off design

complexity and parameter weight through an exploration process that results in several differently

balanced system designs.

As an example, Miramond et al. [90] proposed a tool that defines different contexts for recon-

figurable circuits, which are subsequently switched through partial reconfiguration. The underlying

tasks are then assigned to them through spatial and temporal partitioning, by using a local search

algorithm. Meanwhile, Czarnecki et al. [91] proposed the utilization of conditional task graphs to

model mutually exclusive tasks. According to this algorithm, all tasks are initially assigned to only

one GPP module, and new solutions are produced using iterative improvement methods.

2.3.3.B Evolutionary Algorithms and Multi-Objective Optimization

While DSE is a well-known system design approach, the number of possible design choices

and parameter variations that characterize complex system implementations [90, 91] may lead

to inefficient optimization procedures. To tackle this issue, Multi-Objective Optimization (MOO)

methods have been regarded as viable approaches to deliver highly optimized DSE solutions.

MOO problems are designed with the goal of optimizing a set of objective functions, to which

it is not possible to find a single solution that simultaneously minimizes (or maximizes) all the

objectives. The resulting set of solutions, denoted as the Pareto optimal front, contains the points

representing the best trade-off solutions in the objective space. Typically, a multi-objective opti-

mization problem is defined as:

minimize f(x) = (f1(x), ..., fk(x))

subject to x ∈ X ,
(2.1)

where x is a solution, X is a set of feasible solutions, and f(x) is an objective function vector that

maps a solution vector x in the decision space to a point in the objective space. A solution is in the

Pareto front, and is called non-dominated (by any other solution), if none of its objective functions’

values can be improved without degrading the others [92], representing a best-compromise solu-

tion in the objective space. Formally, given two solutions x and v, the Pareto dominance property

29

2. Background and State-of-the-Art

between them (i.e., x dominates v) is defined as:

x ≺ v iff fi(x) ≤ fi(v), ∀i ∈ {1, ..., k} ∧ ∃i ∈ {1, ..., k} s .t . fi(x) < fi(v). (2.2)

A wide variety of methodologies has been proposed to solve MOO problems [92]. Among the

most used are the Multi-Objective Evolutionary Algorithms (MOEAs), since these algorithms are

particularly well-suited for simultaneously dealing with solutions in large search spaces. Specif-

ically, evolutionary approaches are designed by encoding each potential solution as a chromo-

some of an individual in a given population. Hence, the set of non-dominated solutions that define

the Pareto front is obtained by evolving the population through a particular number of generations.

The population, itself, is evolved by applying operations based on nature’s evolution mechanisms,

such as selection, reproduction, and mutation.

In particular, one of the most well-established MOEAs is the Non-dominated Sorting Genetic

Algorithm II (NSGA-II) [93], characterized by a very fast convergence and a good spread of so-

lutions near the Pareto front. This is achieved by including a fast non-dominated sorting ap-

proach, followed by a selection operator that, together, create a mating pool by combining the

parent and offspring populations and by subsequently selecting the best (on fitness and spread).

Furthermore, the NSGA-II algorithm is especially well-suited for solving problems with multiple

constraints [93].

Accordingly, since a vast number of mapping and architectural constraints are inherently im-

posed in a DSE problem, it can be regarded as a constrained MOO problem [92]. As an example,

based on the application’s translation to conditional task graphs, Shang et al. [94] proposed an

Evolutionary Algorithm (EA) to determine the number of used resources and to assign them with

tasks, followed by a re-mapping and scheduling algorithm that makes use of the dynamic re-

configuration capabilities of FPGAs. Wildermann et al. [95] proposed an algorithm that targets

multi-mode systems. It is based on the notion that different operating modes can share the same

hardware resources through partial reconfiguration. A symbolic encoding combines a SAT solver

and a MOEA is used to perform the system synthesis for allocation, binding, and placement of

partially reconfigurable modules, both temporally and spatially.

In a more recent approach, Grigore et al. [96] tackled the runtime placement problem in

FPGAs. They proposed a model to place rectangular modules on a datapath with predetermined

communication constraints, that takes into account the resource requirements of running tasks

and minimizes fragmentation. The model uses string matching to compute all possible placement

positions of any given rectangular module, providing information for the runtime placer, resulting

in faster execution.

30

2.3 Adaptive Computing

2.3.4 Reconfigurable Communication Systems

Although adaptive structures have been exploited to improve the efficiency of the processing

infrastructure in heterogeneous systems, the communication infrastructure is usually kept with

non-reconfigurable and generic structures (e.g., NoC or shared-bus structures). This is mostly

because the straightforward addition of reconfiguration procedures would incur in unsurmount-

able latency and energy consumption overheads to the already inherent overheads of currently

established communication infrastructures.

Nonetheless, there are still some cases where energy-efficiency is targeted with the adapta-

tion of the communication subsystem (e.g., cache structures, local memories, network/bus topolo-

gies). As an example, Weixun et al. [63] deployed a technique that combines dynamic reconfig-

uration of private caches and partitioning of the shared cache, to minimize the cache hierarchy

energy consumption. Meanwhile, Sundararajan et al. [50] proposed a cache architecture that al-

lows the dynamic reconfiguration of both its size and associativity, whose best configuration for a

given application is dynamically predicted with the aid of a decision-tree machine learning model.

Similarly, El-Moursy et al. [97] proposed a v-set cache design, targeting an adaptive and dynamic

utilization of cache blocks for shared LLCs in multi-core environments.

The combination of multiple memory technologies has also been explored to increase the

system’s data communication efficiency. Chen et al. proposed a reconfigurable hybrid last-level

cache design, where different memory technologies (SRAM and Non-Volatile Memory (NVM))

are unified at the same cache level to form a hybrid design. Moreover, power gating circuitry is

also introduced to allow adaptive powering on/off of SRAM/NVM sub-arrays at the way level. To in-

crease the cache performance of a multi-core processor, Kalokerinos et al. [52] proposed a hybrid

architecture comprising a local scratchpad memory that can be partly configured at runtime. This

scratchpad memory operates as a local second level cache, providing unified hardware support

for both implicit and explicit communication. The communication is handled with an integrated

network interface that deploys virtualized Direct Memory Access (DMA) procedures.

Although adaptable, all these approaches are mostly focused on balancing the available mem-

ory and interconnection resources, and they still incur in inevitable overheads resulting from the

reconfiguration process. Moreover, they do not directly address the communication process itself,

meaning they still struggle when dealing with communication concurrency and contention or with

data locality issues resulting from the characteristics of running applications.

2.3.5 Discussion

While heterogeneous systems took a step further in providing new levels of computing special-

ization, there is still a performance limit caused by an inefficient utilization of hardware resources.

In particular:

31

2. Background and State-of-the-Art

• Task migrations between processing components result in inevitable delays that de-

grade the system’s throughput;

• Power supply management and performance throttling can result in a significant amount

of resource being powered-down most of the time, making their utilization ineffective.

Alternatively, partial reconfiguration can provide the necessary mechanisms to improve the

utilization of processing resources and simultaneously improve the processing infrastructure’s

computing efficiency. However, it is necessary to acknowledge that the existing state-of-the-art

is still focused on custom dedicated accelerators and lacks the adequate responsiveness and

adaptability to a general-purpose context, specifically:

• The reconfiguration process imposes non-negligible time overheads and power dissipa-

tion that can significantly impact its the performance and energy consumption, and also

result in inevitable delays that degrade the system’s throughput;

• Application-to-accelerator mapping tools lack support in what concerns the reconfigura-

bility of the processing hardware, in turn decreasing its viability.

On the other hand, while new levels of adaptation could also be provided in the memory sub-

system, partial reconfiguration is not a viable approach in this area, due to the significant impacts

in performance that would occur from constantly stopping the communication channels to perform

reconfiguration. Nonetheless, new adaptive techniques can still be investigated to address the

performance and energy consumption limitations of conventional data communication schemes.

In particular, they can explore the combination of different data communication paradigms and

data fetching mechanisms (such as cache hierarchies, data streaming and prefetching), to pro-

vide new levels of adaptation in new hybrid data management infrastructures.

2.4 Summary

This chapter presented a brief overview of the current limitations imposed on computing sys-

tems by power supply management mechanisms and by the adoption of conventional cache hier-

archies. Possible solutions were also highlighted that can counteract the identified limitations. In

particular, it was recognized that adaptive computing systems (in the format of hardware recon-

figuration and dynamic data communication schemes) can provide the necessary mechanisms

to bridge that gap and to push the limits of computing efficiency. Accordingly, a brief review

of the state-of-the-art was presented regarding the areas of heterogeneous computing systems,

reconfigurable architectures, data prefetching mechanisms, data streaming architectures, and

compilation tools for memory access analysis and task mapping and scheduling.

32

3
Data-Pattern Analysis and Stream

Transformations

Contents

3.1 Modeling of Complex Data-Patterns . 35

3.1.1 Affine Mathematical Model for Data Indexing 37

3.1.2 Memory Access Description Specification 39

3.2 Compile-Time Stream Code Generation . 42

3.2.1 Compiler Module Overview . 43

3.2.2 Context Representation Language . 46

3.2.3 Stream Code Generation . 49

3.3 Preliminary Experimental Evaluation . 53

3.3.1 Methodology . 53

3.3.2 Data-Pattern Encoding Efficiency . 56

3.3.3 Source Code Reduction Evaluation . 58

3.3.4 Discussion . 59

3.4 Summary . 60

33

3. Data-Pattern Analysis and Stream Transformations

As it was described in the previous chapters, the conventional communication schemes equip-

ping most general-purpose systems require the processing cores to handle the complete memory

access procedure (including address generation and memory access requests). Moreover, they

rely on cache hierarchies to handle the corresponding data transfers as efficiently as possible. In

contrast, stream-based mechanisms rely on dedicated on-chip modules (stream controllers) that

perform both address generation and handle data transfers directly to/from memory, indepen-

dently of the system’s processing cores. Moreover, they deploy stream buffering structures in the

communication infrastructure that allow the exploitation of unique data manipulation techniques

(such as on-the-fly data reutilization and reorganization).

Accordingly, such dedicated stream controllers can be deployed close to the processing

cores [26] (see Fig. 3.1.A), where aside from providing a functionality similar to that of a prefetcher,

also allow the exploitation of point-to-point communication schemes between the system’s cores.

Alternatively, these controllers can also be deployed closer to the system’s main memory [54]

(see Fig. 3.1.B). This option also allows a significant mitigation of the memory access concur-

rency (typical to multi/many-core systems) by sending data directly from memory and allowing the

Figure 3.1: Stream controller topologies conventionally adopted by data streaming systems, with

modules close to the system’s processing cores (A - e.g., Hotstream Framework [26]) or close to

the main memory (B - e.g., APMC [54]).

34

3.1 Modeling of Complex Data-Patterns

exploitation of alternative data communication schemes (e.g., broadcast data transfers) [34].

Independently of the adopted topology, stream controllers must rely on accurate represen-

tations of the data access pattern to perform the correct sequence of memory accesses and

generate data streams for the system’s processing cores [26, 34, 54]. However, existing repre-

sentations have been limited to regular data patterns and, since compiler support is usually not

provided, they require the programmer to manually describe the access sequence.

Accordingly, the data streaming scheme that is proposed in this dissertation (further discussed

in Chapter 4) is based on the notion that an application memory access pattern can be explicitly

extracted during compilation and used, at runtime, to generate data streams directly from mem-

ory. This is done by taking a step further from typical static analysis tools. In particular, while

these tools have been used to analyze memory access patterns and perform code optimization

at compile-time, there is an opportunity to extend this functionality by explicitly exposing and ex-

tracting the access pattern to provide support for data streaming. The extracted patterns can then

be encoded and embedded in the application code, and subsequently sent to the on-chip stream

controllers to autonomously perform the corresponding sequence of memory accesses, during

execution.

Accordingly, this chapter presents and evaluates the developed compilation tools and tech-

niques that give support to generic data stream communication schemes, namely:

• A memory access description specification based on an affine mathematical model. This

specification is capable of representing arbitrarily complex deterministic access patterns

and indirect memory accesses, to enable data stream communication schemes.

• A compile-time static analysis tool that examines a region of application source code to

extract and encode its memory access sequence with the defined description specification.

• A code transformation mechanism that leverages the resulting detachment of memory

accesses from computation, to perform code reductions and accelerate its execution. In

particular, it replaces the array subscript indexation of each encoded memory access with

a stream reference, eliminating redundant data indexation and address calculation.

The proposed compilation tool is validated through a preliminary experimental evaluation, by

comparing the efficiency of the memory access pattern encoding with existing state-of-the-art

representations, and by assessing its stream code transformation capabilities. The chapter is

concluded with a brief discussion of the main advantages and limitations of the presented tech-

niques.

3.1 Modeling of Complex Data-Patterns

The performance of any processing architecture is directly related to the characteristics of the

applications that it executes. Based on such knowledge, computing frameworks (ranging from

35

3. Data-Pattern Analysis and Stream Transformations

compilation tools to computing architectures) are built by recognizing the most common features

found across a wide range of general-purpose applications. In particular, special attention is often

given to the complexity of the data access sequence and memory access latency, as they can

limit the throughput provided by the processor resources.

Accordingly, most compilation tools are designed to exploit specific features of the process-

ing architectures (e.g., out-of-order execution) to hide the latency of such data accesses. For

instance, they try to reorganize the instructions from the original code to allow concurrent data

fetching and computing operations, effectively trying to hide the latency of accessing the memory

behind the computation performed by the processor.

On the other hand, the typical architecture of a cache memory is based on a more in-depth

insight of the characteristics of general data accesses. Specifically, caches have long been con-

solidated around the principle of data locality, which characterizes the behavior of an application

memory access pattern. This principle is based on the notion that a given memory region (e.g., a

set of contiguous memory locations - spatial locality) is frequently accessed (temporal locality).

Hence, caches are designed by embracing the common characteristics found in general-purpose

applications, where they typically assume that memory accesses maintain a regular pattern over

time. Naturally, with that sole assumption as its basis, when the memory access pattern is char-

acterized by poor data locality, this model falls short and data cannot be efficiently maintained

close to the processor.

By following a locality principle similar to caches, prefetching solutions anticipate the loading

of data in the cache lines by analyzing the most recently accessed addresses (ycurrent) and

calculating the distance between them (stride), to predict the sequence of future accesses (up

to a given degree). The most common solutions rely on a unidimensional model based on near-

temporal and near-spatial locality:

y(degree) = ycurrent + degree × stride (3.1)

While this model is capable of predicting a wide range of memory access sequences, its unidimen-

sional representation can result in inaccuracies when the complexity of the pattern of accessed

addresses increases. Hence, to provide accurate representations with higher levels of complexity,

a more in-depth model is required.

Accordingly, the proposed static analysis tool (further detailed in Section 3.2) is based on

a formal mathematical model to capture and describe deterministic memory access patterns.

This is done by using a representation of the exact sequence of addresses generated by the

application, for a specific data access. The mathematical model is used to define a new memory

access pattern descriptor specification that can be used to generate data streams for each data

access. To do so, the proposed specification mirrors the typical for-loop encoding scheme for

array indexing. Consequently, it allows capturing nested loop indexes and loop- or data-dependent

(indirect) index dynamic ranges, where the above-mentioned models can fall short.

36

3.1 Modeling of Complex Data-Patterns

3.1.1 Affine Mathematical Model for Data Indexing

Independently of their application domain, many applications are characterized by data ac-

cesses with complex memory address patterns that can be represented by an n-dimensional

(n-D) affine function [98] (or by a set of such functions). According to this principle, the following

affine function can be used to describe any deterministic n-dimensional address sequence:

y(X) = ybase +

dimy
∑

k=0

xk × stridek

with xk ∈
[

αk, βk

]

,

X = {x0, . . . , xdimy
} ,

(3.2)

where the memory address sequence y(X) is generated by the sum of a base address (or off-

set) value ybase , with dimy pairs of increment variables (or indexes) xk and stridek multiplication

factors. Each increment variable xk is represented by a integer range, with limits αk and βk.

Since this representation, by itself, allows indexing a significant amount of deterministic ac-

cess patterns, it has been commonly used in description specifications deployed by data-fetch

controllers, including Direct Memory Access (DMA) engines, although typically restricted to 2-D

patterns (dimy=2).

3.1.1.A Multi-level Affine Representation

The n-dimensional model defined in Eq. 3.2 can be further extended to describe more complex

patterns by performing the composition of multiple affine functions. This is done by determining

the base address (ybase), the set of stridek factors and/or the upper and lower bounds (αk and βk)

of each increment variable by means of another affine function (as depicted in the represented

index ranges in Fig. 3.2). Accordingly, it is proposed the following extended model to describe the

deterministic address sequence of a given memory access:

y(Xy) = ybase(Xybase
) +

dimy
∑

k=0

xk × ystridek
(Xstridek

)

with xk ∈
[

αk(Xαk
), βk(Xβk

)
]

,

Xv = {x0, . . . , xdimv
},

v ∈ {y, ybase , stridek, αk, βk} ,

(3.3)

where the values calculated by each yv(Xv) function are used as parameters in the y(Xy) function

to calculate the final address sequence. Furthermore, since there is no limit on the number of

composition levels nor on the dimensionality of each function, the complexity of the modeled

deterministic address sequences is only limited by the representation languages that adopt this

model. Naturally, the representation of higher levels of complexity may require larger memory

storage space to store the representation and more complex address generation units, to decode

the representation and calculate the correct sequence of memory addresses.

37

3. Data-Pattern Analysis and Stream Transformations

Figure 3.2: Example affine representation of the memory accesses in a code snippet of the

trisolv benchmark, from the Polybench [99] suite.

3.1.1.B Memory Access Indirection Representation

Conventionally, affine representations are limited to deterministic memory address sequences

and cannot be directly applied to patterns characterized by indirect memory accesses (i.e., in the

format A[B[i]]). This is due to the fact that it is usually impossible to know (at compile-time) to

what kind of pattern a particular indirect reference will lead to, since the access pattern depends

on values in the indexed arrays, which are only known at runtime. While the proposed model can

only represent exact deterministic patterns, by taking the composition of affine functions a step

further, it is possible to derive an alternative representation of Eq. 3.3 to support indirect memory

access patterns. In particular, instead of assigning the values calculated by each yv(Xv) function

to the parameters of the y(Xy) function, it is possible to use them to generate address sequences

and then assign the corresponding data to the parameters (as depicted in Fig. 3.3):

y(Xy) = D
[

ybase(Xybase
)
]

+

dimy
∑

k=0

xk ×D
[

ystridek
(Xstridek

)
]

with xk ∈
[

D
[

αk(Xαk
)
]

, D
[

βk(Xβk
)
]]

,

Xv = {x0, . . . , xdimv
},

v ∈ {y, ybase , stridek, αk, βk} ,

(3.4)

where each D
[

yv(Xv)
]

function represents the data values corresponding to the sequence of

addresses generated by each yv(Xv) function. The data itself is used as the value assigned to

a parameter in the y(Xy) function to calculate the final address sequence (see Fig. 3.3). Ac-

cordingly, although a data-dependent memory access pattern can only be completely calculated

at runtime, the represented relation can still enable a processor-independent data stream gen-

eration procedure. As a result, the derived model adds a previously inexistent support in data

streaming systems to a wide range of irregular applications (such as graph computations and

sparse linear algebra).

38

3.1 Modeling of Complex Data-Patterns

Figure 3.3: Example affine representation of indirect memory accesses in a code snippet of the

spmv kernel, adapted from the HPCG [100] benchmark.

3.1.2 Memory Access Description Specification

Having defined the previously-presented mathematical model, it is necessary to encode it with

a representation that can be interpreted by the address generation modules of a stream-based

system. To do so, it is only necessary to store the variables (parameters) and the interactions

between affine functions, represented by Eqs. 3.3 and 3.4, in a predefined format that allows the

system to perform an independent calculation of the required address sequences.

Hence, it is proposed a memory access Context Descriptor specification (presented in

Fig. 3.4), which provides a for-loop context data access encoding and encapsulation. It is com-

posed of a top-level Context Header, which indicates the number (acc) and memory locations

(a idacc) of a set of Access Descriptors, each describing one memory access pattern (repre-

sented by the y(Xy) function in Eqs. 3.3 and 3.4). It also contains a reference to a subsequent

Context Header (next), allowing multiple descriptor contexts to be described and solved in se-

quence.

3.1.2.A Base Descriptor Encoding

The Access Descriptor defines the data access pattern represented by a y(Xy) function by

means of: i) an header tuple, containing a stream pointer (stream), the array base address (base),

the descriptor dimensionality (dimk), and the number of modifier chains (mod) that represent the

function compositions as in Eqs. 3.3 and 3.4 (see below); and ii) pairs of xsizek and stridek

fields, representing the xk range (in number of iterations) and stridek, respectively.

The encoded {xsizek,stridek} pairs have an implicit hierarchy where the rightmost pair has

the higher position. This forces a fixed order of pair iterations to generate the correct sequence of

memory addresses. Accordingly, each pair is fully iterated (once) for each instance of the pair in

the upper position of the hierarchy level. The descriptor solving is further detailed in the following

sections.

39

3. Data-Pattern Analysis and Stream Transformations

Figure 3.4: Context Descriptor specification.

3.1.2.B Affine Composition and Data-Dependency Encoding

Since each xk range and stridek can be delimited by the composition of multiple affine func-

tions (see Eq. 3.3), the Access Descriptor provides an optional modifier chain, composed of

multiple descriptors, in which the header indicates the target field (targetmod) to be modified (see

Fig. 3.4). The modifier chain applies a field modifier descriptor to the target field every time the

corresponding pair is completely iterated. As an added functionality, if multiple modifier descrip-

tors target the field, they are applied in sequence, after each modifier descriptor is completely

iterated. Accordingly, the Access Descriptor is only completely iterated after each modifier de-

scriptor completes its own iteration.

Similarly, data dependencies (as represented by Eq. 3.4) between Access Descriptors can

also be encoded with the modifier chain. This is done by creating a producer-consumer-like

relation between Access Descriptors within a context, where the data obtained with the address

sequence generated by a descriptor is used as a parameter in another descriptor.

Accordingly the modifier chain provides an alternative indirection descriptor (encoded in the

consumer descriptor), composed of pairs of target fields (targetn) and descriptor identifications

(a idn) (see Fig. 3.4). Hence, the indirection descriptor applies the encoded data dependencies

similarly to a field modifier descriptor, where the actual data from the stream generated by a a idn

descriptor is used to modify the targetn field in the Access Descriptor.

3.1.2.C Descriptor Encoding and Resolving Examples

The following paragraphs detail two memory access pattern examples, illustrating the utiliza-

tion of the Access Descriptor modifier chain for the encoding of deterministic patterns with higher

levels of complexity. A pattern with indirect memory accesses is also illustrated.

Fig. 3.5 depicts the resolving procedure for an Access Descriptor encoding a triangular N×N

matrix access pattern. The base descriptor (see Fig. 3.5.B) is composed of two {xsize, stride}

pairs, where the first ({1,1}) describes contiguous row accesses (initially with size 1) and the sec-

ond ({N,N}) applies a stride (N - matrix width) to skip to the next row (N times). The descriptor is

40

3.1 Modeling of Complex Data-Patterns

also encoded with a modifier chain comprising a single field modifier descriptor - [xsize0]:{N,1}.

It works by adding its own stride value to the xsize field of the first pair in the base descriptor

each time it is completely iterated (see Fig. 3.5.C). As a result, each time the base descriptor

iterates to a new row, the number of contiguous accesses is increased by 1, hence producing a

triangular scan pattern (see Fig. 3.5.C - right).

In Fig. 3.6 it is depicted the resolving procedure for a set of Access Descriptors encoding a

simple indirect memory access pattern, where the data obtained by accessing an y array is used

to subsequently index an x array. Accordingly, the encoding is composed of two descriptors, both

composed of a single {xsize, stride} pair, to represent the accesses to the x and y arrays (see

Fig. 3.6.B). The accesses to y (a1 descriptor) are encoded by a single pair ({N,1}), that is used

to generate a contiguous sequence (stride=1) of N addresses. On the other hand, the accesses

to x (a2 descriptor) are encoded with a dummy pair ({-,1}) and a modifier chain comprising an

indirection descriptor - [data]:{xsize0,a1}. This indirection descriptor is used to represent a

data dependency between the xsize0 field of the a2 base descriptor and the data obtained from

the addresses generated by descriptor a1. As a result, each time data is obtained from array y

(through descriptor a1), the corresponding value is used by descriptor a2 as an offset to calculate

a single address, hence producing an irregular scan pattern of array x (see Fig. 3.6.B-right).

Figure 3.5: Access Descriptor encoding a triangular matrix access. Notice how the modifier chain

increases the number of accessed matrix columns after each full iteration of the first pair in the

base descriptor, while the second pair adds a stride value to a subsequent matrix row.

41

3. Data-Pattern Analysis and Stream Transformations

Figure 3.6: Access Descriptor encoding an indirect memory indexation. Notice how the data

obtained by solving the descriptor corresponding to array y is used as a parameter to calculate

the sequence of addresses of the descriptor corresponding to array x.

3.2 Compile-Time Stream Code Generation

Any stream-based communication scheme must rely on some kind of dedicated memory ac-

cess representation. However, the utilization of such a dedicated approach imposes limitations

to the applicability of data-streaming to general purpose contexts. This is mainly due to the fact

that each data stream must be manually coded through specific language interfaces [26, 34, 54],

resulting from the lack of compiler support to automatically encode data streams and embed them

in application code.

To tackle such a limitation, it is proposed the extension of conventional static analysis tools,

commonly deployed in compilers. In general, these tools are used to analyze the application code

and perform optimizations according to computational and memory access dependencies, with

the goal of promoting instruction- and data-level parallelism during the code’s execution. During

this optimization process, all the information regarding the application memory access pattern

(including indexing variable dependencies, data structure dimensionality, and memory address

calculation) is completely exposed to the compilation tool through a syntactic representation, usu-

ally named Abstract Syntax Tree (AST).

The AST of an application is typically generated by the compiler front-end. Initially, the code

is passed through a preprocessor, which expands all the language macros and performs lexical

analysis. Then, a parser breaks-up the code in its individual syntactic elements and generates the

corresponding AST (see Fig. 3.7). The compiler then uses this structure for multiple purposes,

42

3.2 Compile-Time Stream Code Generation

Figure 3.7: Example of an AST representation generated by the Clang front-end, from the LLVM

compiler [30].

such as creating symbol tables, performing type checking and generating machine code.

While most analysis and optimization procedures are performed in the mid and later stages

of the compilation chain, there is an opportunity to perform an earlier in-depth analysis of the

memory accesses through the AST. In particular, it is possible to extract them and perform their

encoding with the proposed representation. Moreover, since the AST is an exact representation

of the application source code, it is also possible to deploy code transformation mechanisms to

automatically inject data streaming directives.

3.2.1 Compiler Module Overview

To explore the described features of the AST representation, the proposed compilation tool

(depicted in Fig. 3.8) was built on the Clang LibTooling library [101], from the LLVM [30] frame-

work. This framework was selected not only because it has been increasingly adopted by the

scientific community, but also due to the available amount of open-source and community-based

compilation tools. In particular, the LibTooling library provides a C++ interface that provides full

control over the compiler’s front-end resources. Naturally, since the envisaged tool is proposed to

take action at the level of the compiler AST, it could equally be implemented in any compilation

toolchain that makes use of this type of representation.

Accordingly, the conceived compilation method operates in five consecutive phases: i) target

43

3. Data-Pattern Analysis and Stream Transformations

Figure 3.8: Overview of the compilation tool for data streaming methods, comprising code analysis

and transformation modules.

code region extraction; ii) code translation to AST; iii) AST static analysis and translation to an

intermediate memory access representation; iv) AST code transformation to data streaming; and

v) Context Descriptor generation and code injection. Fig. 3.9 depicts an example illustrating all

the code transformations and translations performed between representations.

In the first stage, the tool makes use of a code annotation scheme based on typical pragma

directives. Hence, by making use of the pragma handling routines from the LibTooling library, it

is possible to select any region-of-interest in the source code to be analyzed, by delimiting it with

the pragma directive (see Fig. 3.9.A):

#pragma stream-context (var:size[:size], ...)

With such an interface, the tool can be configured and made aware of the target array variables

(and their size, per dimension) for data stream description.

After being identified, the selected code is transformed into a Clang translation unit, which

is passed to the front-end tools to generate the corresponding AST (see Fig. 3.9.B bottom). At

this point, the compilation flow slightly diverges from the typical compiler, which would proceed to

generate LLVM Intermediate Representation (IR) code, followed by compiled machine code.

Although the proposed compilation tool could be implemented as an LLVM IR optimization

pass, the Clang AST provides a much more exposed representation of the loop context for a

given data access, and it is implemented by a n-ary tree data structure. This allows a straight-

forward code parsing and analysis with known tree scanning algorithms. Moreover, it allows the

implementation of simple application code manipulation procedures through tree node injection

before generating the IR code.

Hence, contrasting to LLVM, the tool generates its own internal memory access high-level

representation, through a dedicated Context Representation Language (CRL), further described

in Section 3.2.2 (see also Fig. 3.9.C). This representation is generated through a direct translation

of the region-of-interest source code, by parsing the Clang AST with a typical depth-first tree

analysis, which will be later used as a reference to encode the memory access pattern of each

access. Hence, the context of each access is translated to CRL by gathering all its information,

including all the dependencies for the address generation, such as nested loop context (providing

44

3.2 Compile-Time Stream Code Generation

Figure 3.9: Depiction of the several translations and code transformations performed by the pro-

posed compilation tool, for a code snippet of the trisolv benchmark, from the Polybench [99]

suite.

temporal information), indexing ranges and data dimensionality (for address calculation) and data-

dependent access hierarchies (for indirect memory access representation).

After parsing the initial AST, it is performed a transformation pass that modifies the AST

subtree of each extracted memory access into a data stream access (see Fig. 3.9.D and Sec-

tion 3.2.3). This is possible because the memory address sequence of each access will be

encoded and subsequently handled by on-chip stream generation modules, making the corre-

sponding application code redundant. Such a transformation results in an explicit detachment

of the memory addressing generation procedure from the computational operations in the appli-

cation source code and a consequent reduction in the number of instructions per loop. These

transformations are performed by creating an array with a stream reference per extracted ac-

cess, and by transforming the usual array n-dimensional indexation (idx) with a single access to

a stream reference (see Fig. 3.9.D), such as:

<array name>[idx0]..[idxN] → *stream <name>

The addressing sequence of each memory access in the generated CRL is then translated to

the proposed Context Descriptor specification and tagged with the stream address corresponding

to each memory access. This translation is performed by extracting the access pattern from the

CRL and by encoding the descriptor’s parameters that will allow the resolution of the address

sequence of each memory access (see Fig. 3.9.E).

Finally, the encoded Context Descriptors are embedded in the original code by injecting a set

of data structures and initialization directives. This solution allows information that can only be

45

3. Data-Pattern Analysis and Stream Transformations

obtained at runtime (such as the base address of the described array variables) to be sent to (or

captured by) dedicated on-chip data streaming modules (later discussed in Chapter 4). From this

point on, the control is returned to the LLVM compiler and the typical compilation flow is resumed.

3.2.2 Context Representation Language

One of the main features of the implemented static analysis tool is the developed Context

Representation Language (CRL), specifically designed to gather and represent the information

that is required to calculate the address sequence of a given memory access. The language is

built via a direct translation of the Clang AST (detailed below). It is composed of a basic instruction

set and three container structures: context, loop and access (see Fig. 3.10). Each container is

composed of a unique identification, a header with a set of configuration fields (specific to each

container type), and a body with a list of instructions. An example of a CRL representation is

depicted in Fig. 3.9.C.

3.2.2.A Context, Loop and Access Containers

The context container is the top level container of the CRL. It serves as the entry point for

the encoding and calls the top-level loop containers. Hence, a context container encapsulates

all the information concerning the indexing variables, base addresses, dimensionality and size of

the corresponding array variables within a nested loop. This information allows strides defined in

different dimensions to be inferred and multiplied by indexing variables, in order to calculate each

sequence address based on the model defined in Eqs. 3.3 and 3.4.

All the memory accesses to a given array variable (in the same context) are encapsulated in

Figure 3.10: Context Representation Language reference.

46

3.2 Compile-Time Stream Code Generation

an access container. Before each access is generated by a fetch instruction, it is preceded by a

set of arithmetic instructions that describe the operations required to calculate its address. Since

each memory access sequence is modeled through an affine function of the base address, index

and stride, each of these variables is individually expressed as a function of the current context

(see Fig. 3.9.C).

Accordingly, the access container configuration header gathers all the necessary information

about the considered array in three fields (see Fig. 3.10): i) a dimension vector (.dim), that stores

the size of each dimension of the array, either indicated by integer values or named constants; ii)

the size of the array data type (.type); and iii) the array base address (.base), indicated by an

address reference.

Finally, each loop in the represented region of code is encoded by a loop container (see

Fig. 3.10). The container body encapsulates call control instructions to the lower level loop and

access containers and any other necessary arithmetic instructions. In the particular case when

a field cannot be described by a single assignment instruction, additional instructions are added

to the upper-level container before the corresponding call. The container also provides a header

that stores the range of the loop iteration variable (typically used as an indexing variable for array

structures). It includes: i) the variable initialization (.init); ii) the iteration limit value (.limit);

and iii) the iteration step (.step). With such an encoding, the loop iteration variable is completely

embedded in the container. Thus, when using the variable in a subsequent instruction (e.g.,

for a memory address calculation), the corresponding operand is, itself, a reference to the loop

container (c<i>.l<j>).

3.2.2.B Instruction Set

To implement all the required calculations and control directives, the developed CRL provides

a simple instruction set, divided in three instruction types: arithmetic, assignment and control.

Depending on their type, these instructions support up to three operands, as depicted in Fig. 3.10,

where it is also shown a summary of the supported operands.

The considered set of arithmetic instructions provides a significant range of three-operand

integer operations. Each instruction is encoded in a oR = opCode oA,oB format, where oR is the

destination operand, oA and oB are the source operands and opCode is the arithmetic operation.

To facilitate the representation of the initialization, range/conditions and step parameters typ-

ically coded in loop headers, a set of assignment instructions were also included to enable a

composed configuration of container fields. As such, they are encoded with one or two source

operands and an optional operation code (representing an integer arithmetic operation or an in-

equality binary operator), in the format .field [opCode] oA[,oB], where .field is the container

field. The container fields also provide a convenient encoding for the initialization, condition, and

step of each iteration variable, supporting the assignment of literal values, variables, conditions,

47

3. Data-Pattern Analysis and Stream Transformations

and instructions, to each field.

Finally, the control flow between containers and memory access operations is encoded with

control instructions. The encoding is provided in the formats call <ref> and fetch %idx<n>,

respectively, where <ref> is either a loop container reference (c<i>.l<j>) or an access container

reference (c<i>.l<j>.a<k>), and %idx<n> is an index variable (see Fig. 3.10).

3.2.2.C Abstract Syntax Tree translation to Context Representation Language

The proposed compiler tool triggers the generation of a CRL representation upon the detection

of a #pragma stream-context macro in the source code. At this point, the list of target array

names, dimensionality, and sizes is extracted from the macro and stored (see Fig. 3.11.A). After

the front-end generates its AST representation, the proposed tool performs a depth-first scan of

the sub-tree corresponding to the annotated region of code to perform its translation to CRL. As

depicted in Fig. 3.11, CRL components are generated as they are read during the scan, starting

by the creation of a context container element to encapsulate the full representation.

When a for-loop statement is detected in the AST, a new loop container is created, and its

corresponding iteration variable name is stored. The container’s .init, .limit and .step header

fields are filled in by interpreting the three subsequent sub-trees, corresponding to the initial-

ization, stopping condition and increment expressions of the for-loop statement. Next, a call

control instruction to the new container is inserted in the upper-level container corresponding to

the context where the for-loop statement was detected (see the nested loop translation depicted

in Fig. 3.11.B). The control instruction is preceded by additional instructions that may be required

to represent the expressions assigned to the new container’s header fields.

Upon the detection of a targeted array name, a new access container is created and a cor-

responding call instruction inserted in the upper-level container. The new container’s .dim and

.size header fields are initialized with the information extracted from the initial pragma directive

and the .type field is assigned with the size (in bytes) corresponding to the array’s data type

(exposed in the AST node). Next, a set of instructions is inserted to encode the address genera-

tion for the array access. This is done by adding the stride of each array dimension (k) (implicitly

defined by stridek = dim1 × · · · × dimk−1, with stride1 = 1 and dimk the width of the array in

the corresponding dimension) to its assigned iteration value, represented by a loop container ref-

erence (see the accesses translation depicted in Fig. 3.11.B)). The generated set of instructions

is then followed by a fetch instruction to represent the actual memory access. Naturally, mul-

tiple accesses to the same array variable can be scattered across the selected region of code.

To simplify the translation, accesses that are performed (to one array variable) in the same loop

context are grouped in the same access container, while accesses in different contexts require

the generation of new containers.

The CRL translation stops when the sub-tree corresponding to the annotated region of code

48

3.2 Compile-Time Stream Code Generation

Figure 3.11: Example of an AST translation to CRL, for a code snippet of the trisolv benchmark,

from the Polybench [99] suite.

is completely scanned. At this point, the compiler tool proceeds to the generation of stream code,

through the translation of the CRL to the proposed descriptor specification.

3.2.3 Stream Code Generation

The proposed compilation tool leverages the information that was gathered in the CRL to

perform the final stream code generation step. It comprises: i) the translation of the CRL into the

devised descriptor specification; and ii) appropriate code transformations to inject the encoded

descriptors and eliminate redundant data indexation.

49

3. Data-Pattern Analysis and Stream Transformations

Figure 3.12: CRL to descriptor representation translation by considering two examples depicting:

a full matrix scan (A1, B1) and a triangular matrix scan (A2, B2). In the second example (A2, B2),

the dependency between the range of the inner loop and the iteration of the outer loop is encoded

with a modifier chain, for the xsize0 parameter of the Access Descriptor.

3.2.3.A Context Representation Language to Descriptor Representation Translation

The defined CRL encapsulates all the necessary information to generate the data stream

encoding with the proposed descriptor specification. Accordingly, each descriptor is encoded by

parsing the CRL representation and by considering each parameter required by the calculation of

each memory address, according to the functions defined in Eqs. 3.3 and 3.4 (see Fig. 3.12).

The translation procedure is conducted by tracing each access container in the CRL, cor-

responding to each data access extracted from the original code. The CRL is then parsed by

identifying each fetch instruction in the container and backtracking the instructions preceding it,

in order to build its corresponding descriptor.

Accordingly, when an access container is identified, it is created a new Access Descriptor and

50

3.2 Compile-Time Stream Code Generation

Figure 3.13: Indirection representation and descriptor encoding for a code snippet of the spmv

kernel, adapted from the HPCG [100] benchmark.

its header is initialized with the information stored in the container header (see Figs. 3.12.B1 and

B2). Next, whenever a fetch instruction is identified in the container, it is performed a simple de-

pendency analysis between the operands of each preceding instruction and the container headers

that comprise the data access context. Naturally, the dependency path between operands pro-

vides an implicit representation of the functions from Eqs. 3.3 and 3.4. Hence, each pair of the

Access Descriptor is encoded by extracting the parameters corresponding to each dimension

(see Fig. 3.12.B1). In particular, each xsize value is calculated according to the range of the

indexation variable (represented by a reference to a loop container) corresponding to the param-

eter’s dimension. On the other hand, stride values are calculated during the generation of the

CRL (as described in Section 3.2.2.C) and are simply copied to the corresponding parameter.

In the example from Fig. 3.12.B1 (representing a common 2D matrix scan), xsize0 and xsize1

parameters are simply generated by calculating the size (.limit - .init) of the ranges from c0.l1

and c0.l0, respectively. However, in the example from Fig. 3.12.B2 (representing a triangular

matrix scan), there is a dependency between the c0.l1 range .limit value and the c0.l0 range.

This is a result of the dependency between the indexation variables in the nested loop from the

original code (see Fig. 3.12.A2). Accordingly, since the .limit parameter of c0.l1 is defined by

the c0.l0 range, the xsize0 value is initialized to 1 (corresponding to the initial c0.l1 interval

size) and it is created a field modifier descriptor (targeting xsize0) with a pair encoding the range

of c0.l0 (see Fig. 3.12.B2).

In the presence of indirect memory accesses (e.g., A[B[i]], i ∈ {0, 1, ..., N}), the dependency

analysis performed on an access container (A), leads to another access container (B) (see

51

3. Data-Pattern Analysis and Stream Transformations

Fig. 3.13.B). In such cases, both containers are encoded with their corresponding Access De-

scriptors and an indirection descriptor is added to the modifier chain of descriptor A, indicating

the data-dependency between accesses (see Fig. 3.13.C).

3.2.3.B Automatic Code Transformation

With the implicit detachment of the memory addressing and the data access phases, array

indexing instructions in the original source code become redundant. Consequently, they can be

eliminated by transforming the former array data accesses to stream accesses. The proposed

code transformation pass performs this task in two steps. Initially, it injects a routine that provides

the source code for allocating an array of stream references, corresponding to each transformed

memory access. This provides a simple interface that reserves a unique pointer reference to each

stream access.

Next, the devised pass performs the transformation of each extracted data access from array

subscript indexation to stream access. Such a procedure relies on the fact that an access to an

n-dimensional array structure is represented in the Clang AST by a sub-tree, where the root node

represents the array subscript operator (i.e., [.]) for the array’s first dimension (see Fig. 3.14).

Accordingly, to transform each extracted data access to a data stream reference, it is only neces-

sary to replace the subscript sub-tree with a modified sub-tree representing a pointer expression,

as depicted in Fig. 3.14. To do so, the original AST is searched by tracing each data access

captured by the CRL and performing the corresponding in-situ transformation.

3.2.3.C Descriptor Code Injection

After encoding the targeted memory accesses with the devised descriptor specification, it is

necessary to provide appropriate mechanisms so that they can be uploaded to on-chip stream

controllers, at runtime. To account for this step, the proposed compilation tool deploys a set of up-

loading routines that were devised to support the most commonly available stream management

topologies. In particular, it considers topologies i) where there is a direct communication between

the processing cores and the stream controllers via memory-mapped interfaces (latter discussed

Figure 3.14: Illustration of the stream code transformation for an example code snippet, together

with the resulting generated code (compiled for the x86 instruction set).

52

3.3 Preliminary Experimental Evaluation

in Section 4.2); and ii) where there is a dedicated stream management mechanism, independent

from the processing infrastructure (latter discussed in Section 4.3).

When a direct communication between the system’s cores and the streaming infrastructure

is available (typically in core-coupled (distributed) stream controller topologies), it is possible to

upload the required descriptor code directly from a core to a stream controller (through a dedi-

cated or memory-mapped interface). Accordingly, the proposed compilation tool injects specific

code (in the application code) for data streaming configuration and initialization. To do so, the

generated descriptors are embedded in the original source code, encoded by a set of dedicated

data structures. It is also injected the required source code to initialize the encoded descriptors

with information that is only available at runtime (such as array base addresses and loop ranges).

Next, the proposed compilation tool injects a routine that transfers the initialized descriptors to the

stream controller, by placing a set of inline store instructions that send the descriptor data through

a dedicated/memory-mapped interface.

On the other hand, when the streaming infrastructure is managed by a dedicated mechanism

(typically used in centralized stream controller topologies, i.e., deployed close to the main mem-

ory), it is assumed that there is a runtime environment (and management hardware) that handles

the descriptor initialization and loading procedures (as in [26, 54]). In such cases, it is only nec-

essary to provide a mechanism that allows the descriptor code to be directly sent to the runtime

management modules. To do so, the compilation tool embeds the encoded descriptor code in the

final stages of the compilation flow, where it is placed in a dedicated code section (later linked

to the final compiled program). Such an approach allows the uploading of the descriptor code

into the stream management infrastructure, in parallel with the compiled application code to the

system’s processing cores.

3.3 Preliminary Experimental Evaluation

This section presents a preliminary evaluation of the devised memory access pattern descrip-

tor specification and the proposed compilation tool.

3.3.1 Methodology

The experimental evaluation is performed in two stages. Initially, it is demonstrated the data-

pattern encoding capabilities of the proposed descriptor specification. This was done by com-

paring its representation efficiency with existing data-pattern representations, deployed by the

HotStream framework [26] and by the Xilinx AXI DMA [102] controller (which exploits a repre-

sentation similar to that of the APMC [54]). To provide an initial assessment regarding encoding

efficiency, a set of synthetic micro-benchmarks was specifically developed to guarantee repre-

sentative data-pattern complexities found in different application domains. Hence, each micro-

53

3. Data-Pattern Analysis and Stream Transformations

benchmark isolates a different data pattern sample, allowing to eliminate the effects from code-

related overheads.

After this initial validation, the compilation tool was also evaluated by assessing its memory

access pattern extraction and code reduction capabilities. Contrarily to the previous evaluation,

in this case, full benchmark applications (and not data-pattern samples) were adopted to validate

the proposed tool regarding its capability to operate over real-world applications. This was done

by running the tool over a selection of applications from standard benchmark suites.

3.3.1.A Context Descriptor Configuration

For this specific evaluation, each parameter of the proposed descriptor specification was con-

figured by assuming a 32-bit physical addressing space, resulting in the following dimensions:

• Context Header :

– Header - acc: 8 bits, next: 16 bits;

– Descriptor References - a idacc: 16 bits.

• Access Descriptor :

– Header - stream: 32 bits, base: 32 bits, dim: 8 bits, mod: 8 bits;

– Pairs - xsizek: 32 bits, stridek: 32 bits.

• Field Modifier Descriptor :

– Header - target: 16 bits, dim: 8 bits;

– Pairs - xsizek: 32 bits, stridek: 32 bits.

• Indirection Descriptor :

– Header - data: 16 bits, dim: 8 bits;

– Pairs - targetn: 16 bits, a idn: 32 bits.

The considered state-of-art approaches were configured with similar parameter sizes to pro-

vide a fair comparison. In particular, while the AXI DMA [102] scatter-gather descriptor already

comprises 32-bit parameters, the Hotstream framework [26] instruction set was configured with

32-bit operands (instead of the default 16-bit configuration).

3.3.1.B Synthetic Data-Pattern Samples

To evaluate the data-pattern encoding efficiency of the proposed descriptor specification, a

set of synthetic memory access patterns was constructed. The goal is to provide a representative

subset of deterministic patterns that not only are commonly found in applications from several

domains, but that can also be hard to describe with a lower dimensionality representation, namely:

• Linear and Tiled patterns, which are commonly found in most array computations, such as

table/array-based algorithms or vector/matrix arithmetics;

• Diagonal patterns, which are characteristic to bioinformatics applications, for instance in

biological sequence alignment algorithms [28];

54

3.3 Preliminary Experimental Evaluation

Table 3.1: Considered standard benchmarks and kernels for the preliminary evaluation setup.

C-Polybench [99]

2mm Multiple Matrix Multiplications

cov Covariance Computation

mvt Matrix-Vector Product and Transpose

seidel 2D Seidel Stencil

syr2k Symmetric Rank-2k Update

trisolv Dense Triangular Solver

HPCG [100]

spmv(*) Sparse Matrix-Vector Multiplication

symgs(*)
Symmetric Gauss-Seidel

(Sparse Triangular Solvers)

Rodinia [105]
path PathFinder - 2D Shortest Path

srad(*) SRAD Diffusion Method

(*) Benchmarks characterized by indirect memory accesses.

• Zig-Zag and Greek Cross patterns, which are common to specific multimedia application

phases, such as entropy encoding [103] and motion estimation algorithms [104], respec-

tively.

These patterns were devised by also taking into account their support in the considered state-

of-the-art approaches. As such, despite being support by the proposed specification, indirect

memory access patterns were not considered in this set of synthetic samples (since the other

approaches do not support their representation). The considered patterns (and corresponding

datasets) are presented in the following pages and depicted in Fig. 3.15.

3.3.1.C Standard Benchmark Samples

The proposed compilation tool was evaluated with a set of memory access patterns sam-

pled from a selection of benchmarks from the C-Polybench [99] and Rodinia [105] suites and

kernels from the HPCG [100] benchmark (see in Table 3.1). All benchmarks were specifically

selected (and compiled for the Intel x86 Instruction Set Architecture (ISA) [106]) to provide a

representative set of memory access patterns and kernels present in current High-Performance

Computing (HPC) applications. They were categorized as follows:

• Polyhedral Loop Computation: Nested loop computations in the affine domain are all-

around. Their deterministic nature is particularly suited for memory access pattern descrip-

tion and data streaming. To represent this class of applications, a subset of kernels was

selected from the C-Polybench [99] suite, comprising different combinations of pattern com-

plexity, data reutilization, and dataset dimensionality;

• Sparse Linear Algebra: Sparse linear algebra is viewed as an important class of algo-

rithms present in most HPC applications. They are usually represented in Compressed

Sparse Row (CSR) format, requiring operations between sparse and dense arrays to be

implemented through memory access indirection (i.e., A[B[.]]). This class of applications

was considered by adapting the sparse matrix-vector multiplication kernel and the symmet-

55

3. Data-Pattern Analysis and Stream Transformations

ric Gauss-Seidel method (two consecutive sparse triangular solvers) from the HPCG [100]

benchmark;

• Scientific Benchmarks: Several scientific application domains are regarded as particularly

computationally demanding. To represent this class of applications, the SRAD diffusion

method (used in ultrasonic and radar imaging) and the PathFinder algorithm (used to find the

shortest path of a 2D grid) were selected from the Rodinia [105] suite. These benchmarks

were chosen by considering the data access indirection present in SRAD, and the large

data sets and high data reutilization that characterize PathFinder.

3.3.2 Data-Pattern Encoding Efficiency

The considered set of synthetic data-patterns was encoded with the proposed descriptor spec-

ification. By analyzing the encodings (see Fig. 3.15), it is possible to ascertain the capabilities

of the proposed specification to describe data-patterns based on array structures with different

dimensionality levels (see Fig. 3.15.A, B and E). For such patterns, it exploits their inherent hier-

archical regularity to describe them with a single descriptor (with a number of pairs adjusted to

the required dimensionality). Examples of such a characteristic are the Tiled and Greek Cross

patterns, where matrix- and cross-patterns of 2D tiles, respectively, are repeated across the de-

scribed memory region (see Fig. 3.15.B and E).

Such capabilities are highlighted in Table 3.2, which presents the required code size to rep-

resent the devised set of synthetic data-patterns and compares it with the considered state-of-

the-art approaches (with their corresponding description encoding). While the simpler Linear and

Tiled patterns are described with a code size similar to that of the AXI DMA [102] (APMC [54]),

the description code from the HotStream framework [26] requires about two times more memory

space. This results from an overhead imposed by initialization instructions that are required by

HotStream [26] to describe the data-patterns, which in turn are simply coded by tuples of param-

eters in the proposed specification and the AXI DMA [102] (or similarly in the APMC [54]). Fur-

thermore, despite its greater dimensionality, the Greek Cross pattern requires code sizes that are

4.23× and 3619× smaller than the HotStream [26] and AXI DMA [102]/APMC [54] approaches.

This is mainly due to the fact that the compared approaches are designed to efficiently describe

patterns with a dimensionality up to 3D (or tiled) [26, 54], and fall short in the presence of higher

dimensional patterns. In the particular case of HotStream [26], the description requires the addi-

tion of control instructions to repeat the cross-pattern in the represented memory region. On the

other hand, the AXI DMA [102] requires a large list of scatter-gather descriptors to represent the

multiple dimensions of the Greek Cross pattern.

The proposed specification also provides advantages when the described pattern is character-

ized by a higher complexity, as it can be ascertained by analyzing the encodings of the Diagonal

and Zig-Zag patterns (see Fig. 3.15.C and D). In particular, it makes use of the modifier chain to

56

3.3 Preliminary Experimental Evaluation

Table 3.2: Characterization of the considered synthetic kernels and the corresponding description

code size (in bytes) for the proposed specification and comparison with the considered state-of-

the-art representations.

Pattern Applications/ Pattern Length
Proposed Hotstream [26] AXI DMA [102]

Type Data Structures (# words) Size (bytes) Size (bytes) Size (bytes)

Linear Array, Table 1024 23 48 32
Tiled Arithmetic, Matrix 128×72∗ 47 80 32
Diagonal Bioinformatics [28] 1024×1024 84 88 65k
Zig-Zag Entropy Encoding [103] 8×8 125 132 480
Greek Cross Diamond Search [104] 1024×1024 63 264 228k

* Within a memory block of 512×512

Figure 3.15: Considered synthetic data-patterns (shown using two-dimensional memory regions

representations) and their corresponding descriptor encoding.

dynamically change the length of each diagonal scan in the described memory region. This ap-

proach is effectively similar to that of the HotStream [26] representation, where additional control

instructions are used to modify the same parameters. As a result, both approaches incur in similar

description code sizes, with the proposed specification requiring slightly less memory space (see

Table 3.2). On the other hand, the AXI DMA [102] requires a list with one descriptor per diagonal

to represent the Diagonal and Zig-Zag patterns. As a result of the application of the modifier

57

3. Data-Pattern Analysis and Stream Transformations

chain, the proposed specification requires 3.9× less memory space, when compared to the AXI

DMA [102] (APMC [54]).

3.3.3 Source Code Reduction Evaluation

The compilation tool was also evaluated in terms of code transformation and memory access

encoding efficiency (see Fig. 3.16), when considering a set of benchmarks from standard suites.

The observed results show a clear relation between i) the complexity of the address calculation

on memory accesses converted to stream references; ii) the size of the corresponding descriptor

representation; and iii) the consequent code reductions. This is particularly visible in the con-

sidered applications from the polyhedral domain, where such a relation is observed with a direct

proportionality between each of the named factors. Such a characteristic is a direct consequence

of the source code analysis that is performed by the proposed compilation tool, which follows the

typical for-loop organization for array indexation.

Accordingly, Fig. 3.16 shows that only 40% of the loads in the cov benchmark were targeted

to be converted to streams; however, since they are mostly matrix accesses, the extraction of

address calculation from the code results in more than 13% code size reduction. On the other

hand, the seidel benchmark is characterized by a reduced percentage of address calculation

instructions, resulting in only 5% code reduction. Moreover, the named differences in address

calculation complexity also result in a smaller descriptor size for the seidel benchmark, when

compared to cov.

As it can also be observed, benchmarks with indirect memory accesses (spmv, symgs and

srad) take the most advantage of the code transformations. The conversion of indirect memory

accesses (in the format A[B[.]]) to single pointer references (e.g., *stream) eliminates memory

accesses (from the code perspective), resulting in a significant amount of code reduction (up to

23%). Naturally, such a reduction imposes a larger descriptor size (see Fig. 3.16), due to the

necessary inter-stream dependency encoding. In the particular case of the srad kernel (with the

Figure 3.16: Context descriptor size, percentage of streamed accesses and resulting code reduc-

tion.

58

3.3 Preliminary Experimental Evaluation

highest descriptor size), despite a conversion of 90% of the loads to data streams, there is a

lower impact in the reduction of code size. This is mainly due to the fact that the srad kernel is

highly compute-bound and most of the code performs complex computing operations, rather than

memory indexing and load operations.

3.3.4 Discussion

The devised preliminary evaluation showed that the proposed memory access pattern descrip-

tion specification takes a step further from existing data-pattern representations for stream-based

systems. It provides the necessary mechanisms to encode patterns with high dimensionality and

complexity. It does so while leading to an overall reduction of the required amount of memory for

storing the data access pattern when compared with the other state-of-art approaches. Moreover,

as a result of its underlying mathematical model, it is capable of chaining multiple memory access

descriptors to represent indirect memory access patterns, hence providing an hardly available

support for a significant set of irregular memory access patterns.

Despite the wide range of proposed functionalities that were previously not supported by con-

ventional stream representations, there are still several types of memory access patterns that

were not considered. In particular, pointer-based and other similar accesses could also take ad-

vantage of the indirection encoding capabilities of the proposed specification. In fact, as long as

a data pattern is implemented by an identifiable memory access structure (such as the indirect

A[B[.]] format, even if the actual address sequence is data-dependent and can only be entirely

generated at runtime (i.e., an irregular pattern), it could potential be supported by the proposed

specification (with proper extensions). Similarly, specific extensions could also be considered to

support the conditional generation of portions of memory access patterns, particularly useful to

encode graph-based (or similar) applications.

The performed evaluation also showed the capabilities of the proposed compilation tool to au-

tomatically extract and encode memory access patterns for generic stream-based systems. The

observed results not only showed its viability to be integrated into state-of-the-art compilers but

also highlighted its capabilities to generate and optimize data-streaming code from conventional

application code.

The proposed code transformation mechanism acts over the compiler’s AST to extract, encode

and convert the memory accesses to data streams. With the proposed approach, the source

code is completely modified at the compiler’s front-end. As such, the resulting pointer (stream)

references are interpreted throughout the compilation chain as common load instructions, while

the encoded descriptor code is viewed as conventional data structures. This enables a natural

compatibility with any existing coding directives that can be interpreted by the remaining phases

of the compiler chain.

However, it is still possible to take a step further to take advantage of the set of optimizations

59

3. Data-Pattern Analysis and Stream Transformations

performed by the compiler in subsequent phases. Accordingly, future implementations of the com-

pilation tool may consider moving the proposed memory access pattern analysis to the compiler’s

optimization phases over its intermediate representation (e.g., LLVM IR). Such an approach would

allow the combination of the proposed data stream generation and code transformation mecha-

nisms with other optimization phases, such as vectorization or automatic parallelization passes,

in turn enabling possible gains during the execution in a wide range of processing architectures.

3.4 Summary

This chapter presented the proposed compile-time analysis and code transformation methods,

aimed at providing support to stream-based communication infrastructures and techniques. The

devised stream code generation tools rely on a new memory access pattern description spec-

ification, capable of efficiently representing deterministic data access sequences, with arbitrary

complexity. Its underlying affine mathematical model also allows other alternative representations,

where multiple data access patterns can be chained to represent indirect memory accesses.

The proposed access description specification is exploited by a static analysis tool to extract

and encode memory access patterns in pre-annotated regions of application source code. To do

so, the tool leverages a specially devised internal representation, that gathers all the information

regarding the calculation of each memory access, to generate the corresponding data streaming

descriptors. Finally, a code transformation pass modifies all the encoded accesses to stream

references, thus eliminating redundant data indexation code and reducing the number of compiled

instructions.

Finally, a preliminary assessment was performed to validate the proposed methods. The pro-

posed descriptor specification showed to be capable of efficiently encoding memory access pat-

terns with different complexities, while requiring reduced description code sizes, when compared

to other state-of-the-art stream representations. On the other hand, the proposed compilation tool

was validated with a set of standard benchmark applications, where it showed effective to exploit

the developed automatic memory access pattern extraction and code reduction capabilities.

60

4
Data Stream Communication

Contents

4.1 Data Stream Generation . 63

4.1.1 Data Stream Controller Architecture . 63

4.1.2 Streaming Infrastructure Interface and Programming 67

4.2 Data Stream Prefetching . 67

4.2.1 Case Study A: Stream Prefetching on GPGPUs 68

4.2.2 Case Study B: Data Streaming on Modern General-Purpose CPUs 75

4.2.3 Discussion . 83

4.3 In-Cache Stream Communication Paradigm . 84

4.3.1 In-Cache Stream Controller . 85

4.3.2 Communication Infrastructure and Protocol 89

4.3.3 Memory-Aware Data Stream Generation 91

4.4 In-Cache Streaming Evaluation . 93

4.4.1 Methodology . 94

4.4.2 Hardware Resources Overhead . 96

4.4.3 Stream Generation Efficiency and Main Memory Throughput 98

4.4.4 Prototype Evaluation . 99

4.5 Summary . 103

61

4. Data Stream Communication

The data stream communication mechanisms proposed in this thesis were envisaged as an

alternative to the sole utilization of conventional cache hierarchies and predictive data prefetch-

ing approaches in general-purpose computing systems. The key idea is to allow the system’s

processing cores and shared interconnections to view the application dataset as temporally struc-

tured sequences of data blocks (data streams). It achieves this goal by detaching data access

sequences from the physical memory address where they are stored, and by using the memory

access pattern descriptor specification proposed in Chapter 3. This allows the required data to

be organized and transferred to/from the main memory without relying on conventional address

correlation premises, such as those that are on the basis of caches and prefetchers. With such

an approach, it is not only possible to mitigate memory access latency issues resulting from poor

data-locality, but it also eliminates delays caused by prefetching prediction inaccuracies and mon-

itoring overheads.

Furthermore, since data is streamed to the processing cores in the exact sequence in which

it needs to be processed, several advantages can be exploited across the memory access sub-

system. In particular, shared interconnections and intermediate data buffering mechanisms can

rely on modules with lower hardware complexity. This is possible because data is organized in an

implicit temporal structure that does not require the explicit storage and post-indexation provided

by cache memories. Moreover, after being generated, a data stream only needs to be conducted

from one system component to another in a point-to-point data transfer scheme, instead of the

request-based paradigms of conventional cache hierarchies. Furthermore, alternative data trans-

fer mechanisms (such as data broadcasting) can also be used to mitigate the contention issues

that occur in shared communication infrastructures of systems with large numbers of processing

cores.

Accordingly, this chapter presents and evaluates a newly proposed data stream communica-

tion paradigm for general-purpose computing systems that is supported by the compilation tool

proposed in Chapter 3. The designed communication infrastructures were deployed in comput-

ing systems i) with conventional cache hierarchies where stream generation modules are placed

close to the processing cores (as stream prefetchers); and ii) with dedicated communication in-

frastructures where stream generation modules are placed closer to the system’s main memory.

Hence, the devised data streaming mechanisms comprise:

• A dedicated Data Stream Controller (DSC) designed to index memory access patterns

described by the descriptor specification proposed in Chapter 3;

• Data stream prefetching mechanisms that deploy the DSC close to the processing cores

of conventional Graphics Processing Unit (GPU) and General Purpose Processor (GPP)

systems, as an alternative to the utilization of predictive prefetching schemes;

• An In-Cache Stream (ICS) paradigm that not only deploys the DSC close to the main

memory, but it simultaneously exploits a conventional cache-coherent memory hierarchy

62

4.1 Data Stream Generation

to implement the data streaming communication schemes, by allowing the data transfer

infrastructure to cooperatively exploit both memory-address-based and stream-based com-

munication paradigms.

The proposed stream prefetching mechanisms were thoroughly evaluated by simulating the

corresponding infrastructure in GPU and Central Processing Unit (CPU) architectures. To do

so, two different case studies were devised to provide a comprehensive validation of the pro-

posed mechanisms in real processing systems and their comparison to state-of-the-art prefetch-

ing solutions. On the other hand, the proposed ICS paradigm was implemented in a many-core

accelerator, prototyped in a Field-Programmable Gate Array (FPGA) device. The implemented in-

frastructure and its components were thoroughly evaluated and compared to other state-of-the-art

solutions.

4.1 Data Stream Generation

The central components of any data streaming infrastructure are the stream generation units.

Accordingly, a dedicated DSC was designed to index memory access patterns encoded with the

descriptor specification proposed in Chapter 3. It implements an efficient descriptor decoding

architecture that can deploy a single-cycle per address generation throughput, with minimal hard-

ware resource requirements. Its architecture was devised to be as independent as possible from

the topology of the underlying data streaming infrastructures. Accordingly, its deployment is en-

visaged both as a stream prefetcher (when paired with a processing core or a cache memory) or

as a dedicated stream generation controller (when deployed close to the main memory).

4.1.1 Data Stream Controller Architecture

The proposed DSC’s components (depicted in Fig. 4.1) work together to automatically perform

data fetching and stream generation. Its architecture was specifically designed to resolve memory

access patterns encoded with the Context Descriptor representation provided by the proposed

specification. This is done according to the resolving procedure described in Section 3.1.2. To

do so, the architecture is divided into three main sub-modules, namely: i) a Context Controller,

responsible for managing the descriptor resolving procedure according to the sequence encoded

in each Context Header ; ii) an Address Generation Unit (AGU), responsible for generating the

sequence of memory addresses encoded by an Access Descriptor ; and iii) a Modifier Chain Unit

(MCU), responsible for modifying a descriptor according to its modifier chain (if available). The

descriptor representation to be resolved is maintained in a scratchpad Descriptor Memory (see

Fig. 4.1.A). This memory module is accessed by the Context Controller (to obtain the descriptors

to be resolved) and is loaded through a dedicated communication interface, according to the

adopted topology of the underlying data streaming infrastructure.

63

4. Data Stream Communication

Figure 4.1: Data Stream Controller architecture.

To correctly manage the resolving procedure, the Context Controller maintains the iteration

state of the complete descriptor representation in a dedicated Descriptor Table (see Fig. 4.1.A)

and loads each Access Descriptor, and corresponding modifier chains, to the AGU and MCU

modules through dedicated register banks. As it is also depicted in Fig. 4.1.A, the three functional

units are complemented with several Stream Buffers and data communication interfaces that not

only allow the DSC to be configured, but also facilitate the acquisition of data blocks (according

to the calculated sequence of memory addresses) and their organization and communication in

data streams.

4.1.1.A Descriptor Resolving Architecture

As described in Chapter 3, the proposed descriptor specification is composed of Access and

Field Modifier Descriptors that can have a variable dimensionality. Despite the complexity of the

proposed representation, that could lead to costly hardware structures to implement the resolving

procedure, the devised architecture footprint was kept as low as possible. As such, it is solely

based on three adders and a set of control and status registers (see Fig. 4.1.A), that are used to

store a single descriptor’s parameters and its current iteration state.

Accordingly, both the AGU and MCU functional units rely on a similar resolving architecture

that comprises three parallel functional blocks (see Figs. 4.1.B and C), each composed of an

adder and a set of registers. They are responsible for iterating each {xsizek,stridek} pair and

for applying the result to the descriptor base address or a target modifying field (refer to the

resolving procedure described in Chapter 3).

64

4.1 Data Stream Generation

Specifically, each functional unit is composed of a stride control block that is used to succes-

sively accumulate the stridek fields of each pair of the descriptor, in a strideacc value. On the

other hand, a range control block is used to count the number of iterations of each pair (iterk),

according to the range size defined by the corresponding xsizek field. While both these blocks

are common to the AGU and MCU, the remaining functional blocks are specific to each of the

modules.

Accordingly, the AGU is also composed of an address control block (see Fig. 4.1.B). It is

responsible for successively adding the accumulated strideacc value to the Access Descriptor

base address, and to produce the final sequence of memory addresses corresponding to the

encoded data stream.

Similarly, the MCU functional unit (see Fig. 4.1.C) is composed of two additional functional

blocks. A field control block is responsible for selecting a field from the current Access Descrip-

tor according to the target indicated in a Field Modifier Descriptor. The selected field is sent to

a modifier control block, which performs the required modification operation by adding it to the

accumulated mstrideacc value (generated by the stride control and range control blocks). Addi-

tionally, in the presence of an Indirection Descriptor, the field control block notifies the Context

Controller of a data-dependency between two Access Descriptors (indirect memory access). It

does so by sending the corresponding target field and descriptor identification that represent the

dependency.

Finally, the AGU and MCU functional units are paired with dedicated register banks (see

Fig. 4.1.A), programmable by the Context Controller. They are used to maintain the field

values and the iteration state of the descriptor being solved, by storing the corresponding

{xsizek,stridek} tuples, the accumulated strideacc values and the iterk iteration values of

each pair.

4.1.1.B Stream Generation Management and Communication

The DSC’s stream generation procedure is managed by the Context Controller unit (repre-

sented in Fig. 4.1.A). This central module starts working upon the loading of a descriptor rep-

resentation to the Descriptor Memory. This is done through a dedicated stream interface (see

Fig. 4.1.A), that can either be directly commanded by the processing core (e.g., via a memory-

mapped interface) or managed by the streaming infrastructure (through a runtime environment

and management hardware).

During its operation, the Context Controller makes use of a simple parameter matching archi-

tecture that extracts descriptor references from a Context Header and obtains the corresponding

Access Descriptors from the Descriptor Memory. It also relies on the dedicated Descriptor Table

to assign the resolving descriptors to the AGU and MCU modules in the correct order (indicated

in the Context Header), and save their overall iteration state. Naturally, the parameter matching

65

4. Data Stream Communication

procedure of the Context Controller imposes an initial overhead to the whole descriptor resolving

procedure. This a result of the necessary parsing of the first Context Header, which in turn encap-

sulates the first Descriptor of the encoded representation. However, this initialization overhead

is kept low, requiring only 4 clock cycles (one per step), namely: 1. read the first Context Header

from the Descriptor Memory ; 2. parse the Context Header ’s first Access Descriptor reference; 3.

read the corresponding Access Descriptor from the Descriptor Memory ; and 4. parse and load

the Access Descriptor to the Descriptor Table and the AGU. After these initial clock cycles the

remaining descriptor resolving procedure and Context Header parsing are performed completely

in parallel (as described above), attaining a throughput of one address per cycle.

During the AGU and MCU descriptor resolving procedure, each generated address is initially

loaded in a convenient set of Stream Buffers (see Fig. 4.1.A), each assigned to a stream ref-

erence (encoded in the Access Descriptor). Such a structure allows the DSC to keep track of

the sequence of outstanding memory access requests for the data stream being generated. Ac-

cordingly, as soon as the corresponding data is fetched from memory, the generated address

entries are filled and the stream is transferred to the communication infrastructure. This is either

done as soon as the data is acquired (in a centralized streaming topology) or upon request (in a

core-coupled topology).

Additionally, in the presence of data dependencies between streams (in the case of indirect

memory accesses), the data stored in the Stream Buffers is used by the AGU to iterate the depen-

dent Access Descriptor (refer to the resolving procedure in Section 3.1.2). The data dependence

path is set by the Context Controller, according to the information provided by the dependent

Access Descriptor modifier chain.

When the AGU generates a new address, it is passed through a specially devised Request

Filter module (see Fig. 4.1.A). Its purpose lies with the fact that the size of the data blocks that

are requested by a processing core is typically smaller than the data blocks that are transferred

in the memory subsystem. As an example, while the size a common integer value (as viewed

by the core) is usually 4 or 8 bytes, the size of a cache line is commonly in the order of tens of

bytes [106]. Similarly, the data size of each block in a data stream can be smaller than the size

of blocks that are transmitted in the underlying streaming infrastructure. Accordingly, the Request

Filter module maintains the last data block that was previously fetched for each stream (in a set of

registers). Hence, each generated address is served with data from the fetched block, by filling the

corresponding entry in the Stream Buffers. When a newly generated address crosses the address

range of the available data block, the Request Filter autonomously issues a new memory access

for a new data block. The issued requests are inserted in a Request Queue, also implemented

by a buffer structure, and later sent to the lower memory hierarchy (through the Memory Interface

depicted in Fig. 4.1.A).

66

4.2 Data Stream Prefetching

4.1.2 Streaming Infrastructure Interface and Programming

The compilation tool presented in Chapter 3 provides support for the deployment of data

streaming infrastructures with different characteristics. As such, the proposed DSC provides a

generic Stream Interface (see Fig. 4.1.A), allowing it to be deployed with different interfacing

schemes, such as:

• A memory-mapped interface that can be used in cases where the DSC is directly con-

trolled by the system’s processing cores. In this case, the Stream Interface provides a

memory-mapped connection to the core that uses it to send descriptor data and initiate

the stream generation procedure, through a set of inline store instructions (injected by the

compilation tool);

• A controller interface that can be used in cases where the DSC is controlled by the sys-

tem’s runtime environment and management hardware. In this case, the Stream Interface

is connected to the data streaming infrastructure and simply receives and stores descriptor

data sent by the system’s management facilities, as specified by the compilation tool.

With the considered interfacing schemes and the provided compiler support for data stream-

ing, the DSC can be deployed in a wide range of computing systems (from dedicated accelerators

to general-purpose systems). Accordingly, the remaining sections of this chapter will describe its

deployment as i) a stream prefetcher, in computing systems with GPUs and GPPs; and ii) as a

stream management controller, in a dedicated accelerator.

4.2 Data Stream Prefetching

As it was described in the previous chapters, the current prefetching technology is reaching a

throughput limit caused by unavoidable memory access monitoring delays and prediction inaccu-

racies. Such limitations not only degrade the performance of the whole processing system but can

also cause higher energy consumptions associated with an inefficient memory access procedure.

Accordingly, the proposed DSC offers an opportunity to deploy alternative compiler-assisted

prefetching mechanisms that are not bound by monitoring and prediction overheads. Naturally,

this is done by relying on the memory access pattern extraction and encoding mechanisms pro-

vided by the proposed compilation tool, to eliminate data fetching inaccuracies and to acquire

the exact sequence of data required by the system’s processing cores. Consequently, the au-

tonomous stream generation procedure deployed by the proposed DSC eliminates the need for

costly memory access monitoring and prediction algorithms. As such, the combination of these

advantages can be exploited to take a step further from the utilization of predictive prefetchers

and offer new levels of performance and energy efficiency.

To validate this hypothesis, GPU and GPP stream prefetching mechanisms are herein pro-

posed that exploit the DSC with different integration levels, namely:

67

4. Data Stream Communication

• In a general-purpose GPU architecture, to reduce the high contention of its massively-

parallel communication infrastructure. The devised mechanism exploits the DSC to deploy

stream prefetchers that automatically feed the data to the L1 caches of each Streaming

Multiprocessor (SM). This is done according to memory access sequences encoded with

the proposed descriptor specification.

• In a general-purpose x86-based processor, as an alternative to pure prefetching mech-

anisms. The DSC is deployed as an autonomous data fetching controller that works inde-

pendently of the L1 cache and feeds data directly to the core (upon request). The provided

autonomous data acquisition procedure is also combined with the stream code transforma-

tions provided by the proposed compilation tool to account for the throughput saturation that

has been achieved by pure prefetching approaches.

The proposed implementations are described and evaluated in the following paragraphs

through two individual case studies.

4.2.1 Case Study A: Stream Prefetching on GPGPUs

The designed GPU stream prefetching mechanism relies on the integration of the proposed

DSC in the memory interface of the NVIDIA FermiTM GPU (GTX480) architecture [107], imple-

mented on the GPGPU-Sim simulator [108]. Although this architecture was selected due to its

support by the GPGPU-Sim [108] simulator, the proposed mechanism is architecture-independent

and can be straightforwardly implemented in recent NVIDIA architectures [109]. This is mainly due

to the fact that none of the features that have been introduced in recent NVIDIA GPUs [109] affect

or compromise the proposed integration in their memory hierarchy.

The implemented prefetching mechanism makes use of the data fetch handling resources from

the L1 data cache of each SM, by independently prefetching the required data for each issued

Cooperative Thread Array (CTA) (as known as CUDA block). It also transparently intercepts the

cache miss memory requests, serving them either with buffered prefetched data or merging them

with outstanding prefetch requests. Such an approach allows the straightforward deployment

of an autonomous prefetching scheme that does not rely on complex monitoring and feedback-

based control substructures, in turn eliminating detection overheads and reducing the amount of

contention and the pressure over the memory subsystem.

4.2.1.A GPGPU Architecture and Memory Subsystem

The rather consolidated massively parallel computing structure of current GPUs (depicted

in Fig 4.2) is based on a Single-Instruction Multiple-Thread (SIMT) execution model, where a

massive amount of threads is launched at each SM, in groups of CTAs. The threads of each

CTA are then executed in fixed-sized batches (named warps), in which all threads simultaneously

execute the same instruction. To deal with the long memory access (and inherent execution)

68

4.2 Data Stream Prefetching

latencies, warps are switched and enqueued while data dependencies and outstanding memory

requests are resolved. This is accomplished by increasing the amount of on-the-fly parallelism, to

hide the instruction execution latency behind the computation of other threads.

However, the SIMT execution paradigm can only partially mitigate the resulting pressure in

the main memory subsystem. Due to the long access times of the global memory, the SIMT

architecture and the warp switching mechanisms, by themselves, can hardly mitigate the imposed

overheads. In the particular case of the NVIDIA FermiTM architecture [107], each SM integrates

a set of L1 CTA-private caches (constant, texture and data) and a local shared memory used for

inter-CTA communication. Due to the high volume of simultaneous requests, cache misses are

registered in dedicated Miss Status Hold Registers (MSHRs) and scheduled to the subsequent

memory level [107]. Furthermore, to efficiently manage the available memory bandwidth, requests

to contiguous memory positions are grouped in a special coalescing unit before they are sent to

the L1 caches [107].

Furthermore, due to a large amount of concurrently executing threads, the commonly adopted

CPU-like cache structures are not well-suited to address the complexity and demand of the mem-

ory access patterns of some High-Performance Computing (HPC) kernels. In fact, the presence

of such structures can even lead to an increased contention to move data from the main mem-

ory to caches, often degrading (instead of improving) the resulting performance. Moreover, given

the number of simultaneous requests for distinct memory regions, data locality is often poorly

exploited, resulting in low cache hit rates and increased access latencies. This is supported by

Figure 4.2: GPU architecture and memory hierarchy overview.

69

4. Data Stream Communication

Figure 4.3: Application profiles (cache miss rate, computational intensity, normalized IPC and per-

centage of issued load instructions) for subsets of the Rodinia [105] and Polybench [99] bench-

mark suites.

the observed L1 cache miss rates (up to 94%), and by its impact on the system’s performance

(shown in Fig. 4.3 for representative subsets of the Rodinia [105] and Polybench [99] benchmark

suites).

Besides the thread management, scheduling and profiling techniques [110, 111], only the

adoption of prefetching techniques has proven to successfully deal with such drawbacks [16,

112–114]. In particular, the straightforward introduction of prefetching mechanisms to execute

memory-bound applications (with lower computational intensity - see Fig. 4.3.2) inherently allows

remarkable improvements of the performance and cache efficiency. However, cache inefficiencies

resulting from complex memory access patterns (namely, poor spatial and temporal locality) have

only been significantly mitigated with aggressive predictive techniques and software-aided control,

monitoring and feedback mechanisms to manage the prefetching procedure [16, 112, 113].

Alternatively, the proposed stream prefetching mechanism aims at mitigating the data-locality

and contention issues present in the GPU memory access subsystem, without requiring costly

prediction overheads and prefetching inaccuracies. It does so by encoding the memory access

pattern of a given kernel (with the proposed specification), and by automatically obtaining the

required data (with the proposed DSC) without interfering with the remaining memory hierar-

chy. Such an approach eliminates prefetching prediction inaccuracies and monitoring delays, and

avoids the deployment of complex decision control structures.

4.2.1.B Implementation Considerations

To deploy the proposed specification in a GPU prefetching mechanism, several approaches

can be considered regarding its granularity and the context level at which it is applied. In fact, it

70

4.2 Data Stream Prefetching

Figure 4.4: Integration of the stream prefetching mechanism in the SM’s L1 memory sub-hierarchy

and prefetecher architecture.

is common to exploit prefetching techniques at a thread-level granularity [16], which in practice

incurs in a warp-level prefetching, since all threads of a given warp simultaneous perform the

memory accesses. However, although such a fine-grained prefetching allows data to be fetched

in the same order in which warps are scheduled, it also requires active complex control and

monitoring infrastructures (including modifications to the scheduler itself [112, 113]).

On the other hand, if a more coarse-grained approach is considered, other transparent and

fully autonomous prefetching mechanisms can be explored. Accordingly, a CTA-level prefetching

granularity is adopted, targeting the deployment of a low-profile and transparent data fetching

scheme. Hence, all memory access descriptors are encoded with a CTA-level granularity, with

the valid assumption that their corresponding warps are initially scheduled in order and switched

in a round-robin fashion [108, 115]. Hence, data can be made available as quickly as possible by

designing the prefetching mechanism in such a way that it fetches and buffers data as soon as a

CTA is launched.

4.2.1.C DSC Integration in the GPU Architecture

The devised stream prefetching mechanism was implemented and integrated in parallel with

the existing L1 data caches (see Fig. 4.4). The prefetcher is responsible for issuing prefetch re-

quests, encoded with the proposed descriptor specification. It also intercepts and merges cache

miss requests with prefetch requests and serves them with prefetched data. Its architecture com-

prehends: i) a dedicated controller module, responsible for accepting incoming descriptors and for

initializing them with CTA configuration parameters, as well as managing the prefetcher operation;

ii) the proposed DSC, to solve the descriptor specification and to generate its corresponding mem-

ory access sequence; and iii) a prefetch request coalescing unit, entirely similar to the original one

that is adopted in the SM’s caches.

When a CTA is issued on a SM by the GPU’s workload distribution engine (the GigaThread

Engine, in NVIDIA GPUs [107]), its descriptor code is separated from the kernel code and sent to

the stream prefetcher controller, together with the configuration parameters of the CTA (depicted

71

4. Data Stream Communication

in Fig. 4.4). Upon their reception, the controller initializes the descriptors with the parameter

values and stores them in a dedicated scratchpad memory.

According to the GPU’s SIMT execution model, the data that is processed by each thread

in a CTA can be indexed by using predefined system variables containing the corresponding

thread and CTA identifiers. Hence, although the assigned kernel code is the same, each CTA

initializes the values of such variables with its runtime identification parameters, thus defining the

memory regions that each thread will access. By following the same principle, the fields of the

descriptor specification can be initially encoded by taking advantage of the same CTA identification

parameters, since the memory access pattern of a given kernel is essentially the same for all of

its CTAs.

In turn, the stream prefetcher is itself integrated with the conventional GPU cache hierarchy.

Hence, the generated memory address requests are coalesced by a dedicated prefetch coa-

lescing unit and sent to the global memory. Moreover, the stream requests issued to the global

memory bypass the L2 cache banks, to avoid the introduction of more contention and to not inter-

fere with the coherency policy of the shared cached data. Upon reception of the requested data

streams, they are stored in the DSC’s Stream Buffers (separately depicted in Fig. 4.4), which work

in parallel with the L1 data cache. Their utilization allows the storage of prefetched data obtained

before it is needed by the processing infrastructure. As a result, it avoids filling up the cache

memory with prefetched data, which could otherwise incur in premature cache line eviction, and

ultimately degrade the overall performance.

Accordingly, the requests to identical memory regions issued either by the stream prefetcher or

by miss requests from the L1 cache, are merged and registered in the MSHR. This way, requests

issued by the cache can be checked, by the stream prefetcher, against the data already stored in

the Stream Buffers. In case the required data is present, it is immediately copied to the L1 cache

and sent to the SM. Otherwise, the miss request is either merged to an outstanding prefetch

request in the MSHR or directly registered and sent to the L2 cache.

4.2.1.D Methodology

As was previously stated, the devised GPU stream prefetching mechanism was integrated in

the NVIDIA FermiTM GPU (GTX480) architecture [107], allowing to compare to the conventional

baseline model implemented in GPGPU-Sim [108] (version 3.2.2). The adopted simulator con-

figuration is detailed in Table 4.2, together with the considered subsets of the Rodinia [105] and

Polybench [99] benchmark suites. Power consumption was estimated with the GPUWattch [116]

tool. All the benchmarks were fully simulated for the baseline and stream prefetching architec-

tures. The obtained results are shown in Fig. 4.5, with the considered benchmarks ordered by

computational intensity (see Section 4.2.1.A).

72

4.2 Data Stream Prefetching

Table 4.1: GPGPU-Sim configuration for a NVIDIA FermiTM architecture model; adopted Ro-

dinia [105] and Polybench [99] benchmark applications and datasets.

SIMT core
16 cores, SIMT width=32,

5-Stage Pipeline, 1.4GHz

Core 48KB scratchpad, 32768 registers,

Resources 32 MSHRs, 1536 threads, 48 warps

L1 Cache
32KB/core, 4-way, 128B line,

coalescing enabled

L2 Cache
8 banks, 128KB/bank,

16-way, 128B line

Scheduling LRR warp scheduling,

Policy round-robin CTA scheduling

DRAM Model
FR-FCFS Scheduling, 924 MHz,

6 GDDR5 MCs, BW=8Bytes/Cycle

GDDR5 tCL=12 ns, tRP =12 ns, trC=40 ns,

Timing tRAS=28 ns, tRCD=12 ns, tRRD=6 ns

APPLICATION BENCHMARK SUITE INPUT SIZE

lud cuda Rodinia [105] 256

dwt2d Rodinia [105] 1024*1024

backprop Rodinia [105] 65536

srad v2 Rodinia [105] 2048*2048

needle Rodinia [105] 2048

3DConvolution Polybench [99] 256*256*256

gemm Polybench [99] 512*512*2

2DConvolution Polybench [99] 4096*4096

gaussian Rodinia [105] 512

euler3d Rodinia [105] 97K

bfs Rodinia [105] 1M nodes

bicg Polybench [99] 16M

mvt Polybench [99] 16M

atax Polybench [99] 16M

gesummv Polybench [99] 16M

4.2.1.E Experimental Evaluation

The charts presented in Figs.4.5.A and 4.5.B depict the attained L1 data cache efficiency

and the attained performance speedup. As it can be observed, a significant cache hit-rate im-

provement is obtained (between 34% and 82%), resulting in a clear relation between the perfor-

mance and cache efficiency improvements, and the computational intensity of each considered

application (see also Fig. 4.3). Moreover, the measured gains reflect the allied capabilities that

are provided by the stream prefetcher to mitigate the cache performance degradation effects of

memory-bound applications and complex memory access behaviors. In particular, it shows hit-

rate improvements between 68% and 82% for the euler3d, gaussian, atax, bicg, gesummv and

mvt memory-bound applications. The exception concerns the bfs benchmark, where a smaller

improvement is observed (58%), due to its irregular data access nature [105]. Although slightly

less effective for the remaining compute-bound applications, the prefetching mechanism still al-

lows a significant average cache hit rate improvement of 61.3%.

Furthermore, from the chart presented in Fig. 4.5.B, it is possible to ascertain that the stream

prefetching mechanism allows performance speedups (against the baseline setup) as high as

9.2x (in memory-bound applications). In general, the attained performance gains range from

2.8x and 3.1x, measured for the 3DConvolution and euler3d, up to the higher speedups of

5.7x and 9.2x, in the bicg and gesummv applications, respectively. These values show the ability

of the proposed stream prefetching mechanism to hide long memory accesses (and mitigate

their performance degradation). Moreover, it is shown that even though computationally intensive

applications inherently tend to masquerade the impact of the communication infrastructure on

the global application performance, they can still achieve a significant performance improvement

when aided by the implemented prefetching mechanism.

73

4. Data Stream Communication

Figure 4.5: Relative L1 cache hit-rate improvement, resulting performance speedup, energy sav-

ings and energy efficiency for the adopted benchmark set.

To complete the evaluation of the proposed GPU stream prefetching mechanism, an energy

efficiency study was also conducted regarding the adopted set of benchmarks. From the results

presented in Fig. 4.5.C, it is possible to ascertain that the energy consumption reduction is directly

related to the attained performance gains (i.e., resulting from the execution time reduction). As

a result, the proposed mechanism allows energy consumption reductions from 7% up to 90%,

corresponding to the most compute-bound and memory-bound applications, respectively. This

is inherently reflected in the considered performance-energy consumption efficiency metric (In-

structions/Joule), presented in the table and chart depicted in Fig. 4.5.D. It shows that the devised

prefetching mechanism increases the efficiency of all the considered benchmark applications. As

expected from the previously presented performance gains, a significant efficiency improvement

is observed for memory-bound applications, leading to a maximum of 10.3x efficiency improve-

ment in the gesummv application. The impact of the prefetching is also highlighted for the most

computationally intensive applications, incurring in at least 1.2x energy efficiency improvements,

in the dwt2d benchmark.

Hence, the obtained results showed that the sole exploitation of the proposed DSC as a stream

prefetcher offers significant performance gains. In particular, it was able to account for the high

contention imposed by the massively parallel processing architecture of GPUs, in turn improving

its overall throughput and energy efficiency. Nonetheless, despite the attained gains, the proposed

GPU stream prefetching mechanism only makes use of the DSC to populate the system’s L1

caches with the required data. As such, further improvements can still be achieved by combining

74

4.2 Data Stream Prefetching

the DSC stream generation capabilities with the code optimization mechanisms provided by the

proposed compilation tool (see Section 4.2.2).

4.2.2 Case Study B: Data Streaming on Modern General-Purpose CPUs

The stream prefetching approach discussed in the first case study improves the computing

system’s performance and efficiency by straightforwardly fetching and buffering data as fast as

possible (later serving it to the L1 cache and processing cores upon request). However, the

proposed prefetching mechanism is still integrated with the L1 cache memory and its miss han-

dling control logic. In fact, while it does not require any prediction and monitoring logic to deploy

the prefetching procedure, the devised integration can still potentially interfere with the L1 cache

performance.

Conversely, this second case study considers a complete detachment of the data acquisition

procedure from the L1 cache memory. It does so by deploying a full data streaming mechanism

that works in parallel with the first level of the memory hierarchy of an x86-based CPU [106] (see

Fig. 4.6), implemented in the Gem5 simulator [117].

The considered detachment is accomplished by connecting the Stream Buffers of the DSC

directly to a processing core, through a memory-mapped interface configuration, supported by

the compilation tool proposed in Chapter 3. Hence, prefetched data is fed to the processing core

instead of populating the L1 cache. As a result, cache evictions caused by prefetched data are

eliminated, in turn resulting in an implicit timeliness of data acquisition.

In accordance, an in-depth assessment of the viability of the proposed CPU data streaming

Figure 4.6: Integration of the proposed DSC in a modern CPU memory subsystem.

75

4. Data Stream Communication

approach as an alternative to predictive prefetching mechanisms is herein presented, by compar-

ing it with two of the most prominent prefetchers in the state-of-the-art.

Meanwhile, the following subsection presents a brief background overview of CPU memory

subsystems. Despite already discussed in detail in Chapter 2, it is important to better contextual-

ize the implementation described in this case study.

4.2.2.A Current Prefetching Approaches

Memory access latency often limits the application performance on modern CPUs. In an initial

attempt to account for such limitations, typical compile-time tools try to exploit some processor

features (e.g., out-of-order execution) to reorganize data accesses, promoting concurrent data

fetch and computation, and hiding the latency of data accesses. Nonetheless, while such opti-

mizations aim at counteracting the limitations of the memory access chain, there is a performance

gap that often can only be leaned by deploying dedicated data fetch hardware modules, such as

prefetchers.

Accordingly, data prefetching methods are designed to deal with the intrinsic characteristics of

the application memory access patterns that are most commonly encountered in general-purpose

CPUs. In fact, this technology has evolved to a point where the main concern is no longer the

prefetcher’s capability to detect and predict memory access patterns, but instead the timeliness

and effectiveness of the data acquisition procedure. This led to the emergence of new prefetch-

ers [20, 22–24] that combine multiple hardware modules, with different data fetch granularities

and prediction heuristics, across different cache levels. However, despite the offered improved

throughput, resulting from a high accuracy and coverage of the data access prediction, the gains

provided by each new generation of prefetchers are becoming limited.

As a consequence, alternative mechanisms are still necessary to overcome the throughput

saturation that is being reached with current state-of-the-art prefetching technology. Accordingly,

the proposed CPU data streaming mechanism aims at offering new levels of performance and

efficiency by providing a two-fold advantage over predictive prefetching approaches. In particular,

it not only eliminates delays in the memory access stream, resulting from possible prediction

inaccuracies and monitoring overheads, but it also offers an extra acceleration at the level of the

application code, through the stream code transformations provided by the compilation tool.

4.2.2.B Data Streaming Integration in an x86-based Architecture

The flexible interface that is provided by the proposed DSC makes its integration in a modern

CPU memory subsystem entirely straightforward. Accordingly, for this case study, it is adopted a

CPU architecture and memory chain similar to the one equipping the Skylake microarchitecture,

based on the information released by Intel [106] (as detailed in Table 4.2). The adopted archi-

tecture topology assumes a single processing core connected to a 3-level cache hierarchy and a

76

4.2 Data Stream Prefetching

Table 4.2: Adopted x86-based CPU configuration.

CPU

Frequency 3 GHz

Core Model x86-64, Out-of-Order

Cache Configuration

Cache line Size 64 bytes

L1 I/D Cache 32 KB, 8-way, 4-cycle latency

L2 Cache 256 KB, 8-way, 20-cycle latency

L3 Cache 2 MB, 16-way, 36-cycle latency

Main Memory

Size 4096 MB

DRAM Model

Micron MT41J512M8

11-11-11 DDR3-1600

8 banks/rank, 2 ranks/MC,

tRCD,tRP ,tCL=13.75 ns,

tCK=1.25 ns

DRAM main memory module.

To integrate the DSC in the adopted architecture (see Fig. 4.6), collocated with the L1 data

cache. The DSC generates the memory accesses extracted by the compilation tool and encoded

with the proposed descriptor specification. Hence, it becomes solely responsible for fetching

and storing the encoded data streams and for serving them (upon request) to the processor.

Consequently, to provide the aimed detachment of the L1 cache memory, it is bypassed during

the data stream acquisition and access procedures, avoiding cache pollution and early evictions

resulting from poor data fetching timeliness.

Accordingly, the DSC’s integration is realized by directly connecting it to the processing core

(through a memory-mapped configuration, as described in Section 4.1.2) and to the lower cache

hierarchy level (L2), as depicted in Fig. 4.6.

With such a configuration, the descriptor code generated by the compilation tool is sent to the

DSC through a set of inline stores (as described in Chapter 3). Hence, the DSC is only required

to accept the sent descriptor code and store it in the local Descriptor Memory (see Section 4.1.1).

After the reception is finalized, the DSC starts working by generating the memory addresses for

each stream and by fetching and buffering the corresponding data.

To provide an effective interface that allows the core to transparently perform data stream ac-

cesses, the DSC snoops the core’s memory access channel to detect requests to the stream

references assigned to each descriptor (see Chapter 3). Hence, when a request to a data stream

is detected, the memory request is intercepted and directly served with data from the correspond-

ing stream.

Notwithstanding, to deploy the DSC as a fully autonomous data streaming mechanism a final

consideration must be taken in to account. It lies with the fact that in the CPU core, the appli-

cation’s data structures are usually allocated over a contiguous virtual memory address range.

77

4. Data Stream Communication

Table 4.3: Considered benchmarks and kernels for the evaluation setup.

C-Polybench [99]

2mm Multiple Matrix Multiplications

cov Covariance Computation

mvt Matrix-Vector Product and Transpose

seidel 2D Seidel Stencil

syr2k Symmetric Rank-2k Update

trisolv Dense Triangular Solver

HPCG [100]

spmv(*) Sparse Matrix-Vector Multiplication

symgs(*)
Symmetric Gauss-Seidel

(Sparse Triangular Solvers)

Rodinia [105]
path PathFinder - 2D Shortest Path

srad(*) SRAD Diffusion Method

(*) Benchmarks characterized by indirect memory accesses.

Similarly, the mathematical model that is at the base of the proposed descriptor specification also

assumes a contiguous address space to represent memory access patterns. However, the DSC

operates on the physical memory address space, where data may not be stored in contiguous

physical pages. While typical prefetchers avoid this issue by stopping the address generation

procedure and wait for the CPU to resynchronize the physical address offset, this is not possible

with the considered detachment from the address generation in the application code that is in-

troduced by the proposed streaming mechanism. Accordingly, for this implementation, the DSC

was equipped with page crossing detection logic. It works by comparing each generated memory

address with previous one to detect the crossing of a page address range. Hence, upon its de-

tection, the DSC makes use of a dedicated channel (depicted in Fig. 4.6) to consult the CPU’s

Translation Lookaside Buffer (TLB) and obtain the page offset for the newly generated address.

4.2.2.C Methodology

The proposed DSC architecture was implemented and evaluated in the Gem5 simulator [117],

with the system configuration detailed in Table 4.2. The implemented system was evaluated

with the same selection of benchmarks adopted in the preliminary evaluation of the proposed

compilation tool, described in Chapter 3. The selection of benchmarks from the C-Polybench [99]

and Rodinia [105] suites, and the kernels extracted from the HPCG [100] benchmark, are once

again conveniently listed in Table 4.3.

To validate the proposed data streaming mechanism, it was compared with a baseline stride

prefetcher and two state-of-the-art prefetchers. Table 4.4 presents the considered configuration

for each of these setups:

• Baseline: The considered baseline configuration represents the most established prefetch-

ing scheme, corresponding to a typical stride prefetcher, comprising a stride/confidence

table indexed by the instruction Program Counter (PC);

78

4.2 Data Stream Prefetching

Table 4.4: Configurations for the reference prefetching and proposed DSC setups.

Baseline Setup AMPM Setup

L1 Stride Prefetcher L1 stride prefetcher (Baseline)

16x4-entry PC table L2 AMPM prefetcher [20]

Confidence threshold: 4 256-entry access map

Prefetch degree: 4 5.2KB storage

BO Setup DSC Setup (proposed)

L1 stride prefetcher (Baseline) Data Stream Controller

L2 Best-Offset prefetcher [22] 16-entry Descriptor Table

256-entry RR table 16 32x8-Byte Stream Buffers

4KB storage 1KB Descriptor Memory

• AMPM Prefetcher: This configuration relies on an implementation of the AMPM

prefetcher [20], that combines a memory access map and hardware pattern matching to

detect all possible patterns in parallel. A stride prefetcher (provided by the Gem5 simula-

tor [117]) is paired with the L1 cache to perform fine-grained prefetching;

• Best-Offset Prefetcher: This configuration makes use of the Best-Offset prefetcher [22],

which acts as a generalization of next-line prefetching. It implements a selection mecha-

nism that dynamically sets the prefetching offset depending on the application behavior and

accounting for prefetch timeliness. The stride prefetcher from the Gem5 simulator [117] is

also paired with the L1 cache.

4.2.2.D Experimental Evaluation

The proposed data streaming mechanism was evaluated by first studying the impact of code

transformation (previously discussed in Chapter 3) in the number of issued instructions by the

processor. Next, it was conducted a careful analysis of the DSC data streaming performance, by

comparing its operation with the considered prefetching setups.

The impact of each prefetching method in the L1 data cache hit rate is shown in Fig. 4.7. For

most polyhedral applications, the baseline stride prefetcher (BASE) is already able to provide high

hit rates, due to the regularity of the memory accesses. Nonetheless, the AMPM and BO are still able

to improve the cache performance, thanks to a high prefetching coverage. This, however, is not

the case when the memory access complexity increases, as it can be observed in the cov and mvt

benchmarks, where the datasets are large and require a significant amount of data reutilization;

and in spmv and symgs, where the memory accesses present irregularities due to indirection.

On the other hand, when considering the proposed DSC, it is possible to ascertain that it takes

advantage over the other prefetching methods through its memory access generation procedure.

In particular, since the data stream acquisition initiates before the execution of the corresponding

request, data is promptly available ahead of time. Moreover, the ability to exactly describe the

sequence of addresses provides an important mitigation of data locality issues. This is highlighted

79

4. Data Stream Communication

Figure 4.7: L1 hit rate comparison. For the proposed DSC, it is considered both the hit rates of

the data cache and stream buffer.

Figure 4.8: IPC comparison in absolute values.

by the observed average hit rate of 95% with the DSC, when compared to the average 79% and

80% hit rates observed in the AMPM and BO setups, respectively.

Hence, as a result of the attained memory access optimization, there is a direct impact on the

performance of the processor. This is observable in Fig. 4.8 that shows the processor’s average

instructions-per-cycle (IPC) rate that is observed for each considered setup. Despite an actual

reduction of the number of issued instructions, the proposed scheme allows for significant IPC

increases of up to 2.4x, when compared to the baseline setup (BASE), and 1.7x, when compared

with the AMPM and BO setups.

The acceleration provided by the reduction of code is particularly evident in the six polyhedral

benchmarks (Fig. 4.9). Since the memory access patterns are easily detected by the BASE stride

prefetcher, the improvements provided by the AMPM and BO are limited to their ability to move data

to the L2 cache in a more timely manner (as it occurs in mvt due to its poorer data locality).

However, due to the elimination of redundant array indexation (accounting for up to 40% of the

achieved speedup - see Fig 4.10), the proposed data streaming is capable of further boosting the

performance in such cases up to 2.63x over the BASE setup.

The advantages of data streaming are also reflected in the overall system performance, as

shown in the speedup charts from Fig. 4.9. This is particularly evident when the memory access

80

4.2 Data Stream Prefetching

Figure 4.9: Overall speedup comparison (using the baseline setup as reference).

Figure 4.10: Breakdown of the contributions of data streaming and code reduction, for the attained

performance gains.

pattern is characterized by poor spatial locality across the whole dataset, such as in 2mm and cov

benchmarks, where the dataset is composed of multiple large matrices. While the AMPM and BO

prefetchers can easily detect the pattern for each access and feed the L2 cache, the dataset size

inherently result in a large amount of L1 evictions. However, the DSC is capable of fetching and

buffering data streams ahead of time, resulting in 1.5x and 2x speedups over the other setups,

respectively in 2mm and cov.

Performance gains are also evident in the presence of reutilization of datasets larger than the

L1 cache capacity. Such is the case of the mvt and path benchmarks, where a large dense matrix

is read multiple times. It is also possible to observe the gains resulting from the coarse data

movement into the L2 cache with the AMPM and BO prefetchers, making it available for reutilization.

Nonetheless, the data acquisition timeliness of the DSC still provides a performance boost of 10%

for path, when compared to the other prefetchers. In the case of mvt, the matrix is also accessed

in transposed order, resulting in L1 data-locality-related issues. However, the combination of

the pattern description and code reduction provided by the proposed data streaming mechanism

results in 1.9x and 1.5x speedups (in mvt) over the AMPM and BO setups, respectively.

Finally, the results obtained with the spmv and symgs benchmarks show the capability of

the proposed data streaming mechanism to deal with indirect memory accesses. While the BO

81

4. Data Stream Communication

prefetcher’s correlation heuristics provide visible performance improvements when compared to

the base stride and AMPM prefetchers, it is still limited by the irregularity of the data accesses in

spmv and symgs. However, the DSC is capable of producing the exact sequence of addresses

(after indirection) ahead of time and without polluting the L1 with unnecessary data. Such an

advantage (accounting for about 80% of the achieved speedup - see Fig. 4.10), when combined

with the performed code reductions, results in 45% and 37% performance increases for the spmv

and symgs, when compared to the BO setup.

Overall, the obtained results show that the combination of code reduction and efficient data

acquisition provides a two-fold improvement that directly impacts the system performance. Not

only there is a straightforward acceleration of the code, but there is also an increased memory ac-

cess throughput. This is evident when initially comparing the obtained speedup for the considered

AMPM [20] and BO [22] setups, using the BASE stride prefetcher as the reference. It is possible to

observe that they already provided significant performance improvements. This is a direct result

of their high prefetching coverage and accuracy and, in the particular case of BO, of the timeliness

of the prefetching procedure [22].

When compared with these approaches, the proposed DSC, by itself, provides an increased

memory access throughput (resulting from the exact data acquisition and implicit timeliness of

the data streaming), matching and improving the performance over the other setups. However,

the offered performance is further stretched through a straightforward acceleration arisen by the

performed code reductions, providing further 20% improvements (see Fig 4.10) over predictive

prefetching.

The performance gains offered by the proposed setup are emphasized by the attained

speedups ranging from 1.3x to 2.6x when using BASE as the reference. Such gains represent

a 40% and 30% performance increase (on average) over the AMPM and BO setups, respectively.

4.2.2.E Resource Overheads and Limitations

Despite the performance gains obtained by the proposed DSC, it requires simpler hardware

structures when compared to other prefetchers. While the amount of storage for data streams

(4KB stream buffering) and pattern description (1KB descriptor memory) is similar to the storage

required by AMPM (5.2KB) and BO (4KB), the DSC requires lower logic complexity. In particular,

the DSC only requires 6 adders and two register banks for the descriptor resolving architecture

and a comparator to detect page crossing in the address generation procedure. Contrarily, the

AMPM prefetcher [20] requires logic to match up to 256 stride patterns to find prefetch candidates

on each L2 access. On the other hand, the Best-Offset prefetcher [22] requires adder logic to

compute the position of a cacheline inside a page, while the recent request table is accessed

through a hash function.

In what concerns the performance limitations, it is possible to observe that the performance

82

4.2 Data Stream Prefetching

attained by the DSC is only similar to that of the considered state-of-the-art prefetchers in the

particular case of the srad benchmark. This results from the fact that the dataset used by this

benchmark is small enough to fit in the L1 cache, and the data accesses performed by the DSC

are done directly to the L2, in turn increasing the access latency. While this impact is mitigated

by code reduction and data stream pre-acquisition, there is still room for improvement. In accor-

dance, future implementations can consider a snoop-like access to the L1 cache tags (i.e., without

causing demand misses) to directly copy data from the L2 and speedup the data access. Such an

approach can further improve the offered gains, especially for applications that are characterized

by high data reutilization.

4.2.3 Discussion

The devised case studies showed that the proposed data streaming mechanisms are viable

alternatives to conventional predictive prefetching mechanisms, in off-the-shelf general-purpose

computing systems.

In particular, the conducted experimentations for the GPU implementation demonstrated that

the autonomous data stream generation procedure deployed by the DSC, by itself, allows a signif-

icant improvement of the data transfer procedure. This is a direct result both of the pre-acquisition

of data before it is requested by the system’s processing cores, and of the fact that it does not

require the adoption of inaccurate prefetching prediction heuristics and monitoring delays. More-

over, the obtained results also showed that the deployed preemptive data fetching procedure is

capable of mitigating the high contention that characterizes the massively-parallel memory ac-

cess structure of a GPU device. As a consequence, it is possible to offer new levels of computing

throughput, resulting in an overall energy efficiency improvement of the whole system.

Despite the advantages offered by the initial stream prefetching implementation, the proposed

CPU approach took a step further, by deploying a fully functional data streaming mechanism

detached from the system’s cache hierarchy. The devised mechanism exploits the combination of

the DSC and the code transformations of the compilation tool proposed in Chapter 3, to deploy

a viable alternative to predictive prefetching approaches. In fact, the obtained results for this

implementation showed that the proposed mechanism can outperform two of the most prominent

state-of-the-art prefetchers. This results from the provided two-fold improvement that directly

impacts the whole system’s performance. Specifically, it is attained a straightforward acceleration

of the application code (in the processing core) and an increased memory access throughput

(offered by the DSC).

Nonetheless, while the proposed mechanisms (based on the DSC) already provide significant

performance and efficiency gains, their implementation in off-the-shelf devices is bound by the

conventional memory access infrastructures of such systems. Consequently, by designing a ded-

icated data streaming infrastructure, it is still possible to take a step further from the sole exploita-

83

4. Data Stream Communication

tion of the DSC. Specifically, it can be considered the deployment of additional data streaming

mechanisms and alternative data transfer schemes, that could not otherwise be deployed in the

consolidated communication infrastructures of conventional computing systems.

4.3 In-Cache Stream Communication Paradigm

The proposed deployment of the DSC in stream prefetching mechanisms showed to be a

viable alternative to conventional predictive prefetching. However, as it was discussed in the pre-

vious section, it is still possible to offer further gains in performance and efficiency if the DSC is

placed close to the main memory, supported by a communication infrastructure that exploits more

sophisticated data streaming mechanisms. In particular, memory bandwidth and data transfer

efficiency can be maximized with specialized stream manipulation techniques (such as data re-

organization). On the other hand, it is possible to tackle the contention present in highly parallel

architectures (only partly mitigated by the preemptive data acquisition of the proposed stream

prefetching) with the utilization of broadcast and point-to-point communication operations to man-

age the data flow between the main memory and the system’s processing cores. Naturally, such

techniques and mechanisms must be deployed without losing general-purpose capabilities.

Accordingly, this section proposes a new In-Cache Stream (ICS) communication paradigm

that deploys a full data streaming communication scheme in a conventional cache-coherent mem-

ory hierarchy, by allowing the infrastructure to exploit both conventional memory-addressed and

packed-stream data accesses, simultaneously and cooperatively. To achieve such a goal, the

proposed ICS communication paradigm was implemented in a custom many-core accelerator

Figure 4.11: In-Cache Stream communication infrastructure overview, comprising the ICS con-

trollers connected to each core, the SMC (based on the DSC) and a dedicated data transfer

interconnection.

84

4.3 In-Cache Stream Communication Paradigm

(depicted in Fig. 4.11) that deploys a scalable processing infrastructure, composed of:

• Core-coupled ICS controllers, that allow the seamless adaptation of local cache memories

to provide support for data streaming;

• A dedicated data transfer interconnection, which deploys point-to-point and broadcast

communication schemes, and that simultaneously supports memory-address-based and

stream-based data communication through a dedicated message-passing protocol;

• A hybrid main memory controller, comprising a memory-addressed Direct Memory Ac-

cess (DMA) module and a packed-stream memory-aware Stream Management Controller

(SMC), based on the proposed DSC. The SMC deploys a set of memory bandwidth opti-

mization and data reutilization and reorganization techniques, through in-time stream ma-

nipulation.

The accelerator’s execution is controlled by a centralized hardware manager, which is respon-

sible for assigning to each processing core the program and descriptor data generated by the

compilation tool proposed in Chapter 3. It does so by dispatching the required descriptor data

to the SMC and the stream references assigned to each ICS controller, together with the com-

piled program (see Fig. 4.11). The communication between the manager and each component is

performed via a direct unidirectional channel.

4.3.1 In-Cache Stream Controller

The key idea of the proposed ICS paradigm is to allow each of the system’s processing cores

to seamlessly switch their local communication scheme between conventional memory-addressed

and packed-stream data access paradigms. In particular, to avoid a mutually exclusive adoption

of the two paradigms, which could otherwise result in potential performance penalties in non-pure

streaming applications, a dedicated ICS controller (placed close to the core) was developed that

allows the utilization of the set-associative ways of each local cache memory to perform data

streaming to/from the core. With this approach, it is possible to support both data-access types

not only separately, but also simultaneously, by balancing the ratio of set-associative ways and

buffers in the cache memory.

Hence, in the devised ICS paradigm, each core views its local n-way set-associative cache

memory as a set of m cache ways plus n−m stream buffers, each capable of holding multiple

streams (as depicted in the example of Fig. 4.12). Such a topological reorganization, together with

the adoption of a switched control structure, allows the communication infrastructure to instantly

adapt the cache memory according to the instantaneous requirements of a running application.

Moreover, it conveniently supports mixed scenarios composed of compile-time predictable and

non-predictable (or runtime generated) memory access patterns.

Accordingly, each cache memory is simultaneously managed by two independent modules

(see Fig. 4.13): a cache controller and a stream controller. The default memory-addressed com-

85

4. Data Stream Communication

Figure 4.12: Example configuration of a 4-way set associative memory after a control switch,

becoming configured to use 2 ways for conventional memory-address mode and 2 ways for stream

mode.

munication paradigm is assured by the cache controller, by using any arbitrary replacement and

write policies. On the other hand, the stream controller is used to conveniently adapt and reuse

the resources of an n-way set-associative cache memory to implement the buffering structures

required by a packed-stream communication.

At any instant, the cache memory configuration is defined by a simple register, shared by

both controllers, indicating which ways are accessible (or owned) by each controller. The register

is modified when a new data stream is received (either from the core or the underlying inter-

connection), according to the information stored in a dedicated Stream Table (programmed by

the accelerator’s manager). Accordingly, the cache memory is configured by default with each

way owned by the cache controller, and, upon request, the ownership of individual ways can be

changed to the stream controller. The control switch for each way is performed transparently from

each of the controllers, eliminating any unnecessary waiting times that could otherwise degrade

performance.

The ICS controller communicates with its assigned processing core through a memory-

mapped interface (see Fig. 4.13) that redirects data accesses either to the cache controller or

to the stream controller. On the other hand, the communication with the remaining communica-

tion infrastructure is assured by a Message Dispatcher module (see Fig. 4.13), which transpar-

ently handles the communication of the data into, or out of, the ICS controller, through a buffered

interface.

86

4.3 In-Cache Stream Communication Paradigm

Figure 4.13: ICS controller architecture. The cache controller and the stream controller (sup-

ported by the information stored in the Stream Table) perform an exclusive access to an n-way

set-associative cache memory depending on the requests received from the core and the com-

munication infrastructure.

4.3.1.A Cache Controller

The conventional memory-addressed operation is the default communication paradigm and

works independently of the underlying cache protocol (see Fig. 4.13), hence supporting any

conventional replacement and write policies. Notwithstanding, for the herein presented design,

the ICS cache controller was prototyped using a simple hardware structure. It deploys a write-

through-invalidate, write no-allocate snooping protocol (to limit the number of coherency-related

messages in the interconnection) on the n-way set-associative cache memory, managed by a

Pseudo-Least Recently Used (LRU) replacement policy (implemented by a binary decision tree

algorithm, supported by a with a register with n-1 bits per cache index).

According to the adopted protocol, only one valid state bit (together with the tag field) is

required per cache line and the cache access time is limited to two clock cycles (disregarding

cache miss penalties). Hence, upon a core request, the cache memory is immediately accessed.

The hit/miss analysis is performed in the second clock cycle, and the hit/miss-related action is

taken according to the adopted cache protocol.

As a result of the adopted write-through-invalidate and write no-allocate protocol, the core re-

quests are only answered with a wait state when there is a read miss, until the required data is

fetched from the memory subsystem. At a write miss scenario, the written data block is immedi-

ately sent to the main memory and it is followed by an invalidation broadcast, requiring no return

87

4. Data Stream Communication

information to the cache controller, thus minimizing the waiting times and the number of on-the-fly

messages in the communication infrastructure.

4.3.1.B Stream Controller

To reuse the resources of the n-way set-associative cache memory for stream-based com-

munication, the cache memory access mechanism has to be conveniently adapted. Instead of

relying on conventional memory-addressed accesses, in this operation mode, each associative

way is regarded as an independent buffering structure that is accessed by a dedicated set of

read and write pointers (which identify the memory region where a stream is stored). This trans-

forms the n-way set-associative memory in m independent stream buffers, each capable of stor-

ing multiple streams, while allowing the remaining n−m ways to be accessed using traditional

memory-address load/store operations (see Fig. 4.12).

Naturally, contrarily to the default memory-addressed communication, the stream-based

paradigm requires a set of auxiliary data structures (stored in the programmable Stream Table),

to accommodate the information and the state of every stream currently stored and handled by

the controller. Each table entry (depicted in Fig. 4.13) comprises: i) a unique stream identifier,

corresponding to a stream reference encoded in the proposed descriptor specification (detailed

in Chapter 3); ii) the way used for buffering the stream; iii) pointers to the start and end of the

buffering region within the way; iv) pointers for identifying the core local read/write positions in

the inbound/outbound stream, which effectively allow implementing a circular read/write buffer

between the region defined by the stream start and end pointers; v) a stream destination, repre-

sented the corresponding component (core or memory) identification; and vi) a read/write pointer

for identifying the current read/write position for the Message Dispatcher module (see Fig. 4.13).

Hence, whenever a read/write request is performed in the core interface for a given stream ref-

erence, the local cache memory is accessed according to the information depicted in the Stream

Table, with the consequent update of its read/write pointers. The interface with the communication

infrastructure is performed by accepting the incoming stream messages and by storing them in

the local memory (according to the targeted set-associative way and pointer-values in the Stream

Table) and by updating the write pointer. Outgoing streams are automatically sent (according to

the destination stored in the Stream Table) as soon as they become available. Moreover, upon

their transmission, stream data is maintained in the local memory until it is overwritten by new

streams, allowing the data to be reused by the core. As a result, depending on the assignment of

each stream, data can be made persistent throughout the whole execution.

4.3.1.C Communication Interfaces

The communication between the ICS controller and the processing core is assured by a dedi-

cated memory-mapped interface (see Fig. 4.13). It provides a generic and straightforward request

88

4.3 In-Cache Stream Communication Paradigm

Figure 4.14: Message-passing packet-format, including the header specification.

redirection mechanism that distinguishes between memory-addressed and stream-based read-

/write requests. It does so by comparing the requested address with the stream references stored

in the Stream Table. Accordingly, each request to the cache address space is redirected to the

cache controller, in the conventional memory-addressed communication paradigm. On the other

hand, requests for the stream address space are handled by the steam controller that accesses

the local memory according to the accessed stream’s read/write pointers (stored in the Stream

Table).

Additionally, the ICS controller interfaces with the communication infrastructure by using two

input/output register-based buffers, managed by a Message Dispatcher module. Each buffer is

capable of accommodating a complete message to/from the interconnection (see next section),

allowing cache lines and streams to be split into message packets for an output message and

joined in a single word from an input message. Such an approach simplifies the transmission

of cache lines and streams with the adopted message protocol. Depending on the assigned

message type (see the protocol in the following section), incoming messages are redirected by the

Message Dispatcher either to the cache controller or the stream controller. Conversely, outgoing

messages are generated by the Message Dispatcher according to requests performed by the

controllers.

4.3.2 Communication Infrastructure and Protocol

Since the ICS infrastructure exploits both memory-addressed and packed-stream data ac-

cesses, it is necessary to provide a data transfer mechanism between the system’s components

that is independent of the data access paradigm. Accordingly, to abstract the underlying data

accesses, a simple message-passing protocol was adopted. It consists of a header, an optional

memory address and a number of data words that, at most, add up to the size of a cache line (see

Fig. 4.14). As referred above, each ICS controller provides a message dispatching module that is

responsible for packing and unpacking data blocks according to the defined message format.

89

4. Data Stream Communication

4.3.2.A Interconnection Architecture Considerations

Naturally, such a message-passing protocol could be deployed in any type of interconnection

bus. However, to deploy the aimed point-to-point and broadcasting data communication schemes,

it is necessary to adopt a dedicated data transfer interconnection that is capable of efficiently

deploying such schemes (both in terms of latency and hardware complexity). While a shared

crossbar-switch-type bus, providing a direct interconnection between all components, might be an

obvious choice in terms of functionality, the amount of connection paths tends to grow with a power

of 2 of the number of connections (all components are connected between them). Alternatively,

in the presence of high numbers of connected components, two-dimensional networks-on-chip

(e.g., grids or meshes) could be viewed as viable solutions. However, despite requiring a lower

hardware complexity per node (component), they usually rely on costly packet routing protocols

that require complex control structures.

Accordingly, it is possible to achieve a viable trade-off by deploying a ring-based interconnec-

tion. While such a structure is capable of interconnecting all the system’s components (to deploy

the aimed data transfer schemes), the packet transmission procedure is simply implemented by

a test-and-forward architecture (in each node/component). Furthermore, by making the commu-

nication bidirectional, it is possible to deploy an interconnection with a maximum latency propor-

tional to half of the number of connected nodes/components.

As a result of the adopted interconnection architecture, each of its nodes is assigned with a

unique identification and is responsible for routing the incoming messages to/from its two adja-

cent nodes (right and left) and to/from its connected component. To attain such an objective, a

completely pipelined architecture ensures that each packet requires a single clock to be analyzed

and forwarded. This results in a minimum packet communication latency of a number of clock cy-

cles given by the distance between the sender and receiver nodes. To overcome any contention

caused by arriving packets, a simple round-robin priority function was devised that rotates the

priority between channels upon the completion of a message transmission. Moreover, each com-

ponent interfaces with the communication infrastructure through two input/output register-based

buffers, further mitigating access contention through intermediate buffering.

4.3.2.B Data Transfer Mechanism

Communication between the interconnection’s nodes is achieved through an AXI-Stream pro-

tocol [118] interface. The addressing is defined by a modified tdest signal, where the most-

significant-bit is used to signal a broadcast message, and the remaining bits represent the identi-

fication of the receiver. Furthermore, a routing mechanism is responsible for sending the received

message packets to their appropriate destination. This is done by comparing the message desti-

nation address with the node own physical address. Hence, whenever the message is directed to

the node (itself), it is immediately forwarded to the connected component. Otherwise, it is merely

90

4.3 In-Cache Stream Communication Paradigm

forwarded to the next adjacent node, maintaining the same communication direction. In the par-

ticular case of a broadcast message, the packets are simultaneously sent both to the connected

component and to the adjacent node (the broadcast message is evicted as soon as it reaches the

node where it was originally sent from).

4.3.3 Memory-Aware Data Stream Generation

In a stream-based communication environment, each component must be capable of gener-

ating/processing its data streams. Although each core can manage the flow of its data streams

with the aid of the ICS controllers, streams fetched from the main memory require a dedicated

structure to handle the distinction between a memory-addressed access and a stream-based

communication. This is accomplished through a dedicated main memory controller, composed

of i) a low-profile address-based DMA controller, to perform address-based memory operations

upon memory access requests performed by the cores; and ii) a memory-aware SMC, which

automatically generates and saves the streams, respectively by fetching/storing data from/to the

main memory.

The SMC itself relies on the DSC architecture to generate memory access patterns and on a

Stream Table (similar to that of the ICS controller). Hence, its operation is managed according to

the descriptor data and stream information that is sent by the hardware manager at the beginning

of the execution. Accordingly, the stream generation procedure is performed automatically upon

reception of the descriptor data. The stream storing procedure (for streams generated by the ICS

controllers), on the other hand, is automatically performed upon the reception of a stream from

the data transfer interconnection.

With the goal of optimizing the memory accesses for stream generation, the SMC deploys two

specialized modules that maximize the main memory bandwidth (see Fig. 4.15.B), specifically:

• A dedicated burst controller used to take advantage of the main memory burst capabili-

ties, to maximize its throughput;

• A reorder buffer that allows the fetching and intermediate buffering of coarse-grained mem-

ory regions where the data-patterns generated by the DSC are contained, to avoid costly

data accesses to non-contiguous memory blocks.

4.3.3.A Memory Burst Controller

Despite being efficient when dealing with fast-access local memories (e.g., BRAMs), address

generation units often struggle to perform requests to long-latency external memories (e.g., DDR3

memories). This is mainly because these memories usually impose costly latency overheads (up

to tens of clock cycles per request). To mitigate such delays and increase the throughput, most

memories offer the ability to burst data transfers of contiguous memory regions. Accordingly, the

DSC’s AGU was duplicated and coupled with a specially devised burst controller (see Fig.4.15.B)

91

4. Data Stream Communication

Figure 4.15: Memory requests performed by the DSC for the zig-zag pattern descriptor, when

directly connected to the main memory (A) and to the burst controller and reorder buffer optimiza-

tions (B).

that generates and manages burst requests to the main memory, based on the descriptor being

resolved.

However, instead of sending each address (indexed by a given descriptor), the AGU sends

the descriptor’s base address and the first pair tuple to the burst controller, indicating a contigu-

ous memory region to be accessed (see Fig 4.15.B). The burst controller is then responsible for

splitting the request in one or more burst requests (depending on the maximum burst length sup-

ported by the memory and its communication protocol), which is performed by a straightforward

register-based increment/subtract architecture.

4.3.3.B Reorder Buffer Optimization and Stream Manipulation

Although the burst controller, by itself, could increase the main memory throughput for most

regular access patterns, dealing with complex patterns, characterized by poor data locality, still

poses a difficult challenge. One example is a zig-zag pattern (discussed in the preliminary evalu-

ation presented in Chapter 3). Due to its diagonal scanning pattern, the direct application of the

burst controller would not improve the resulting memory throughput. However, these complex pat-

terns are usually contained in regular memory regions that can be fetched from the main memory

and temporarily buffered in fast-access memory structures. In particular, a zig-zag pattern can be

scanned in N×N data blocks, and each block can be individually fetched and stored in a specially

devised reorder buffer, which can then be accessed by the DSC with a zig-zag descriptor, as

depicted in Fig 4.15.B.

To offer such functionality, each stream can be regarded as a block of contiguous data, where

92

4.4 In-Cache Streaming Evaluation

Figure 4.16: Reorder buffer architecture and its connection to the DSC and Stream Table.

the data block is stored starting at memory address (offset) 0x0. By adopting such an analogy, it is

possible to extract a particular data block from a previously obtained data stream by only adding

a stream start pointer to an offset generated by the DSC. This allows applying the descriptor

specification to straightforwardly extract sub-patterns from on-the-fly data streams. Furthermore, it

is possible to easily implement run-time stream manipulation operations (e.g., stream splitting and

merging) based on the descriptor specification, as well as rerouting operations over the flowing

streams between the cores and memory.

Hence, the DSC is used to access the new reorder buffer (obtaining new data blocks as soon

as they become available in the buffer), while the duplicated AGU is used to fetch the data blocks

from memory, aided by the burst controller (see Fig.4.15). To be properly accessed by the DSC,

the devised reorder buffer (depicted in Fig. 4.16) is composed of a set of stream buffer banks,

each able to store multiple streams. In fact, its control architecture is similar to that of the stream

controller from the ICS controller. It works by relying on the information stored in the SMC’s

stream table to perform the required stream manipulation and generate the final data streams.

4.4 In-Cache Streaming Evaluation

This section presents an in-depth evaluation of the proposed ICS communication paradigm,

support by an implementation of the devised accelerator on an XC7VX485T Virtex-7 FPGA de-

vice. Such an implementation allowed the assessment of a fully functional prototype (instead of

relying on simulation tools), in terms of hardware resources, timing measurements, and power

supply requirements.

93

4. Data Stream Communication

4.4.1 Methodology

The experimental evaluation is performed in three stages. Initially, it is performed a hardware

resource study depicting the area overheads of each individual component of the accelerator.

Next, it is assessed the address generation efficiency of the proposed DSC (also compared with

the same state-of-the-art solutions adopted in the preliminary evaluation presented in Chapter 3)

and the resulting memory throughput optimization of its deployment by the SMC. The evaluation is

concluded with a thorough assessment of the implemented prototype regarding the performance

and energy efficiency improvements, and its comparison with an implementation of the state-of-

the-art Access Map Pattern Matching (AMPM) [20] prefetcher.

For the hardware evaluation, all the required Synthesis and Place&Route procedures were

performed using Xilinx ISE 14.5. The power consumption of each of the system’s components was

estimated with the Xilinx Power Estimation toolchain, and the DDR3 memory power consumption

was calculated according to the vendor’s guidelines and estimation tool [119].

4.4.1.A Accelerator Implementation and Prototyping Framework

The accelerator implementing the proposed ICS paradigm (see Fig. 4.11) was configured with

a computing infrastructure composed of a variable amount of cores (ranging between 1 and 64).

Each core comprises an MB-LITE [120] processor modified to support vector instructions [28] and

a private scratchpad for program data.

The ICS infrastructure prototype was implemented in a Xilinx VC707 development board,

equipped with an XC7VX485T Virtex-7 FPGA and a 1GB DDR3-1600 SODIMM memory module

(MT8JTF12864HZ-1G6G1). The DDR3 module is accessed through a Xilinx IP MIG controller,

comprising an AXI4-Full interface with a 20 clock cycle overhead per transfer request (indepen-

dently of its length). The AXI4 protocol [121] allows burst transfers of up to 256 words and an

attainable bus throughput of 400MB/s per channel direction (32-bit words @ 100MHz), resulting

in a maximum theoretical throughput of 800MB/s.

4.4.1.B Experimental Setups and Configurations

The preliminary evaluation of the proposed descriptor specification presented in Chapter 3

was complemented with an evaluation of the address generation efficiency of the DSC, by com-

paring it with the Hotstream framework’s Data-Fetch Controller (DFC) [26] and the Xilinx AXI

DMA [102] controller (illustrating the performance of the Advanced Pattern-based Memory Con-

troller (APMC) [54]).

To evaluate the full ICS implementation, the following accelerator configuration setups were

considered:

• BASE: The considered baseline setup comprises a configuration with a conventional cache-

based system (i.e., without the ICS controllers and the SMC), with the main memory access

94

4.4 In-Cache Streaming Evaluation

solely managed by the low-profile DMA controller;

• uICS: This configuration comprises an ICS infrastructure with the SMC’s DSC directly con-

nected to the main memory (i.e., without the burst controller and reorder buffer);

• ICS-SMC: This setup implements the full ICS infrastructure with the complete memory-aware

SMC;

• AMPM: The final configuration considers the inclusion of the state-of-the-art AMPM [20] in the

BASE setup (paired with each cache). It relies on an idealized behavioral model implemented

and simulated according to the architecture description provided in [20].

All the considered infrastructure setups were connected to the DDR3 controller through an

AXI4-Full bus interconnection (memory access bus in Fig 4.11). Accordingly, the main memory

controller for the BASE, AMPM and uICS setups was configured to perform cache-line-sized burst

transfers. On the other hand, for the ICS-SMC, the burst controller was set to use a maximum

burst length of 256 words (the same as the AXI4 protocol), meaning that it splits the requested

data transfers in individual 256-word burst requests.

The proposed descriptor specification was configured with the same parameter sizes adopted

in the preliminary evaluation presented in Chapter 3, specifically:

• Context Header :

– Header - acc: 8 bits, next: 16 bits;

– Descriptor References - a idacc: 16 bits.

• Access Descriptor :

– Header - stream: 32 bits, base: 32 bits, dim: 8 bits, mod: 8 bits;

– Pairs - xsizek: 32 bits, stridek: 32 bits.

• Field Modifier Descriptor :

– Header - target: 16 bits, dim: 8 bits;

– Pairs - xsizek: 32 bits, stridek: 32 bits.

• Indirection Descriptor :

– Header - data: 16 bits, dim: 8 bits;

– Pairs - targetn: 16 bits, a idn: 32 bits.

Similarly, the representations of the considered Hotstream framework [26] and the AXI

DMA [102] approaches were also configured with the same 32-bit parameter sizes as in Chap-

ter 3.

Instead of adopting a 3-level cache hierarchy (as in Section 4.2.2), it was considered a con-

figuration closer to those typically deployed in embedded systems [122]. Accordingly, each core

is integrated with an 8KB 4-way set-associative data cache memory with 64-Byte cache lines,

deploying a write-through-invalidate, write no-allocate snooping protocol, managed by a binary-

tree-based pseudo-LRU replacement policy. The SMC was configured with a 2KB descriptor

memory (scratchpad), while the reorder buffer comprises a 4KB, 32-bit line, direct-mapped mem-

95

4. Data Stream Communication

Table 4.5: Adopted benchmark applications and their corresponding datasets, data access pat-

terns and communication characteristics.

BENCHMARK INPUT SIZE
DATA COMM./DATA

PATTERNS MANAGEMENT1

Blocked Matrix 128×128
Tiled

Hybrid, Broadcast

Multiplication 8×8 blocks Data Reuse

Biological Sequence 128× 1024 queries Diagonal Stream, core-core, Broadcast

Alignment [123] 4096 reference Striped Data Reorganization

Histogram 256×256 Tiled Hybrid, core-core,

Equalization image Linear Broadcast, Data Reuse

2D Poisson 128×128 grid Tiled Stream, core-core

Equation Solver2 [124] 100 iterations Linear Data Pipelining

Convolutional 32×32 image
Tiled

Stream, core-core, Broadcast

Neural Network3 [125] 142× 5×5 kernels Data Reuse+Pipelining
1 As used in the In-Cache Stream setups 2 Jacobi parallel iteration method
3 For image classification (striped decomposition)

ory structure. The AMPM prefetcher was configured with a prefetch degree of 4 (four prefetch

requests per memory access), which provides the best prefetching performance while avoiding

over-prefetching, as reported in [20].

4.4.1.C Workloads

To evaluate the DSC data-pattern generation efficiency and the SMC memory throughput op-

timization capabilities, the same set of memory access pattern samples used in the preliminary

evaluation presented in Chapter 3 was used, namely: Linear ; Tiled ; Diagonal ; Zig-Zag; and

Greek Cross. For the SMC evaluation, it was also considered an additional Striped pattern, rep-

resenting a variation of the Diagonal pattern, where all diagonals are split and processed in a

stripped (or banded) approach.

To evaluate the gains offered by the data-transfer and communication capabilities of the ICS

infrastructure, benchmarks were implemented based on real applications (see Table 4.5), namely:

i) a standard block-based matrix multiplication kernel; ii) a biological sequence alignment appli-

cation [123]; iii) an histogram equalization kernel; iv) a 2D Poisson equation parallel solver [124];

and v) a convolutional neural network for image recognition [125]. Each application was partic-

ularly considered to provide a comprehensive evaluation of the ICS infrastructure with different

combinations of memory access patterns and communication schemes (see Table 4.5).

4.4.2 Hardware Resources Overhead

The obtained results of the implementation of the ICS infrastructure and accelerator in the

considered Virtex-7 FPGA device are presented in Table 4.6. Despite the added versatility of the

offered streaming capabilities, the results obtained for the devised ICS controller represent a 25%

96

4.4 In-Cache Streaming Evaluation

Table 4.6: Resource usage for each component of the ICS communication infrastructure.

Available Baseline In-Cache DSC Memory-Aware Ring Modified

Resources Cache Ctrl.2 Stream Ctrl.2 Architecture SMC (w/ DSC) Node MB-LITE [28]

Slices 75,900 1896 (2.5%) 2370 (3.1%) 605 (.8%) 852 (1.1%) 155 (.2%) 1753 (2.3%)
LUTs 303,600 3602 (1.4%) 4367 (1.4%) 1466 (.5%) 1666 (.5%) 297 (.1%) 4566 (1.5%)
Registers 607,200 365 (.1%) 1176 (.2%) 19 (.1%) 991 (.2%) 164 (.1%) 1013 (.2%)
BRAM 3,090 16 (.5%) 16 (.5%) 7 (.2%) 9 (.3%) 2 (.1%) 6 (.2%)

Static Power1 210.42

Dynamic Power*1 89.3 91.2 34.1 43.2 10.3 138

* @100 MHz
1 Power consumption values displayed in mW
2 Considering an 8KB 4-way set-associative memory w/ 64B cache lines

increase in hardware resource slices (corresponding to a 20% increase in the number of LUTs),

when compared to the baseline cache controller. This difference is a result of the additional logic

that is required by the included stream controller and stream table structures. On the other hand,

the register utilization is increased by approximately three times, mostly due to the fact that the ICS

controller implements its buffering structures with registers. Since both the baseline cache and

the ICS architectures adopt 8KB 4-way set-associative cache memories, their required amount of

BRAMs is the same. Overall, each ICS controller only occupies an area corresponding to 3% of

the FPGA fabric, which, when combined with a modified MB-LITE [28] processor core, together

result in a total occupation of 5.4% of the available hardware resource slices.

Regarding the proposed SMC, it is possible to observe a slight increase in hardware resources

(when compared to the DSC), resulting from the inclusion of the burst controller and reorder

buffer structures. These two structures only impose a utilization of 248 additional resource slices

(corresponding to a 10% increase in LUTs) and two extra BRAMs for the reorder buffer.

The observed results for the base ring node architecture support the fact that the adopted

data transfer interconnection is inherently scalable in what concerns its hardware footprint and

operating frequency. Overall, each node only requires up to 0.2% (155 slices, corresponding to

297 LUTs) of the FPGA’s resources. Accordingly, the adopted interconnection can be efficiently

used to support a considerable number of processing cores, being the limiting factor the increased

communication latency between nodes.

4.4.3 Stream Generation Efficiency and Main Memory Throughput

Table 4.7 presents the efficiency of the proposed DSC to resolve the data-patterns encoded

with the proposed descriptor specification, when compared with the considered state-of-the-art

approaches (with their corresponding description encoding).

By analyzing the values presented in Table 4.7, it is clear that the DSC architecture, by itself

(not accounting for the SMC burst control), provides a steady performance of one address-per-

cycle generation rate, whereas the remaining considered state-of-the-art pattern generation struc-

tures show a significant performance degradation for high complex patterns. Such is the case of

97

4. Data Stream Communication

Table 4.7: Address generation rate and descriptor size (in bytes) for the proposed DSC and

comparison with the considered related work approaches.

Pattern Pattern Length
DSC DFC [26] AXI DMA [102]

Type (# words) Size
Addr/cycle

Size
Addr/cycle

Size
Addr/cycle

(bytes) No Burst Burst2 (bytes) (bytes)

Linear 1024 23 1 256 48 1 32 0.96

Tiled 128×721 47 1 128 80 0.99 32 1
Diagonal 1024×1024 84 1 1 88 1 65k 1
Zig-Zag 8×8 125 1 1 132 0.71 480 0.63
Greek Cross 1024×1024 63 1 16 264 0.89 228k 1
1 Within a memory block of 512×512 2 Assuming a maximum burst length of 256 words (ref. AXI4 Protocol [121])

the Zig-Zag pattern where the HotStream DFC [26] and the AXI DMA [102] (APMC [54]) are only

capable of offering 0.71 and 0.63 addresses-per-cycle generation rates, respectively.

Besides the achievable address generation efficiency, the benefits of the burst controller and

reorder buffering optimizations to the main memory access were also evaluated. For such pur-

pose, it was measured the throughput and average memory access latency (measured in cycles

per byte) of the considered DDR3 memory with the adopted evaluation patterns for both optimiza-

tion setups and compared to a direct connection between the DSC and the main memory, where

only a single word is transferred per burst.

The obtained results for an SMC implementation (operating at 100 MHz) are shown in

Fig. 4.17. From these results, it is clear that the most regular access patterns (with larger con-

tiguous data regions) take the most advantage of the burst controller. In particular, for the Linear

and Tiled patterns it is possible to reduce the average latency by as much as 20x, resulting in a

throughput of up to 371 MB/s 1, when compared to a direct DSC connection. On the other hand,

for the Greek-Cross pattern, the achieved throughput was limited at 177 MB/s (only 9x average

latency reduction), due to its smaller 16-word burst lengths. The remaining patterns have no

contiguous data regions and as such cannot take advantage of the burst controller by itself.

However, some substantial improvements are observed when adding the reorder buffer opti-

mization. In particular, it is possible to increase the throughput of the Greek-Cross pattern to 371

MB/s by fetching the 48×48 blocks before applying the crossed pattern. Similarly, some signifi-

cant benefits can be observed for the Diagonal and Zig-Zag patterns. For the Zig-Zag pattern,

it is possible to fetch each 8×8 block before applying the Zig-Zag scan (reducing the average

latency by 6x), hence increasing the effective throughput to 90 MB/s. Conversely, for the Diagonal

pattern, only a slight throughput increase of 13MB/s is observed, due to the limited size (4KB) of

the adopted reorder buffer, which provides limited data reuse opportunities (even when using a

tiling procedure) when the diagonal size is too large. In fact, at the larger diagonal, the throughput

becomes effectively the same as with a direct connection to the memory. A possible optimization

for this pattern is the adoption of a stripped (or banded) processing approach, where n×1024

1This throughput value is close to the AXI4 bus theoretical maximum, which is 400MB/s for a single channel direction.

98

4.4 In-Cache Streaming Evaluation

Figure 4.17: Main memory throughput and average memory access latencies with the burst con-

troller and reorder buffer optimizations for the considered data-patterns.

stripes are fetched and processed in smaller diagonals. With such an optimization, it becomes

possible to take full advantage of the burst controller and reorder buffer, resulting in an overall

throughput increase. For example, with a configuration of 16×1024 stripes, the average mem-

ory access latency is reduced by 16x, and a maximum throughput of 304 MB/s is achieved (see

Fig. 4.17, column Striped).

4.4.4 Prototype Evaluation

The considered setups were evaluated in terms of: i) data communication and memory access

time reduction; ii) performance speedup scalability for each setup against its own single-core

configuration; iii) performance speedup and total energy savings against the reference BASE setup;

and iv) performance-energy efficiency (in the form of an Energy-Delay Product (EDP) study).

4.4.4.A Performance Evaluation

The obtained results for the considered evaluation benchmarks are depicted in the charts of

Fig. 4.18, by considering a variable number of cores. In particular, the bar plots on the top row rep-

resent the ratio of the communication time over the total execution time for each setup. Although

the AMPM setup shows significant data communication overhead reductions, when compared to

the BASE reference, they are mostly present in configurations with fewer cores (only up to 8 in

most cases). Hence, despite their efficient capabilities, this type of prefetching mechanisms is not

particularly suited for many-core systems, since they cannot cope with the increase in memory

access traffic and bus contention of larger systems.

Conversely, as it can be observed for most of the considered benchmarks, the uICS setup

provides mechanisms that target the mitigation of such drawbacks, allowing a significant data

communication overhead reduction when compared to the AMPM setup. In particular, the offered

99

4. Data Stream Communication

F
ig

u
re

4
.1

8
:

C
o
m

p
a
ris

o
n

o
f

th
e

p
ro

p
o
s
e
d
I
C
S
-
S
M
C

w
ith

th
e
B
A
S
E
,
A
M
P
M

a
n
d
u
I
C
S

s
e
tu

p
s

in
:

i)
c
o
m

m
u
n
ic

a
tio

n
a
n
d

e
xe

c
u
tio

n
tim

e
ra

tio
im

p
ro

ve
m

e
n
t

(to
p

ro
w

);
ii)

p
e
rfo

rm
a
n
c
e

s
p
e
e
d
u
p

s
c
a
la

b
ility

(s
e
c
o
n
d

ro
w

)
fo

r
e
a
c
h

s
e
tu

p
a
g
a
in

s
t
its

o
w

n
s
in

g
le

-c
o
re

c
o
n
fi
g
u
ra

tio
n
;
ii)

e
xe

c
u
tio

n
tim

e
s
p
e
e
d
u
p

(th
ird

ro
w

)
a
n
d

th
e

to
ta

l
e
n
e
rg

y
s
a
v
in

g
s

(fo
u
rth

ro
w

)
a
g
a
in

s
t

th
e
B
A
S
E

re
fe

re
n
c
e
;

a
n
d

iv
)

e
n
e
rg

y
-d

e
la

y
p
ro

d
u
c
t

(lo
w

e
r

is
b
e
tte

r)
(b

o
tto

m
ro

w
).

100

4.4 In-Cache Streaming Evaluation

data streaming, broadcasting, and data reutilization capabilities allow a significant reduction of

the total number of main memory accesses, therefore decreasing the observed contention in

the interconnections. This is particularly evident with higher numbers of cores, where increased

levels of data reutilization and inter-core communication are possible, due to the added amount

of local memory resources available in the infrastructure. In fact, as it can be observed in the

performance scalability charts in the second row of Fig. 4.18, the AMPM setup with a number of

cores higher than 16 (8 in the Poisson equation solver benchmark) incurs in a high communica-

tion contention. This, in turn, results in a noticeable performance degradation (even resulting in

performance slowdowns). Contrarily, the ICS-SMC setup is capable of fully taking advantage of

its capabilities to mitigate contention and to increase the overall performance, even with a num-

ber of cores as high as 64. For the histogram equalization (Fig. 4.18.C) and Poisson equation

solver (Fig. 4.18.D), it is possible to observe a sudden increase in performance when the entire

dataset fits in the local memories. Specifically, it starts being directly communicated between

cores, avoiding unnecessary communication with the main memory.

Despite the increased levels of communication efficiency of the uICS setup, an even higher

data communication efficiency is observed for the ICS-SMC architecture, as it can be seen from

the top two rows of Fig. 4.18. In fact, a significant communication-execution time ratio reduction

is observed, when compared to the AMPM and uICS setups, resulting from the memory bandwidth

optimization techniques of the SMC (burst controller and reorder buffer). This allows a greater

mitigation of the communication overhead resulting from costly main memory accesses, which is

particularly evident when observing the communication/execution time ratio improvement for the

memory-bound matrix multiplication application (Fig. 4.18.A).

Such a significant memory access optimization and the observed performance scalability are

directly reflected on the total execution time speedups (against the BASE reference) presented in

the bar plots of the third row of Fig. 4.18. As it could be expected, the AMPM is only capable of partly

mitigating the contention and memory traffic with fewer cores, achieving an average 4x speedup

for the considered benchmarks. Contrarily, the streaming optimizations of the uICS setup already

allow significant performance scalability improvements, not showing the slowdowns observed in

the BASE and AMPM setups, with configurations with more than 8 cores. This, in turn, results in

average 32x execution time speedups for the uICS setup, when compared to the BASE setup,

corresponding to a 10x improvement over the AMPM.

However, when combining the ICS architecture with the SMC’s memory-aware techniques,

the ICS-SMC setup consistently provides performance speedup levels with no noticeable perfor-

mance loss for most of the considered benchmarks. In fact, the only exceptions are the his-

togram equalization (Fig. 4.18.C) and the convolutional neural network (Fig. 4.18.E) benchmarks.

In these cases, no added gain is observed with a 64-core configuration (when compared to a

32-core configuration), due to computation- and synchronization-related overheads. Such an im-

101

4. Data Stream Communication

proved communication efficiency allows average performance speedups of 126.7x against the

BASE setup, corresponding to average 54x and 13x improvements over the AMPM and uICS setups,

respectively. Moreover, maximum performance speedups of up to 1500x are observed for the

ICS-SMC setup in the matrix multiplication (Fig. 4.18.A) and Poisson equation solver (Fig. 4.18.D)

benchmarks.

4.4.4.B Energy Savings Evaluation

The observed performance increase and data transfer overhead reduction directly impact the

total energy consumption of the whole system, as it is shown in the energy savings attained by

the ICS-SMC when compared to the other setups (bar plots from the fourth row of Fig. 4.18). From

the charts, it is clear that, besides the discussed performance improvements and the efficient data

management of the offered streaming and broadcasting techniques, the considered main memory

access optimizations also allow a significant reduction of the system’s total energy consumption.

Such savings (averaging 91% with 64-core setups) are directly related not only to the obtained

execution time speedups but also to the significant decrease of the bus communication (resulting

from to the offered broadcast capabilities), and of the number of accesses to the main memory

(accounted in the ratios of the top row bar plots for data transfers reduction), in turn significantly

reducing its total energy consumption.

4.4.4.C Performance-Energy Efficiency Evaluation

To gather all the observed results in a single metric, an additional performance-energy effi-

ciency study was performed. In this case, it was used an EDP metric, calculated by multiplying

the total energy consumption of a given setup by the corresponding execution time of each ap-

plication. The line plots in the bottom row of Fig. 4.18 represent the measured EDP for each

setup. By keeping in mind that lower values represent a higher efficiency, the measured results

reflect the attained lower energy consumption and the improved scalability of the ICS-SMC setup,

when compared to the uICS setup. As it could be expected, the poorer performance scalability

and higher energy consumptions observed in the BASE and AMPM setups also result in a poorly

scalable EDP with the increase of the number of cores, due to the increased contention in its

shared interconnections.

On the contrary, the measured EDP values for the ICS-SMC highlight its data prefetching, reuti-

lization, efficient communication capabilities, and memory access optimization. This is supported

by their combined ability to mitigate the contention to the shared structures, and a consequent

data transfer overhead reduction, which in turn not only results in higher communication through-

puts but also in lower energy consumptions. In fact, thanks to the memory-aware SMC, it is

possible to observe energy efficiency improvements as high as 245x when compared to the uICS

setup.

102

4.5 Summary

4.5 Summary

This chapter proposed several data streaming approaches as viable alternatives to con-

ventional cache-based hierarchies and predictive prefetching mechanisms. The presented ap-

proaches rely on a dedicated DSC that leverages the memory access pattern descriptor speci-

fication and the compilation tool proposed in Chapter 3 to offer an autonomous data acquisition

and stream generation procedure.

The proposed DSC was initially deployed close to the processing cores of conventional GPU

and GPP systems, as an alternative to the utilization of predictive prefetching schemes. The com-

bination of the efficient data streaming provided by the DSC and the code reductions performed

by the compilation tool showed that the proposed stream prefetching mechanisms are capable of

outperforming state-of-the-art prefetchers and offer significant performance and efficiency gains

in general-purpose systems.

While by itself the proposed stream prefetching already provided significant gains, a step fur-

ther was taken by deploying the DSC in a dedicated data streaming infrastructure. Accordingly,

it was proposed a new In-Cache Stream (ICS) communication model that deploys a full data

streaming communication paradigm in a conventional cache-coherent hierarchy. Its main fea-

ture is the capability for seamlessly switching the communication paradigm between memory-

addressed and packed-stream data accesses. This is done through a dedicated ICS controller

that takes advantage of the usual n-way set-associative cache memory organization, by making

each way individually usable as a stream buffer. The DSC itself is deployed by a memory-aware

SMC, that also leverages a burst controller to optimize the main memory bandwidth, along with

a reorder buffer to exploit data reorganization and reutilization techniques through in-time stream

manipulation.

An extensive experimental evaluation showed that the ICS infrastructure provides significant

gains over current state-of-art solutions in the considered benchmark applications. The obtained

results highlight the capabilities of the ICS infrastructure to significantly reduce the data transfer

overheads with the deployed data streaming, data reutilization, and communication management

techniques, mitigating the contention in the shared interconnections. Specifically, significant per-

formance speedups and total energy savings are observed, which result in overall processing

energy efficiency improvements as high as 245x.

103

4. Data Stream Communication

104

5
Adaptive Processing Structures

Contents

5.1 Reconfigurable Many-Core Accelerator . 107

5.1.1 Many-Core Processing Infrastructure . 108

5.1.2 Data Access and Interconnection Networks 109

5.1.3 Hypervisor and Accelerator Management 110

5.1.4 Reconfiguration Engine . 111

5.1.5 Implementation Considerations and Constraints 113

5.1.6 Accelerator Configuration and Implementation 113

5.2 Reconfiguration Management . 116

5.2.1 Runtime Learning and Reconfiguration Policies 117

5.2.2 Compile-time Modeling and Optimization 119

5.3 Experimental Validation . 129

5.3.1 Methodology . 129

5.3.2 Case Study A: Learning-based Automatic Reconfiguration 131

5.3.3 Case Study B: Compiler-Assisted Reconfiguration 135

5.3.4 Case Study C: Resource Management for Dynamic Workloads 138

5.4 Summary . 143

105

5. Adaptive Processing Structures

The previous chapters explored the idea that knowing an application’s memory access pattern

before its execution allows the system to adapt and optimize its data transfer scheme (either

through data prefetching or dedicated data streaming mechanisms), in turn increasing its effective

throughput.

In this chapter, that same notion is further extended by exploring the application’s computa-

tional characteristics (such as the type of computing operations or the amount of data parallelism)

to dynamically specialize the system’s processing architecture at runtime, with the goal of increas-

ing its performance and energy efficiency. Accordingly, it is proposed the exploitation of architec-

tural partial reconfiguration as an alternative to the power supply management and performance

throttling mechanisms deployed in current heterogeneous systems.

As discussed in Chapters 1 and 2, most heterogeneous systems try to provide some degree

of specialization by co-deploying multiple specialized processing components. However, they rely

on the migration of application tasks between resources (to match their computational require-

ments), resulting in delays that can degrade performance. Additionally, while tasks are executed

in specialized modules, the remainder of the circuit is usually powered-down (or made idle) to

save energy, which results in a rather ineffective resource utilization.

Contrarily, partial reconfiguration allows a dynamic adaptation of the processing architecture

itself to the characteristics of the task during its execution and according to runtime system con-

straints (e.g., performance requirements, operation complexity or power dissipation limits). This

can be done by analyzing the application’s computational requirements (either before or during

runtime) and utilize such information to reconfigure a selected region of the system’s processing

infrastructure at runtime (e.g., by specializing functional units or by dimensioning the amount of

processing parallelism), while the remaining logic continues to operate uninterrupted. Such an ap-

proach allows a convenient computing specialization and resource tuning, by instantaneous bal-

ancing the processing throughput and the energy consumption. Moreover, it eliminates the need

for task migration, since the architecture of each processing unit is, itself, adapted on-the-fly. As

such, tasks do not have to be moved to specialized modules (better-suited for their computational

requirements) or to low-power units (to save energy), has it commonly occurs in heterogeneous

architectures.

With the goal of validating this hypothesis, this chapter presents a study on the exploitation of

compile-time and runtime application modeling to support partial reconfiguration in the context of

general-purpose accelerators. The presented study comprises:

• The design of a reconfigurable many-core accelerator architecture, particularly devised

to enable the runtime reconfiguration of its processing infrastructure. The designed archi-

tecture was implemented targeting a Field-Programmable Gate Array (FPGA) device;

• A reconfiguration engine that leverages the partial reconfiguration technology of the pro-

totyping FPGA device to adapt the accelerator’s processing infrastructure at runtime;

106

5.1 Reconfigurable Many-Core Accelerator

• A programmable Hypervisor mechanism that monitors the execution of a task to learn its

computational requirements and trigger the reconfiguration process accordingly. This is

done by deploying programmed reconfiguration policies that allow the system to balance its

performance and energy consumption (in different execution contexts);

• A compile-time optimization algorithm, that leverages the application and system models

to provide the mapping and scheduling of tasks to processing resources and plan their

reconfiguration (through the Hypervisor).

Finally, the study is complemented with a set of experiments to demonstrate and validate the

accelerator’s adaptation capabilities, when supported by i) runtime task monitoring and analysis;

ii) compile-time system modeling for the reconfiguration optimization and task scheduling; and iii)

compile-time system modeling for resource balancing according to dynamic workloads.

5.1 Reconfigurable Many-Core Accelerator

The study presented in this chapter relies on the implementation of a dedicated reconfigurable

many-core acceleration infrastructure. It was specifically designed to demonstrate the advantages

of exploiting partial reconfiguration in a general-purpose computing context. Despite comprising

a generic computing architecture, it was constructed by targeting its implementation on an FPGA

device, as a way of making use of its partial reconfiguration technology. Moreover, being this study

an exploratory exercise, the design of the accelerator was only focused on the processing archi-

tecture and its adaptation while leaving the deployment of the remaining supporting infrastructures

(such as data communication and accelerator management) to be done with straightforward ar-

chitectures.

Shared Communication Interconnection

Reconfigurable
Slot #1

... Reconfigurable
Slot #N

Reconfigurable
Slot #2

Reconfigurable
Slot #0

R
e

c
o

n
fi
g

u
ra

b
le

 A
re

a

H
y

p
e

rv
is

o
r

Backbone Interconnection

Main Shared Memory

A
c

c
e

le
ra

to
r

C
o

n
tr

o
ll
e

r

R
e

c
o

n
fi
g

u
ra

ti
o

n

E
n

g
in

e

Figure 5.1: Reconfigurable many-core accelerator overview.

107

5. Adaptive Processing Structures

Accordingly, the devised many-core accelerator consists of a dense processing infrastructure,

organized in several reconfigurable computing clusters, each composed of multiple processing

cores. The adaptation of the processing infrastructure is assured by reconfiguring each cluster to

modify the number of instantiated processing cores and their architecture. To do so, part of the

FPGA fabric was divided in a set of reconfigurable slots where clusters can be instantiated. As

such, while a static (non-reconfigurable) FPGA implementation is usually encoded in a single bit-

stream to program the full device, to make use of partial reconfiguration, a set of partial bitstreams

is generated for each possible configuration for the defined reconfigurable slots.

The remaining fabric is reserved for the accelerator’s supporting infrastructures which com-

prise: i) a reconfiguration engine that performs the actual partial reconfiguration of the accelera-

tor’s reconfigurable slots; ii) the Hypervisor module that is responsible for assigning tasks to pro-

cessing cores, monitoring their execution and scheduling the reconfiguration process; and iii) an

accelerator controller, responsible for interfacing the processing infrastructure and the Hypervisor.

The processing infrastructure itself is connected to the accelerator controller through a dedicated

backbone communication structure, and to a main shared memory via a shared communication

bus (see Fig. 5.1).

The accelerator’s reconfigurable infrastructure was implemented by defining a set of general-

purpose processing core architectures with varying computing capabilities and complexity. Ac-

cordingly, each reconfigurable slot was carefully dimensioned by profiling the considered archi-

tectures in terms of throughput, power dissipation, and area resources. To do so, and to provide

a fully functional reconfigurable platform, the designed accelerator and its components were im-

plemented on a Xilinx Virtex-7 FPGA device.

5.1.1 Many-Core Processing Infrastructure

To maximize the flexibility and versatility of the reconfigurable processing infrastructure, its

architecture was designed by following a fully modular approach. Accordingly, each computing

cluster was designed to provide a generic topology and organization (see Fig. 5.2), comprising

multiple processing cores interconnected via: i) a local core interconnection (e.g., a shared bus)

that interfaces each core to the accelerator’s shared communication interconnection (and to the

main memory - see Fig. 5.1), through a dedicated bridge; and ii) a local backbone interconnection,

connected to the accelerator’s own backbone interconnection (see Fig. 5.1), to allow a direct

communication of each core with the accelerator’s controller (and the Hypervisor). Finally, the

cluster accommodates an optional local memory device (shared between the cores).

Each processing core was designed to be as independent as possible of its underlying general-

purpose Processing Element (PE) architecture (see Fig 5.2). Accordingly, each core’s PE is paired

with a dedicated controller, a local scratchpad memory (for the program and local data private to

the core), and an interface to the local cluster interconnection.

108

5.1 Reconfigurable Many-Core Accelerator

Figure 5.2: Internal block diagram of a processing core inside a cluster.

The adopted core controller ensures the PE’s coordinated execution inside the processing in-

frastructure. Besides synchronizing the PE with the Hypervisor (through the accelerator controller,

as detailed below), it also monitors its execution, while keeping a record of a set of performance

counters. To accomplish such tasks, the core controller communicates with the Hypervisor to: i)

load the local memory with program and data, and to receive a command to start the PE’s execu-

tion; and ii) to notify the Hypervisor about the completion of PE’s execution and to send back the

information measured by the performance counters.

By default, the controller monitors the number of clock cycles that are required to execute a

specific task. However, depending on the considered implementation, it is also possible to mon-

itor other parameters, which are specifically customized based on the underlying architecture of

the PE. Examples of additional counters include the number of specific operations (e.g., integer

divisions, floating-point additions or multiplications), branch mispredictions or the identification of

specific function calls (e.g., to detect operations that are performed through software libraries, in-

stead of hardwired instructions). Hence, by providing this monitoring flexibility, it is possible to offer

the Hypervisor with the necessary means to learn the characteristics of a running application/task

and to adapt the processing architecture accordingly.

5.1.2 Data Access and Interconnection Networks

As it was referred before, the communication between all the accelerator’s components in

assured by the backbone and shared communication interconnections (see Figure 5.1).

The backbone interconnection was implemented by a simple communication structure based

on the AXI-Stream Protocol [118]. Despite the already available Xilinx IP cores that implement

AXI-Stream interconnections [121], it was implemented a lighter, but still fully-compliant and cus-

tom interconnection, since not all the protocol signals are required, and it is only necessary to

create direct communication channels between the Hypervisor and each core. Moreover, this im-

plementation was fulfilled with hardware resource overhead reduction in mind, since the custom

109

5. Adaptive Processing Structures

module targets a much lower complexity than the original IP core.

The implemented interconnection provides a communication mechanism (with single-cycle

latency) between up to 16 peripherals which, by the protocol, corresponds to 16 AXI-Stream mas-

ter and 16 AXI-Stream slave ports. Consequently, this interconnection features two independent

unidirectional channels: a one-to-many channel (with broadcast capabilities) and a many-to-one

channel.

To allow a flexible access of each core to the main memory (see Fig. 5.1), the shared intercon-

nection was designed by deriving its architecture from the implemented backbone interconnection.

Hence, while maintaining the same base structure, it is possible to deploy an arbitrated shared-

bus interconnection. This is achieved by including extra signals to transmit a memory address

signal, and by adding dedicated memory and core interfaces, that see the unidirectional channels

as a single bidirectional channel.

5.1.3 Hypervisor and Accelerator Management

The adaptation of the processing infrastructure is managed by a programmable Hypervisor

mechanism (see Fig. 5.1). It comprises a software module executed in an MB-LITE [120] mi-

croprocessor, that is responsible for managing the reconfigurable hardware resources that are

offered by the accelerator. Such a programmable management module aims at deploying exe-

cution optimization policies that allow the Hypervisor to determine the most adequate processing

architecture to each application task under execution.

For such purpose, it receives and maintains a permanent record of the performance counters

of each core. In brief (detailed later on), with this information, it calculates the actual operational

and computational intensity of each running task and estimates the total execution time, power

and energy consumption on the instantiated core architectures. After obtaining these values,

it re-estimates the same metrics by considering the reconfiguration of a computing cluster to a

better-suited architecture.

The Hypervisor’s microprocessor communicates with the remaining management modules

through a memory-mapped interface. Such an interface creates a straightforward communication

channel with the accelerator controller (to assign tasks to the accelerator’s processing cores and

obtain performance values) and with the reconfiguration engine (to issue reconfiguration com-

mands).

Accordingly, the interface between the Hypervisor and the processing infrastructure is assured

by a dedicated accelerator controller. The controller’s architecture (depicted in Fig. 5.3) comprises

a set of control and status registers, a Finite-State Machine (FSM) (that handles requests from

the Hypervisor and issues commands to the accelerator) and an interface to the backbone inter-

communication.

Besides establishing the interface between the accelerator and the Hypervisor, the controller

110

5.1 Reconfigurable Many-Core Accelerator

Figure 5.3: Accelerator Controller. A FSM is used to handle all requests from the host CPU, acti-

vate the command dispatcher that issues commands to the reconfigurable accelerator according

to the control registers and report the accelerator status to the host.

is also responsible for managing and monitoring the processing cores execution and for loading

the cores’ local memories. The Hypervisor sends commands to the controller by configuring a

set of control registers. A set of status registers (with a configurable number and size, according

to the processing structure organization), is maintained by the controller, indicating the execution

state of each processing core (’1’ or ’0’, indicating running and stopped states). This way, the

Hypervisor can monitor the cores’ execution by reading the values in each register.

5.1.4 Reconfiguration Engine

To provide the required partial reconfiguration capabilities, a reconfiguration engine was de-

signed by targeting the adopted Xilinx FPGA technology. It relies on a minimalistic controller

(implemented by a FSM) that handles the following tasks: i) receiving reconfiguration commands

issued by the Hypervisor; ii) initiating the reconfiguration port and reading the required partial

bitstreams from a storage memory; iii) ensuring the correct transfer of each partial bitstream to

the FPGA internal reconfiguration port; and iv) signaling the completion of the reconfiguration

process.

For the Xilinx 7-Series technology, the developed reconfiguration engine (illustrated in Fig. 5.4)

is composed of a Xilinx Internal Configuration Access Port (ICAP) 1 controller (AXI HWICAP), an

on-board linear flash memory used as a bitstream memory, the reconfiguration controller and a

dedicated Direct Memory Access (DMA) controller.

In this particular implementation, all the available bitstreams are preloaded to an on-board lin-

ear flash memory. This includes both the initial full system bitstream and the partial bitstream con-

figurations. Although the accelerator’s main memory could be used to accommodate the partial

1The ICAP is the device configuration port, with a 32-bit data port, supporting a writing bandwidth of up to 100MHz. It
allows for the configuration process to be controlled by an entity instantiated in the device itself. This, in turn, allows the
deployment of a custom low-profile reconfiguration engine, to provide full control over the reconfiguration process.

111

5. Adaptive Processing Structures

Figure 5.4: Architecture of the reconfiguration engine for a Xilinx 7-Series device.

bitstreams, it would potentially impact the computation throughput, since both the reconfiguration

engine and the processing cores would be simultaneously accessing the same memory. Since

the initial bitstream configuration is already automatically loaded from the FPGA’s flash memory

when the board is booted, it is also possible to use it to store the repository of partial bitstreams.

This way, there is no communication interference between computation and reconfiguration.

To trigger the reconfiguration of each slot, the reconfiguration engine controller accepts a

command from the Hypervisor containing an identification of the partial bitstream to be loaded

to the reconfigurable fabric. Upon receiving the identification of the required configuration, the

controller issues a read command to the flash controller to obtain the bitstream header. This

header contains the information regarding the configuration bitstream size (corresponding to the

number of bytes that need to be sent to the ICAP controller).

After this initial phase, a low-profile DMA controller (composed of a simple adder and control

registers) transmits the partial bitstream from the flash memory to the ICAP port. To set up the

DMA, it is only required to configure it with the bitstream size and its memory location. This is

a necessary design option since the data transfer is performed by reading 16-bit words from the

flash memory and by packing them into 32-bit words, before sending them to the ICAP controller.

With such a DMA-based approach, it is possible to exploit the flash memory’s burst mode, allowing

a faster merge of the 16-bit words in 32-bit words. This results in much higher transfer rates and

consequently lower reconfiguration latency.

According to device constraints, only one reconfiguration command can be issued at a time,

since the previous reconfiguration must be concluded before a new reconfiguration command can

be issued. Besides simplifying the reconfiguration procedure (avoiding the presence of recon-

figuration command queues), it is worth noting that it does not significantly affect the resulting

performance since a potential access contention to the flash memory would prevent greater re-

configuration throughputs.

112

5.1 Reconfigurable Many-Core Accelerator

5.1.5 Implementation Considerations and Constraints

To implement the reconfigurable processing infrastructure in the considered FPGA device,

the distribution and amount of resources in each reconfigurable slot was carefully tuned to allow

the instantiation of a significant range of processing core architectures. Moreover, attention was

given to inherent overheads that result from the reconfiguration procedure (tied to the size of

each reconfigurable area) and from possible execution synchronization issues that may arise

from changing the processing hardware.

Furthermore, to attain the aimed modular approach of the reconfiguration procedure, it is

necessary to constrain each reconfigurable slot to a specific and well-defined region of the recon-

figurable fabric of the FPGA. As such, to ensure that the reconfiguration of each slot only changes

a predefined region in the device, appropriate region delimitation had to be applied. This ensures

that the reconfiguration engine can trigger the partial configuration of the fabric with no risk of the

process affecting the on-going activity of the remaining accelerator’s resources. Another limiting

factor in the mapping of the slots to the configurable logic is the location of certain dedicated

hardware modules/ports of the device (such as PCIe bridges, configuration ports or GPIO). Since

these modules are implemented by hard-cores, they can only be allocated to specific regions of

the device.

On the other hand, since a significant amount of cores can be deployed, a core-level re-

configuration granularity would incur on an undesired fragmentation of the reconfigurable logic.

Specifically, not only the amount of individually reconfigurable zones would give rise to a signif-

icant reconfiguration overhead (the process would have to be repeated for each area), but their

execution would also need to be individually stopped and restarted, in turn increasing the number

of control messages throughout the system. To avoid such a situation, a more coarse-grained

approach is considered, where the reconfigurable fabric is distributed in larger areas with equal

size and amount of resources. This way, the reconfiguration can be performed to the level of a full

slot, limiting the number of reconfiguration procedures and easing the system’s control.

5.1.6 Accelerator Configuration and Implementation

This section presents the configuration and implementation of the devised accelerator using a

Xilinx Virtex-7 FPGA (XC7VX485T) board. To do so, synthesis and place&route procedures were

performed with Xilinx ISE 14.7, to implement the accelerator and assess the characteristics of

each of its components, regarding their timing, resource area occupancy and power dissipation

(estimated with the Xilinx Power Estimation tools).

The reconfigurable processing infrastructure was dimensioned by considering three homoge-

neous multi-core cluster configurations, based on three types of PE architectures with different

computational and architectural complexities. Since each reconfigurable slot is equally dimen-

sioned in terms of the provided FPGA resources, the topology of each type of cluster configuration

113

5. Adaptive Processing Structures

will depend on a trade-off balance between core architecture complexity, the number of cores per

cluster and the total number of clusters, as discussed in the following subsections.

5.1.6.A Processing Core Architectures

Similarly, to the Hypervisor, the three considered PE architectures were based on the 32-bit

RISC MB-LITE [120]. This soft-core was selected due to its portable processing structure, with

an implementation fully compliant with the well-known MicroBlaze Instruction Set Architecture

(ISA) [126], which allows taking advantage of the GNU Compiler Collection (GCC) [29]. Moreover,

the MB-LITE design requires few hardware resources and is configurable, being relatively easy to

include custom modules.

Accordingly, the simplest PE architecture (Type A) that was deployed corresponds to the ba-

sic configuration of the MB-LITE core, i.e., with both the barrel shifter and multiplier deactivated.

Without the presence of these structures, the architecture requires a much lower hardware foot-

print and presents a higher operating frequency [120]. The second architecture (Type B) includes

the barrel shifter and the multiplier structures, corresponding to the full MB-LITE architecture.

For the third considered architecture (Type C), a full MB-LITE architecture supporting a single-

precision Floating-Point Unit (FPU) was considered. In this particular case, the considered 4-

stage pipelined FPU is composed of three Xilinx IP Floating-Point Operator [127] cores. Since the

MB-LITE core is compliant with the MicroBlaze ISA, the corresponding Floating-Point (FP) instruc-

tion opcodes [126] for addition, subtraction, multiplication, and compare were adopted. Moreover,

although FPUs are only deployed by Type C PEs, the other two architecture types can still perform

floating-point operations by resorting to the GCC software implementation. Naturally, the same

situation occurs in Type A PEs regarding integer multiplication and barrel shifter operations.

To provide the Hypervisor with relevant profiling information about each core runtime per-

formance, five monitoring events were measured during the execution, corresponding to the

counts of clock cycles (CLK), integer multiplications (MUL), FP operations (FP) and calls to software-

emulated integer multiplications (SW MUL) and FP operations (SW FP).

5.1.6.B Hardware Resource Analysis

After defining the adopted PE architectures, they were characterized by a hardware resource

analysis to dimension the number of processing cores that can be instantiated in each cluster

configuration. Table 5.1 presents the required hardware resources for each type of processing

core. As expected, the resource overhead increases with the complexity of each architecture.

Hence, the number of processing cores in each cluster configuration was dimensioned to ensure

that the total occupied area of each cluster is approximately the same. This way, each Type

A cluster contains 15 cores, each Type B cluster contains 12 cores, and each Type C cluster

contains 8 cores (see Table 5.2).

114

5.1 Reconfigurable Many-Core Accelerator

Table 5.1: Characterization of each type of core, in terms of hardware resources and maximum

operating frequency.
Available Processing Cores

Resources Type A Type B Type C

Registers 607200 530 (<1%) 536 (<1%) 841 (<1%)

LUTs 303600 1132 (<1%) 1406 (<1%) 1932 (<1%)

Slices 75900 402 (<1%) 528 (<1%) 658 (<1%)

RAMB36E1 1030 4 (<1%) 4 (<1%) 4 (<1%)

RAMB18E1 2060 3 (<1%) 3 (<1%) 3 (<1%)

DSP48E1 2800 0 (0%) 3 (<1%) 7 (<1%)

Max Freq. [MHz] - 211.1 114.7 113.4

Table 5.2: Characterization of each cluster type, in terms of hardware resources, maximum oper-

ating frequency and power consumption.
Available Computing Clusters

Resources 15 × Type A 12 × Type B 8 × Type C

Registers 607200 7655 (<1%) 6146 (<1%) 6569 (<1%)

LUTs 303600 16706 (5%) 16614 (5%) 15334 (5%)

Slices 75900 5959 (7%) 6244 (8%) 6530 (8%)

RAMB36E1 1030 60 (5%) 48 (4%) 32 (3%)

RAMB18E1 2060 45 (2%) 36 (<1%) 24 (<1%)

DSP48E1 2800 0 (0%) 36 (<1%) 56 (2%)

Max Freq. [MHz] - 206.2 114.7 113.2

Static Power [mW] - 210.9 210.7 209.9

Total Power@100 MHz [mW] - 615.2 636.6 600.7

Table 5.3: Characterization of the supporting infrastructure of the accelerator, in terms of hardware

resources, maximum operating frequency and power consumption.
Registers LUTs RAMB36E1 RAMB18E1 DSP48E1

Hypervisor 536 (<1%) 1406 (<1%) 4 (<1%) 3 (<1%) 3 (<1%)

Reconfiguration Controller 530 (<1%) 1132 (<1%) 4 (<1%) 3 (<1%) 0 (0%)

ICAP Controller 742 (<1%) 546 (<1%) 1 (<1%) 1 (<1%) 0 (0%)

DMA 2891 (<1%) 2930 (<1%) 1 (<1%) 0 (0%) 0 (0%)

Total Power Dissipation [mW] 367.9

By analyzing the power consumption of each cluster type, when considering an operating fre-

quency of 100 MHz, it was observed a rather similar value for the three types (bottom of Table 5.2).

This is explained by the fact that the three cluster types were properly defined to occupy the same

amount of hardware resources.

The remaining components of the platform were also analyzed regarding the required hard-

ware resources and power consumption. Hence, all the components that comprise the accelerator

management and reconfiguration engine (see Fig. 5.1) were taken into account for the total power

dissipation of the system. Table 5.3 presents the hardware resources required for the accelerator’s

supporting infrastructure. It can be observed that a low occupancy of about 5% was observed for

the FPGA device, with a total power dissipation of 367.9 mW.

According to the obtained results, it is possible to implement a 7-cluster accelerator in the

considered FPGA. In the whole, this represents a number of processing cores ranging from 56 to

115

5. Adaptive Processing Structures

105 in the implemented system.

5.1.6.C Reconfiguration Overhead

In what concerns the real-time adaptation of the system, it was observed an expected depen-

dency between the reconfiguration time and the size of the partial bitstream that is loaded into

the ICAP. Since the bitstreams for the three considered cluster configurations are approximately

2MBytes, a reconfiguration time of approximately 10ms is observed.

It was also considered an additional bitstream configuration corresponding to an empty cluster,

which can be used to turn off a reconfigurable slot (e.g., to put a cluster on an idle state to save en-

ergy). This configuration bitstream file is only 460KBytes long, in turn requiring a reconfiguration

time of approximately 2ms.

To calculate the total power that is used by the reconfiguration procedure, the estimated power

that is consumed by the reconfiguration engine, when it is in its idle state, was subtracted from the

power consumed by the same engine while performing a reconfiguration procedure. The obtained

difference between these two estimations results in a reconfiguration power of about 44mW. De-

spite consuming significantly less power than what it is required by the actual processing clusters,

this result can also be considered by the Hypervisor, when making decisions regarding the trig-

gering of the reconfiguration procedure.

5.2 Reconfiguration Management

As described above, the designed reconfigurable accelerator is managed by a Hypervisor

mechanism that is responsible for optimizing the accelerator’s computing efficiency through in-

stantaneous resource balancing. To do so, it can be programmed according to different task

execution and cluster reconfiguration policies (e.g., to maximize raw acceleration or to minimize

power dissipation). The main goal is to allow the Hypervisor to decide on the best possible action

according to the application’s characteristics and the system’s execution context.

As an example, to accelerate the execution of a processing task, the Hypervisor may decide

either to run it on an already instantiated cluster, to reconfigure the cluster to a better-suited

architecture for the task, or to wait until a previous task completes its execution on an already

suited cluster. On the other hand, to control energy consumption, the Hypervisor may decide to

entirely disable a processing cluster, by reconfiguring it with an empty configuration (powering off

the corresponding region on the FPGA device). Such cases may occur when there are not enough

processing tasks to make use of the entire accelerator’s resources (e.g., when the application has

insufficient parallelism), allowing it to minimize the overall power dissipation; or when the power

budget is exceeded by the active processing clusters, thus requiring parts of the reconfigurable

area to be disabled.

116

5.2 Reconfiguration Management

To deploy such optimization procedures, the Hypervisor must be aware of the characteristics

of the application and the available processing architecture configurations. While the architecture

model of each processing cluster is predefined and can be hard-coded, the characteristics of the

application can only be obtained through its analysis. In this study, two distinct approaches are

considered to implement this analysis:

• At runtime (Section 5.2.1), by monitoring the application’s execution in the accelerator and

learning its computational requirements, through to the performance counters of each pro-

cessing core. The gathered information is used by the Hypervisor to trigger the reconfig-

uration procedure according to different execution policies (e.g., maximum performance or

energy saving contexts);

• At compile-time (Section 5.2.2), by pre-modeling the application and generating its map-

ping to the accelerator’s cores with a specially devised optimization algorithm. The end

result is a set of execution plans (optimized for different execution contexts) that are fol-

lowed by the Hypervisor to schedule the execution of processing tasks and trigger cluster

reconfiguration procedures.

Both approaches were built on the assumption that parallel applications can be discretized

into multiple computing tasks (that perform the computation over a chunk of the dataset to be

processed). The performance of each task in a particular core architecture is characterized ac-

cording to a operations-per-second (OPS) metric, calculated according to the values measured

by the core performance counters.

5.2.1 Runtime Learning and Reconfiguration Policies

The first considered approach characterizes each task by learning its computational require-

ments at runtime and then selecting the best-suited architecture to execute it. To do so, a set

of reconfiguration policies is programmed in the Hypervisor to manage the accelerator’s execu-

tion and reconfiguration, namely: i) overall minimization of the execution time; ii) maximization

of the processing performance while establishing a ceiling for the total power dissipation; and iii)

minimization of the energy consumption, while guaranteeing a minimum performance level.

The procedure presented in Algorithm 1 implements a runtime performance prediction routine.

To decide when it is advantageous to reconfigure a given cluster, before executing a task, the

algorithm performs two distinct steps. First, it searches for a configuration allowing for higher

gains in performance, energy, or power consumption. This decision also takes into account the

reconfiguration overhead. Then, if such configuration is found and if the required time to complete

the required reconfigurations is lower than executing the task with the current configuration, the

targeted cluster is reconfigured accordingly. It is worth noting that this algorithm can also be

used for energy and power optimizations, by simply changing all time-based variables to energy

variables.

117

5. Adaptive Processing Structures

Algorithm 1 Execution Time Optimization

Input: task, chunk, current arch
Global Variables: reconf time, inprogress reconfs
Output: new arch or 0

1:
2: ops← load task stats(task, current arch)
3: curr time← ops × chunk
4:
5: new arch← 0
6: time← curr time
7: for each arch do
8: ops← load task stats(task, arch)
9: test← ops × chunk

10:
11: if test + reconf time < time then
12: time← test
13: new arch← arch
14: end if
15: end for
16:
17: if (new arch > 0) and (curr time < time + inprogress reconfs × reconf time) then
18: new arch← 0
19: end if
20: return new arch

Algorithm 2 Power-Ceiling Algorithm

Input: task, chunk, idle list, max power, rec list
Global Variables: reconf power, static power

1:
2: curr power← static power
3: for each cluster do
4: if cluster.arch 6= EMPTY then
5: curr power← curr power + get power(cluster, cluster.arch)
6: end if
7: end for
8:
9: for each cluster ∈ idle list do

10: if curr power > max power then
11: curr power← curr power - get power(cluster, cluster.arch)
12: rec list← (cluster, EMPTY)
13: end if
14: end for
15:
16: cluster← find idle or off cluster()
17: new arch← time optimization(task, chunk, cluster.arch)
18: if (new arch > 0) and (curr power + reconf power ≤ max power) then
19: rec list← (cluster, new arch)
20: end if

Accordingly, the procedure presented in Algorithm 2 adds an extra level of optimization to the

previous algorithm, by introducing a dynamic power-ceiling constraint. This power constraint can

change at runtime, depending on the dynamic requisites of the accelerator. Based on the total

power budget of the system at a given time, the algorithm tries to turn off clusters that are inactive

until the power constraint is met. Each cluster is turned off by reconfiguring it to an empty cluster,

which turns off the FPGA logic in the corresponding reconfigurable slot. If the power budget is

increased, an idle (or turned off) cluster is searched and analyzed with the algorithm presented in

Algorithm 1 for a given task. Under this assumption, each cluster is only reconfigured if the power

overhead for the reconfiguration procedure and the newly configured architecture does not violate

the power ceiling constraint.

118

5.2 Reconfiguration Management

Algorithm 3 Minimum Assured Performance Algorithm

Input: task,chunk,idle list,min ops,rec list
Global Variables: reconf time

1:
2: for each cluster do
3: if cluster.arch 6= EMPTY then
4: curr ops← curr ops + load task stats(cluster.task, cluster.arch)
5: end if
6: end for
7:
8: cluster← find idle or off cluster()
9: if cluster == NULL then

10: new arch← time optimization(task, chunk, EMPTY)
11: else
12: new arch← time optimization(task, chunk, cluster.arch)
13: end if
14:
15: if cluster 6= NULL and new arch > 0 then
16: test← curr ops - load task stats(task, cluster.arch)
17: ops← load task stats(task, new arch)
18: test← test + (ops × chunk + reconf time)/chunk
19: if test ≥ min ops then
20: rec list← (cluster, new arch)
21: curr ops← curr ops - test
22: end if
23: end if
24:
25: for each cluster ∈ idle list do
26: ops← load task stats(task, cluster.arch)
27: if curr ops - ops < min ops then
28: continue
29: end if
30: curr ops← curr ops - ops
31: rec list← (cluster, EMPTY)
32: end for

Finally, the procedure presented in Algorithm 3 adds a new level of optimization, with a mini-

mum assured performance policy. This algorithm tries to minimize the power consumption while

maintaining a given minimum performance level. Initially, the algorithm presented in Algorithm 1

is executed to check for the performance requirements of the new task chunk. If reconfiguration

is required for an idle cluster, the reconfiguration overhead and the future performance of the new

cluster architecture is checked, and it only reconfigures such cluster provided that the minimum

assured performance is met. Finally, the algorithm tries to turn off idle clusters to lower the total

power consumption, as long as the minimum performance is met for the current task.

5.2.2 Compile-time Modeling and Optimization

The considered compile-time optimization approach assumes that the Hypervisor makes use

of a set of optimized execution plans. These plans are generated at compile-time by a specially

devised Design Space Exploration (DSE) methodology, which makes use of a Multi-Objective

Optimization (MOO) algorithm to optimize the accelerator’s execution in terms of performance,

power dissipation, and energy consumption.

The generated execution plans comprise a time-ordered execution queue (see Fig. 5.5) con-

taining: i) the mappings of the several application tasks to the different core architectures of the

119

5. Adaptive Processing Structures

TASK ARCH SLOT REC TIME

.

.

.

7 4 1 no 5

2 3 2 no 5

5 2 3 no 5

4 1 2 yes 13

3 1 1 yes 27

6 2 3 no 30

.

.

.

Figure 5.5: Execution plan example. If two tasks (TASK column) are mapped to different compo-

nents (ARCH column) and subsequently assigned to the same reconfigurable slot (SLOT column),

a reconfiguration must be triggered (REC column) before the second task begins.

accelerator; and ii) the assignments of those mappings and core architectures to the available

set of reconfigurable slots, together with any required reconfiguration commands. This way, an

execution plan can be represented as a list of tuples (TASK,ARCH,SLOT,REC,TIME), where TASK is

a task identification, ARCH is the mapped architecture identification, SLOT is the reconfigurable slot

for that architecture, REC indicates whether reconfiguration is required prior to the task execution

and TIME is the assigned starting time.

To take advantage of these execution plans, the Hypervisor can operate in one of two modes:

• On the Scheduler mode, the Hypervisor strictly follows the order in the execution queue, cor-

responding to the current execution model, and issues the tasks to their mapping component

in its corresponding reconfigurable slot, as well as the required reconfiguration commands.

In case there is a change in the execution environment, such as a low-power scenario, the

Hypervisor switches the considered execution plan and continues the execution from where

it left;

• On the Resource Management mode, instead of strictly following an execution plan, the

Hypervisor only extracts the mappings between tasks and cluster architectures. Then, it

monitors the core throughput variations and switches between execution plans in real-time in

order to balance the available resources, ensuring a system adaptation to applications with

dynamic workload variations. To ensure the compliance with the application performance,

power, and energy constraints, it dynamically selects the most appropriate execution plan

from a list of feasible candidates.

5.2.2.A Design Space Exploration Specification Model

The conceived DSE algorithm requires the use of a formal representation of both the underly-

ing application and of the target processing structure. In particular, it was considered the general

system specification model proposed in [83] for the description of the data flow between the sev-

eral application tasks and the hardware components to define a new representation that also

supports reconfigurable systems.

According, the herein defined model relies on a data-flow graph to represent the application’s

120

5.2 Reconfiguration Management

Figure 5.6: Example of a system specification comprehending the Task (a) and the Architecture

(c) Graphs, together with the set of Mapping Edges (b) between them. The values inside each

node of the graphs correspond to unique identifications for each task (a) and component (c) of

the system.

tasks and their interactions [128, 129]. Although it is manually defined for this particular study,

future implementations can consider pre-processing modules that automatically extract the appli-

cations characteristics and elaborate such a graph.

In a first step, the algorithm must be provided with the set of different types of supported

operations (including communication). Such operations can range from fine-grained, such as

integer or floating-point instructions, to coarse-grained operations, such as entire functions or

tasks. This way, each task, ti, is represented by:

• nk - number of operations (or tasks) of type-k;

• ds - size of its assigned data chunk.

Based on this assumption, the application is represented by a data-flow Task Graph,

G(VT , ET), composed of a set of tasks VT . This set comprises both processing tasks (V p
T ⊂ VT)

and communication tasks (V c
T ⊂ VT). The Task Graph also comprises the set of edges, ET and

the data flow between them. Each edge is given by the tuple e = (ti, tj), with ti, tj ∈ VT . An

example Task Graph is shown in Fig. 5.6(a).

A similar formalization is applied to the definition of the architecture model. This way, an ar-

chitecture is represented by a data-flow Architecture Graph, G(VC , EC), composed of a set of

components VC (comprising both processing components, V p
C ⊂ VC , and communication chan-

nels, V c
C ⊂ VC), and the set of edges, EC , that represent the data flow between them. Each edge

is given by the tuple e = (ci, cj), with ci, cj ∈ VC . Every component, ci, represents a reconfigurable

121

5. Adaptive Processing Structures

Figure 5.7: Example of an architecture model, represented by both the location and organization

of the reconfigurable slots and by the possible component assignments to each of those slots.

Each reconfigurable slot can accommodate only one architecture at the time. Each component

is given an unique numeric identification, later used for the Architecture data-flow Graph (see

Fig 5.6(c)).

module and is defined by:

• cai - component architecture identification;

• si - reconfigurable slot used by the component;

• lik - execution latency for operations (or kernels) of type k in the component (-1 if the type

of operation cannot be executed);

• lsi - communication setup overhead (only for communication channels),

• lri - component reconfiguration/adaptation time;

• pi - power consumption of the component;

• pri - reconfiguration/adaptation power consumption.

The latency of each communication channel, i, is given by adding its setup overhead (lsi) to

the delay of transferring a single data block (lki) times the amount of transferred data.

One of the main challenges posed by the representation of a reconfigurable accelerator is

concerned with the definition of a formal model that adequately represents the adaptability of the

system. To do so, since a vast number of different cluster architectures can be instantiated in

each of the accelerator’s reconfigurable slots, each combination of architecture-to-slot instantia-

tion is assumed as a different component. Hence, if two consecutive tasks are mapped to two

different components that correspond to the same slot, a reconfiguration command must be trig-

gered in between, as it will be later described. Fig. 5.7 depicts an example Architecture Model,

corresponding to the same system specification previously presented in Fig. 5.6(c).

Having defined both the Application and the Architecture Models, a set of Mapping Edges that

represent each possible mapping of each task to all the components of the system is created, by

simultaneously parsing both graphs. For each pair of processing task ti and processing compo-

nent cj , a mapping edge mij is created if that component can execute all types of operations of

that task. In particular, if two consecutive processing tasks are mapped to the same component,

122

5.2 Reconfiguration Management

Figure 5.8: NSGA-II extension (highlighted blocks) for DSE.

the communication task between them can also be mapped to that same component with zero

latency (detailed below).

5.2.2.B Design Space Exploration with Multi-Objective Optimization

The conceived DSE methodology is based on the Non-dominated Sorting Genetic Algorithm

II (NSGA-II) (previously described in Chapter 2). Accordingly, to generate a set of execution plans

for the Hypervisor, a solution space is defined according to three objective functions: latency,

peak power dissipation and total energy consumption. Naturally, the resulting set of optimized

execution plans represent the best possible trade-offs for these three goals.

To attain such a goal, the original MOO algorithm was adapted to provide a new individ-

ual encoding, based on the information gathered in the system specification models defined in

Section 5.2.2.A. Consequently, appropriate crossover and mutation operators have been devised

according to the considered encoding, as well as new mapping validation/repair and execution

plan definition operators (see the corresponding flowchart in Fig. 5.8). In particular, the mapping

validation/repair operator is used to decode, validate and repair the set of solutions generated by

NSGA-II. Conversely, the execution plan definition operator is used to produce the time-ordered

task and reconfiguration command execution queues (see Fig. 5.5), corresponding to the gener-

ated solutions, but also to calculate the values of each objective function. The resulting function

values are then sent back to the selection operator of NSGA-II for evaluation, thus closing the

optimization loop.

Problem Definition

For each individual (p) from a given population (Pt) in its t-th generation, the DSE methodology

is defined as the Multi-Constraint Multi-Objective problem:

min
p∈Pt

fp = (fLp
, fPp

, fEp
), subject to (5.6)-(5.9) (5.1)

123

5. Adaptive Processing Structures

Each objective function is formally defined according to the system specification models and

variables, as described in Section 5.2.2.A. The first objective function (fL), targeting the minimiza-

tion of the execution latency (in clock cycles), is given by the finishing time of all the application’s

tasks:

fL = max
ti∈VT

(sti + lti), (5.2)

where the finishing time of a given task (ti ∈ VT) is obtained by adding its starting time (sti) and

its latency (lti). Moreover, each task latency is computed by considering its assigned data chunk

size (ds), its respective number of operations (nk) and the latency (ljk) of each operation on its

mapping component (mij - binary value indicating a valid mapping):

lti = ds ×
(

∑

k

ljk × nk

)

×mij , with ti ∈ VT , mij ∈ {0, 1} (5.3)

For the other two objective functions, a time frame (t) is defined to represent a period (with

duration lt), where no changes occur in the architecture and in the execution state of the acceler-

ator’s cores. The set of time frames corresponding to the total execution time of a given solution

is given by T . Hence, the second objective function (fP) minimizes the peak power dissipation (in

Watts) at any given time frame:

fP = max
t∈T

∑

ti∈VC

(pi + pri × ri)× ai . (5.4)

It is calculated based on the current allocation of each component (ai), its power dissipation (pi)

and its reconfiguration/adaptation power consumption (pri), in case such reconfiguration occurs

(ri). The ai and ri variables take a binary value (0 or 1) indicating whether a component is

allocated and whether reconfiguration is required, respectively.

Finally, the third objective function (fE) minimizes the total energy consumption (in Joules):

fE =
∑

t∈T

(

∑

ti∈VC

(pi + pri × ri)× ai
)

× lt, (5.5)

The consumed energy in each time frame (t) is calculated by adding the total instantaneous

power dissipation of the system at that time and multiplying it by the duration of the time frame

(lt). Finally, the energy consumption corresponding to all time frames is added up.

Hence, to ensure that the algorithm generates a set of feasible solutions representing possible

mappings of tasks to valid architectures, it must be defined as a constrained problem. Such

constraints are herein enumerated:

1. Each processing task must be mapped to a single processing component:
∑

a∈V
p
C
⊂VC

mai = 1, for each ti ∈ V p
T ⊂ VT (5.6)

2. Each communication task must be mapped either to a processing component or to a com-

munication channel:

124

5.2 Reconfiguration Management

∑

a∈V
p
C
⊂VC

mai +
∑

b∈V c
C
⊂VC

mbi = 1,

for each ti ∈ V c
T ⊂ VT

(5.7)

3. When two adjacent processing tasks are mapped to the same component, the communi-

cation task between them must be mapped to that same component:

If mai = 1 and maj = 1 and ∃ tk ∈ VT

such that ∃ ex = (ti, tk), ey = (tk, tj) ∈ ET ,

then mak = 1,

where ti, tj ∈ VT and a ∈ VC

(5.8)

4. When two adjacent processing tasks are mapped to separate components, the communi-

cation task between them must be mapped to a communication channel that connects both

components:

Let tk ∈ VT : ∃ ex = (ti, tk), ey = (tk, tj) ∈ ET ,

if mai = 1 and mbj = 1, then mck = 1,

iff ∃ cc ∈ VC : ∃ ew = (ca, cc), ez = (cc, cb) ∈ EC ,

where ca, cb ∈ VC and ti, tj ∈ VT

(5.9)

The last constraint refers to the actual values of the objective functions. These values are only

required to be non-negative, since the system specification model maximizes the value of each

function, given the tasks’ latency, component area, and power characteristics.

Individual Encoding

Having defined the DSE problem, the next step is to encode the solutions of the problem as

individuals of a given population. As it is standard practice in genetic algorithms [92], the encoding

of the solutions is referred to as a chromosome, unique to each, randomly generated and modified

by the algorithm. Each chromosome is posteriorly decoded and evaluated, according to a set of

operators related to the problem being solved.

In the defined DSE problem, the solutions represent possible mappings of tasks to processing

cores and communication channels, according to the set of constraints defined above. This way,

each solution is represented as an array, where each index accounts for a different task, and the

corresponding value depicts the mapping of that task to a given component. However, such a

simple representation leads to a high number of infeasible mappings (e.g., mapping of a task to

a component that cannot execute all its operations). Hence, instead of a single value, each cell

of this array comprehends a list that contains all the feasible mappings of its corresponding task,

being the head of that list the current mapping (see Fig. 5.9). Accordingly, the head of the list is

denoted as gene, while the rest of the list is named gene repair list. Hence, although very rarely

and greatly depending on the system architecture, the only situation where an infeasible solu-

tion can occur is whenever two communicating tasks are mapped to two components that have

125

5. Adaptive Processing Structures

Figure 5.9: Individual encoding, representing a possible solution for the specification defined in

Fig. 5.6.

no communication channels between them. While such a situation is not a typical architectural

design, it may occur, especially in hierarchical architectures.

Genetic Operators

Since a custom encoding was specifically defined for the DSE algorithm, the genetic operators,

i.e. crossover and mutation must also be defined accordingly.

The crossover operator is based on the multi-point crossover method, characterized by pro-

viding the best diversity among the offspring population [130]. This operator randomly selects

which genes of the chromosome array of two parent individuals are cross-copied to two newly

created child individuals, as shown in Fig. 5.10.A. However, since each element of the devised

chromosome is also composed of a repair list, instead of only copying the gene, both are copied

to the new individual. This ensures compliance with the above-defined constraints.

Most existing encodings [131] that rely on repair lists to maintain feasible results either require

several mutation and repair steps [83] or do not entirely exploit the diversity imposed by the oper-

ator [88]. To overcome both issues, a two-step mutation operator was devised (see Fig. 5.10.B).

This operator, denoted as Swap-Scramble mutation, starts by first swapping the gene value with

a random value from the repair list. Next, a subset of the repair list is randomly selected, and the

values of that subset are randomly re-arranged or scrambled. This way, no additional procedures

are required, and more diversity is achieved in the population.

DSE Operators

To complete the DSE optimization procedure, the mapping validation/repair and the execution

plan definition operators are defined to evaluate and repair the set of solutions obtained from the

MOO algorithm and to generate the resulting execution plans.

Given the devised solution encoding, constraints (5.6) and (5.7) are implicitly verified. In ac-

126

5.2 Reconfiguration Management

Figure 5.10: New DSE operators for the optimization algorithm: (A) Multi-point crossover operator

and (B) two-step Swap-Scramble mutation operator.

Algorithm 4 Mapping Validation/Repair Operator

Input: mappings[]⇒ chromosome, SSpec⇒ system specification
Variables: tc⇒ communication task, tsrc⇒ source task, tsk ⇒ sink task, m(t)⇒ mapping of task t

Output: feasibleMapping (true/false)
1:
2: feasibleMapping ← true

3: for all communication tasks do
4: if m(tsrc) = m(tsk) = m(tc) then
5: continue
6: else if m(tsrc) = m(tsk) 6= m(tc) then
7: m(tc)← m(tsrc)
8: else if m(tsrc) 6= m(tsk) then
9: search component that connects m(tsrc) and m(tsk) and is present in tc repair list

10: if component found then
11: m(tc)← component

12: else
13: feasibleMapping ← false

14: return
15: end if
16: end if
17: end for
18: return

cordance, only communication-related infeasible mappings may occur, i.e. if constraints (5.8) or

(5.9) are not satisfied. Instead of immediately discarding such solutions, a repair algorithm (Al-

gorithm 4) that takes advantage of the considered gene repair list was also devised. Whenever

constraint (5.8) is violated, the algorithm immediately maps the communication task to the com-

ponent to which its source and sink tasks are mapped. On the other hand, when constraint (5.9)

is violated, the algorithm tries to find (and map) an alternative component that will connect the

components. If such a component is found, the algorithm immediately maps the communication

task to it; otherwise, the solution is deemed unfeasible and subsequently discarded.

Accordingly, the final step of the algorithm corresponds to the operator that defines the exe-

cution plan. This operator (see Algorithm 5) serves two purposes: i) generation of the execution

queue for the current solution; and ii) calculation of the values corresponding to the three objec-

tive functions. The execution plan definition algorithm is based on a common iterative scheduling

procedure. By following the devised task graph, an ordered priority list is kept, comprehending

all candidate tasks that are waiting to be initiated. Accordingly, a given task can be started if the

127

5. Adaptive Processing Structures

Algorithm 5 Execution Plan Definition Operator

Input: mappings[]⇒ chromosome, SSpec⇒ system specification
Variables: alloc[] ⇒ slot configuration, state[] ⇒ slot state, candidates[] ⇒ candidate priority list, inProgress[] ⇒

running tasks, tk.map⇒ mapping of a task
Output: queue[], peak power, latency, t energy

1: initialize queue[] based on mappings[] and SSpec

2: candidates[]← input tasks
3: peak power, t energy ← 0

4: time← 1
5: repeat
6: for each task tk in candidates[] do
7: ready ← 1
8: for each source in tk do
9: if source.start 6= −1 and source.start+ source.latency < time then

10: continue
11: else
12: ready ← 0; break
13: end if
14: end for

15: if ready = 1 and state[tk.map.slot] = 0 then
16: if alloc[tk.map.slot] 6= tk.map.arch then
17: tk.latency ← tk.latency + tk.map.rec time

18: tk.power ← tk.power + tk.map.rec power

19: end if
20: alloc[tk.map.slot]← tk.map.arch

21: state[tk.map.slot]← 1
22: tk.start← time

23: inProgress[]← tk (in order of finish time)
24: queue[]← tk

25:
26: add all tk.edges[] to candidates[]
27: end if
28: end for

29: add up power for all tk in inProgress[]
30: peak power ← max(peak power, power)

31: tk ← pop(inProgress[])
32: ntime← tk.finish

33: state[tk.map.slot]← 0
34: t energy ← t energy + power × (ntime− time)
35: time← ntime

36: until all tasks enqueued

37: latency ← time

38: return queue[]

reconfigurable slot of its mapping component is not in use. As soon as such slot becomes free,

the architecture of the mapped component is checked against the former component that was pre-

viously allocated to that slot. In case the architectures are different, a reconfiguration command

must be triggered before the task can be started.

Furthermore, every time there is a change in the configuration of the system (i.e., a reconfig-

uration or a component’s execution starts or finishes), its total power dissipation is calculated, as

well as the period while it stays constant. This way, the peak power dissipation can be obtained by

comparing those measures and by choosing the minimum. The total energy consumption is cal-

culated by adding the products of the power measures by their corresponding durations. Finally,

the computed latency value corresponds to the time when the last task completes its execution.

128

5.3 Experimental Validation

Figure 5.11: Example of an execution queue, obtained with Algorithm 5 for the encoding in

Fig. 5.9, corresponding to the mapping of the application described with the Task Graph in

Fig. 5.6(a) to the architecture in Fig. 5.7. Note that when two adjacent tasks are mapped to

the same component, the communication task between them is mapped to that same component

with zero latency (shown between parenthesis in the second task’s execution).

5.2.2.C Optimized Execution Plans

Each solution that is obtained from the DSE algorithm is represented by an execution plan.

This plan contains the time-ordered execution queue (as shown in Fig. 5.11), the mappings and

the required reconfiguration operations for the generated solution. Then, a post-processing rou-

tine selects a representative subset of the obtained optimal solutions (based on the system’s pro-

cessing requirements) and provides them to the Hypervisor in the form of execution plans. In turn,

the Hypervisor uses these execution plans in one of the two possible modes, i.e., in Scheduler or

Resource Management mode.

5.3 Experimental Validation

This section presents a set of experimental case studies that aim at demonstrating and val-

idating the adaptability of the designed reconfigurable many-core accelerator and optimization

mechanisms. The presented experiments do not intend on providing an in-depth evaluation, but

instead to assess the viability of exploiting the application’s characteristics (before and during

execution) to specialize and optimize the underlying processing system, in turn offering new com-

puting efficiency capabilities.

5.3.1 Methodology

For this evaluation, three case studies were considered that demonstrate the accelerator’s

adaptability according to the proposed Hypervisor operation modes, namely:

• A - The first case study evaluates the Hypervisor’s automatic application characterization

and reconfiguration optimization, according to the implemented reconfiguration policies;

• B - The second case study demonstrates the gains obtained by running the proposed DSE

algorithm to generate optimized execution plans for the Hypervisor;

129

5. Adaptive Processing Structures

• C - The last case study assesses the capabilities of the DSE algorithm to optimize the

execution of applications with dynamic workloads.

To perform the aimed experimentations, the first two case studies were constructed around

an arithmetic benchmark designed to demonstrate the adaptability offered by the reconfigurable

accelerator and assess its potential for improving performance and energy efficiency. The bench-

mark is composed of 4 phases, each one corresponding to a linear algebra data-parallel compu-

tation kernel with distinctive processing requirements, namely: i) Kernel 1 performs the sum of two

integer vectors (Eq. 5.10); ii) Kernel 2 computes the inner product of two integer vectors (Eq. 5.11);

iii) Kernel 3 performs the sum of two single-precision floating-point vectors (Eq. 5.12); and iv) Ker-

nel 4 computes the inner product of two single-precision floating-point vectors (Eq. 5.13).

Kernel 1 : v
I
i = a

I
i + b

I
i

∣

∣

∣

i=1,...,N
(5.10)

Kernel 2 : αI =
∑

i=[1,N] a
I
i × b

I
i (5.11)

Kernel 3 : v
F
i = a

F
i + b

F
i

∣

∣

∣

i=1,...,N
(5.12)

Kernel 4 : αF =
∑

i=[1,N] a
F
i × b

F
i (5.13)

Each input dataset (aI
i , b

I
i , a

F
i and b

F
i) is an independent and randomly generated array

with 300 million integer/floating-point cells. These datasets are then partitioned and dynamically

assigned to the processing clusters by the Hypervisor mechanism at runtime. Since the main

focus of this study is to evaluate the accelerator’s reconfiguration capabilities, this experimental

evaluation assumes that data is locally stored in the processing cluster. As such, all data is initially

stored in each core local memory, to alleviate the contention in the memory hierarchy.

Accordingly, the first two case studies adopt the reconfigurable accelerator implementation

detailed in Section 5.1.6. To summarize, the accelerator is composed of 7 reconfigurable slots

interconnected by a shared communication bus. Each slot is able to instantiate one of the three

possible cluster types (A, B and C), each composed of a set of homogeneous core architectures,

or turned off to manage power supply. Although all core architectures support the necessary op-

erations to execute the complete arithmetic benchmark, the simpler architectures rely on software

libraries (instead of hardwired instructions) to execute the most complex arithmetic operations

(e.g., multiplication and FP operations). In particular, the most complex architecture (Type C)

provides hardware specific units for every type of operations (integer and FP addition and multi-

plication). On the other hand, the intermediate architecture (Type B) only includes hardware units

for integer addition and multiplication (no FP operations) and the simpler architecture (Type A)

only includes arithmetic units for simple integer operations (no multiplication or FP operations).

These differences result in different processing latencies for each kernel and in distinct area re-

quirements for the corresponding cores, which in turn result in more or less cores instantiated in

each cluster.

130

5.3 Experimental Validation

The third case study relies on a proof-of-concept benchmark based on a biological sequence

alignment application model [132, 133] (further detailed in the case study). The adopted ac-

celerator model considers the existence of seven reconfigurable slots (cluster architectures are

also detailed in the case study) interconnected by a streaming communication bus similar to the

bidirectional ring described in Section 4.3.2.

5.3.2 Case Study A: Learning-based Automatic Reconfiguration

The first considered case study demonstrates the Hypervisor’s capability for runtime applica-

tion monitoring and characterization. This is performed by first considering two different scenarios

without any previous knowledge of the application being executed, resulting in the definition of an

optimized execution model. This model is then used to demonstrate the designed reconfiguration

policies. For all the conducted experiments, the accelerator was initially configured with an equally

balanced distribution of computing cluster architectures (3×Type A + 2×Type B + 2×Type C). The

observed results are shown regarding the attained performance gains and energy savings.

5.3.2.A Runtime Monitoring and Learning

To demonstrate the capabilities of the Hypervisor to provide the best-fitted architecture for

each kernel, two different execution scenarios were considered. Both these scenarios assume

an untrained Hypervisor, with no a priori knowledge of the kernels’ characteristics. The consid-

ered scenarios assess the learning capabilities of the Hypervisor by running the benchmark’s

computing kernels in different orders.

The dynamic adaptation that is conducted by the Hypervisor is depicted in Figs. 5.12 and

5.13. Initially, the Hypervisor allows each cluster to execute its assigned chunk of a kernel with its

currently assigned configuration. Then, upon completion of the first kernel chunk, the Hypervisor

sends a reconfiguration command to that same cluster, to adapt its architecture to the currently

executing kernel, according to the set of received values of the performance counters. The longer

execution time observed in Fig. 5.13 is due to the first chunks of kernels 3 and 4 being initially

executed in clusters of Type A and Type B. This means that the FP operations present in those

kernels are initially executed with software libraries, resulting in increased latency. As such, the

Hypervisor only knows that FP operations are needed after the execution of the first chunk, and

only then it issues the appropriate reconfiguration command.

5.3.2.B Reconfiguration Policies

The application models obtained after the execution of the application in the previously de-

scribed untrained scenarios can be used to demonstrate the implemented reconfiguration policies.

Accordingly, as soon as the Hypervisor has access to the running application’s characteristics, it

131

5. Adaptive Processing Structures

Figure 5.12: Real-time adaptation of the processing architecture, without any a priori knowledge

of the computing kernels (Kernel order: 1, 2, 3, 4).

Figure 5.13: Real-time adaptation of the processing architecture, without any a priori knowledge

of the computing kernels (Kernel order: 1, 3, 2, 4).

can immediately trigger the reconfiguration process to adapt a cluster to the best-fitted architec-

ture for a given kernel, according to the deployed reconfiguration policy.

This is particularly clear when testing the execution time policy described in Algorithm 1, which

allows the system to dynamically select the set of clusters that provide the best performance for

each kernel under execution. The experimental results for this policy are presented in Fig. 5.14

and allow concluding that the system is able to adapt to the best possible configuration, while also

achieving a well-balanced data chunk distribution to the several processing clusters.

The second deployed reconfiguration policy considers the maximization of the system per-

132

5.3 Experimental Validation

Figure 5.14: System real-time adaptation, according to the minimum execution-time optimization

policy.

formance while establishing a given power ceiling (see Algorithm 2). To ensure a more realistic

test, this power-ceiling was also varied at runtime. In Fig. 5.15 it is possible to observe some

clusters being replaced by empty configurations when the power ceiling decreases, to meet this

constraint. On the other hand, as soon as the allowed power consumption level increases, the

system reactivates these turned-off clusters, to maximize the accelerator throughput.

The last optimization policy, previously described in Algorithm 3, considers the minimization

of the power consumption while assuring a minimum performance level. To show the adaptivity

of the proposed system, it is further assumed that the application under execution establishes a

different minimum throughput for each kernel, as shown in Fig. 5.16. As it can be observed, the

system can adapt the clusters in real-time, not only to ensure the required performance level but

also to minimize the power consumption, by disabling inactive clusters.

5.3.2.C Execution Time Speedup and Energy Savings

To evaluate the performance gains and energy savings that are obtained with the reconfig-

urable accelerator, the dynamic execution policy presented in Fig. 5.14 was compared with four

different static configurations (i.e., without reconfiguration), each one composed by 7 independent

clusters: i) a system with 7 Type A clusters; ii) a system with 7 Type B clusters; iii) a system with

7 Type C clusters; and iv) a heterogeneous mix composed of 2 Type A clusters, 2 Type B clusters

133

5. Adaptive Processing Structures

Figure 5.15: System real-time adaptation, according to the power-ceiling constraint policy.

and 3 Type C clusters.

Table 5.4 presents the obtained results regarding the execution time and energy consumption

for the considered setups. Despite containing 105 cores, it can be observed that the system with

only Type A clusters represents the worst case, both regarding performance and energy. This is

explained by the fact that Type A clusters must perform the multiplication operations of Kernel 2

through a combination of logic shifts and additions, and the floating-point operations of Kernels 3

and 4 through calls to software libraries. Naturally, this represents a large energy overhead, which

results in a total consumption of 240 Joules. The best homogeneous static configuration is ob-

tained by using only Type C clusters. Even though only 56 cores can be implemented in this case,

it performs about 4× faster than the worst-case configuration. The best static configuration was

achieved by using the considered heterogeneous configuration (2×Type A + 2×Type B + 3×Type

C), which provides a trade-off between complexity and execution time/energy consumption.

Finally, it can be observed that the offered adaptability allows the dynamic system to combine

all the advantages of the above-described configurations. By adapting, at runtime, to the require-

ments of the different kernels, it is assured that the system always provides the best-optimized

configuration for each application phase, by trading core complexity with the total number of cores.

134

5.3 Experimental Validation

Figure 5.16: System real-time adaptation, according to the minimum assured performance policy.

Table 5.4: Execution time and energy results.
Execution Energy Dynamic System Dynamic System

Time [s] Consumption [J] Speedup Energy Gain

Dynamic System 5.819 23.28 - -

Static 7× Type A Clusters 55.715 239.93 9.575 10.31

Static 7× Type B Clusters 29.784 132.72 5.118 5.70

Static 7× Type C Clusters 11.997 50.44 2.062 2.17

Static Heterogeneous Mix 18.378 79.13 3.158 3.40

Thus, it is possible to achieve execution speedups ranging from 2.1×, when compared with the

best static case, to 9.5×, when compared to the worst static case, while consuming from 2.2× to

10.3× less energy, respectively.

5.3.3 Case Study B: Compiler-Assisted Reconfiguration

The second case study demonstrates the Hypervisor’s operation in Scheduler mode. In this

mode, it relies on the set of optimized execution plans generated by the DSE algorithm (before

execution) for the considered arithmetic benchmark.

To generate the set of optimized execution plans, the adopted NSGA-II algorithm was config-

ured with a population of 200 individuals in 2000 generations and crossover and mutation prob-

135

5. Adaptive Processing Structures

Figure 5.17: Arithmetic benchmark application model.

Figure 5.18: Arithmetic benchmark architecture configuration.

abilities of 0.95 and 0.2, respectively. This configuration was initially based on the ranges of

parameter values suggested in [93] and further fine-tuned by observing the algorithm’s evolution,

regarding convergence characteristics and spread of the resulting solutions in the Pareto Front.

For this experiment, the DSE algorithm was configured with a data-flow model (Task Graph) of

the devised arithmetic benchmark (as shown in Fig. 5.17) and an architecture model (Architecture

Graph) of the implemented reconfigurable accelerator (depicted in Fig. 5.18). The characteristics

of each cluster configuration are shown in Table 5.5, together with the latency of each vector op-

eration on every core architecture (measured in Clock Cycles per Operation (CCPO)) and their

136

5.3 Experimental Validation

Table 5.5: Arithmetic kernel benchmark characterization (operation latency is shown in average

Clock Cycles per Operation (CCPO)).
INT Latency [CCPO] FP Latency [CCPO] Communication Reconfiguration

Components (# Cores) Power [mW] Add Multiply Add Multiply Latency [CCPO] Latency [ms] Power [mW]

Cluster Type A (15) 615.20 2.15 4.38 25.09 51.39 0 10 44

Cluster Type B (12) 636.58 2.44 2.19 16.78 15.83 0 10 44

Cluster Type C (8) 600.65 3.66 3.28 3.79 3.79 0 10 44

Shared Bus (n.a.) 168.10 n.a. n.a. n.a. n.a. 10 (avg.) n.a. n.a.

Support Power 367.9 mW

Operating Frequency 100 MHz

corresponding power dissipation. It also includes the reconfiguration latency and power dissipa-

tion, as well as the power dissipation of the accelerator’s supporting infrastructure. This way, a

comprehensive model of the entire reconfigurable accelerator could be established and applied

to the DSE algorithm.

The obtained Pareto Front is depicted in the plots from Fig. 5.19, representing the interactions

between each objective function in the three-dimensional search space. It represents the inter-

actions between peak power dissipation and latency; between energy consumption and latency;

and between peak power dissipation and energy consumption, plotted in Figs. 5.19.A, 5.19.B and

5.19.C, respectively. Moreover, the observed spread of the solutions (also unaffected) results

in several levels of optimization, representing different trade-offs between the defined objective

functions. This provides the Hypervisor with greater flexibility for adapting the execution to system

runtime requirements.

The execution plans depicted in Figs. 5.20 and 5.21 represent two possible solutions taken

from the Pareto Front (see Fig 5.19). Fig. 5.20 depicts a solution that represents the best

execution-time optimized plan, mostly trading off latency for peak power consumption. By analyz-

ing the execution queue of this solution, it can be concluded that even though it is best optimized

for latency, it also presents some reduction of the peak power dissipation when running Kernels 1

and 2, by turning off some unnecessary clusters. The solution depicted in Fig. 5.21 illustrates the

execution plan with the lowest peak power dissipation, although resulting in higher execution time.

In this case, the system uses two slots in parallel, for a short period, to run Kernels 1 and 2 (with

lower latencies), while for Kernels 3 and 4, corresponding to the most time-consuming kernels,

only one slot is used.

The solution depicted in Fig. 5.21 represents, respectively, 54% and 45% lower peak power

dissipation and energy consumption values than those obtained with the solution depicted in

Fig. 5.20. It clearly shows that the Hypervisor (in Scheduler mode) can fully take advantage

of the execution plans generated by the DSE algorithm when adapting the execution to system

runtime requirements. These results are sustained by the observed Pareto Front, comprehending

solutions that represent different trade-offs between the considered optimization targets, thus

providing different levels of performance, peak power dissipation, and energy consumption. In

137

5. Adaptive Processing Structures

Figure 5.19: Interactions between the three objective functions in the Pareto front. (A) interaction

between peak power dissipation (Eq. 5.4) and latency (Eq. 5.2); (B) interaction between energy

consumption (Eq. 5.5) and latency (Eq. 5.2); and (C) interaction between peak power dissipation

(Eq. 5.4) and energy consumption (Eq. 5.5). The marked solutions represent the execution plans

shown in Figs. 5.20 and 5.21 (Solution A and Solution B) and the experiments performed in Case

Study A for the minimum execution time policy (Reference 1) and for the power-ceiling policy (with

a fixed 2 W limit - Reference 2).

fact, when compared with the Hypervisor’s reconfiguration policies, the DSE algorithm allows

the Hypervisor to adapt the system to real-time requirements (by switching the execution plans)

without any runtime penalization to re-evaluate the best-suited cluster configuration. Moreover,

it also allows greater flexibility to cope with such requirements, given the number of generated

solutions.

5.3.4 Case Study C: Resource Management for Dynamic Workloads

The execution complexity of a running application may be directly related to the characteristics

of the input data. Moreover, user-defined parameters often provide additional levels of complex-

ity. As a result, such applications may be difficult to model and optimize with a compile-time

algorithm, since the models must take into account those parameters and the variable charac-

teristics of the input data itself. As such, this third case study depicts how the execution of such

applications can be optimized by taking advantage of the Resource Management mode of the

138

5.3 Experimental Validation

Figure 5.20: Execution plan referring to the application and architecture models from Figs. 5.17

and 5.18, representing the best execution-time optimized solution obtained from the resulting

Pareto front. Task identifications shown between parenthesis represent communication tasks

between two adjacent tasks mapped to the same component. In this case, the data corresponding

to the communication tasks persists in the component, while switching the processing tasks.

Figure 5.21: Execution plan referring to the application and architecture models from Figs. 5.17

and 5.18, representing the lowest peak power dissipation solution obtained from the resulting

Pareto front.

139

5. Adaptive Processing Structures

Hypervisor. It is demonstrated that by varying specific parameters in the application model, dif-

ferent search granularities and intensities are attained, resulting in different levels of output data

size and latency in each phase. Such a scenario can be modeled by running the DSE algorithm

with different parameter levels, thus generating different execution plans for different application

workload intensities. The execution plans can then be used by the Hypervisor to adapt the system

architecture according to the application’s real-time requirements.

Accordingly, this case study relies on a proof-of-concept benchmark based on a biological

sequence alignment application model [132, 133], composed of multiple processing phases and

comprehending several existing dedicated processing architectures for each of those phases.

According to existing implementations [134], a heuristic Indexed Search within the whole data set

is initially performed, to identify regions of interest in a reference biological sequence for a set

of query sequences to be analyzed. Then, a Filtering phase is followed, that further refines the

search. The execution of both phases is performed according to specific user-defined parameters.

The third and final phase of the application comprehends a Local Alignment algorithm, which

takes the resulting interest regions, carries out the local alignment and returns the corresponding

score results.

5.3.4.A Architecture and Application Models

The modeled accelerator structure considers the same accelerator topology as the previ-

ous cases studies, with 7 reconfigurable slots. However, for this case study, they intercon-

nected through a streaming communication bus (deploying point-to-point communication be-

tween all slots). The adopted core architectures are based on existing processing architec-

tures [28, 120, 134], specially optimized for each phase. Accordingly, each available cluster

configuration was also specifically dimensioned for each application phase (see Table 5.6). In

particular, the Indexed Search phase is executed on the Application Specific Instruction-set Pro-

cessor (ASIP) architecture proposed in [134], referred here as Index ASIP; the Filtering phase

is executed on the MB-LITE soft-core architecture [120], denoted as MB-LITE M; and the Local

Alignment phase is performed on the ASIP architecture proposed in [28], named Align ASIP.

Although a total number of seven reconfigurable slots are considered, slots 1, 2 and 3 are

reserved for each of the processing architectures, as shown in Fig. 5.22.C, to ensure that at least

one single cluster of each of the three architectures is always present in the system, intercon-

nected in a pipelined manner (according to the application model in Fig.5.22.A). Further details

about each component are presented in Table 5.6.

5.3.4.B Dynamic Workload Modeling

To demonstrate how the adopted application can make use of the DSE algorithm, illustrative

models of the complexity and output data size of each phase were derived, by taking into account

140

5.3 Experimental Validation

Table 5.6: Biological sequence alignment case study: component specifications and application

model equations.
Reconfiguration

Execution Phase Components (# Cores) Power [mW] Latency [CCPO] Output Size [# cells] Latency [ms] Power [mW]

Index Search Index ASIP (14) 701.30 [K + log2(M −K)]× N
K

HITS = N×(M−K)
K2 × β 10 44

Filtering MB-LITE M (12) 636.58 HITS × log2(HITS) + HITS P. SITES = HITS ×R/γ2 10 44

Local Alignment Align ASIP (5) 610.50 P. SITES × 2N2/α n.a. 10 44

Communication Stream Interconnect (1) 101.78 1 (per node hop) n.a. n.a. n.a.

Support Power 367.9 mW

Operating Frequency 100 MHz

Figure 5.22: Biological sequence alignment application model (A); example execution with vari-

able application phase workloads (B); and architecture configuration (C). Although the application

model accounts for every possible outcome for the communication between phases, the size of

the output of each phase (if any) is only known during runtime.

the characteristics of those applications [123, 132, 133]. The Latency and Output Size columns in

Table 5.6 represent approximate models that are used to estimate the latency and output data size

of each execution phase, depending on user-defined parameters and the size of the reference and

query sequences. For the Indexed Search phase latency, the K value represents a user-defined

parameter that defines the size of the search seed, while M and N represent the sizes of the

reference and query sequences, respectively. The output size formula defines the amount of

resulting pointers (addresses) corresponding to the obtained regions of interest, i.e., the number

of HITS. In this equation, β represents a data-dependent value that reflects the characteristics

141

5. Adaptive Processing Structures

of the reference sequence. The Filtering phase refines the indexed search results, by further

reducing the number of regions of interest (HITS), leading to a smaller subset of potential sites

(P. SITES) for local alignment. The latency and data output size of this phase depend on the

amount of HITS resulting from the Indexed Search phase, where R is a user-defined parameter

to adjust the filtering intensity, while γ is a variable characterizing the similarity between the query

and the reference sequences. The last phase implements a Local Sequence Alignment based on

a dynamic programming approach. Its latency depends on the number of P. SITES resulting from

the filtering phase and on the size of the query sequences. The α parameter is a speedup factor

that depends on the used alignment algorithm [123].

By varying the user-defined parameters and the intrinsic characteristics of the input data set,

several different scenarios can be exploited by the DSE algorithm, resulting in distinct execu-

tion plans that will be used by the Hypervisor to adapt the execution in real-time. Although the

latency and output sizes have a direct relation with the characteristics of the input data set, in

the considered case the β and γ values were set to 0.7 and 0.5, respectively, representing a

fair differentiation across the query and reference sequences, respectively. The α value was

set to 6, corresponding to the SIMD striped search algorithm [123]. Furthermore, two levels of

user-defined parameters were used, representing different scenarios for a wide relaxed search

(K = 100, R = 0.1) and a fine-tuned intensive search (K = 15, R = 0.01).

5.3.4.C Dynamic Resource Management Optimization

By extracting the mappings of the execution plans resulting from the DSE algorithm, the archi-

tecture configurations shown in Figs. 5.23 and 5.24 were derived to be provided to the Hypervisor.

This way, the Hypervisor can adapt the architecture (in runtime) in two different abstraction levels.

On a higher management level, the Hypervisor monitors the result of the application and switches

the execution plan between the available scenarios, depending on user requirements or on the

input data characteristics. For instance, between a relaxed search scenario (depicted in Fig. 5.23)

and a more intensive search (shown in Fig 5.24). On a lower management level, the Hypervisor

can adapt the architecture in each reconfigurable slot depending on the data flow intensity exist-

ing between phases of the application, according to the execution plan being considered at that

instant.

Hence, the mapped processing cluster types and reconfigurable slot allocations, shown in

Figs. 5.23 and 5.24, represent execution-time optimized solutions for the considered scenarios.

It is possible to verify the different number of cores of each architecture allocated according to

the intensity of each phase of the application, resulting from the chosen input parameters. As it

should be expected, for a wide and relaxed search, the Indexed Search phase is characterized

by a lower complexity and results in few regions of interest, leading to a relaxed Filtering phase

and fewer potential alignment sites for the Local Alignment phase. This results in an even allo-

142

5.4 Summary

Figure 5.23: Resulting relaxed optimization execution plan for the biological sequence alignment

application. Even though the plan is optimized for a specific execution scenario, the Hypervisor

can still fine tune the configuration of the system according to the amount of data outputted by

each phase.

Figure 5.24: Resulting intensive optimization execution plan for the biological sequence alignment

application.

cation of the three types of processing clusters, as shown in Fig. 5.23. On the other hand, for

a fine-tuned intensive search, the complexity of the Indexed Search phase is higher and finds

significantly more regions of interest, which even after an intensive Filtering phase, results in a lot

of potential alignment sites for the Local Alignment phase. The solution for this scenario results

in larger numbers of allocated Index ASIPs and Align ASIPs (see Fig. 5.24), allowing a more

flexible balancing of the architectures by the Hypervisor, depending on the real-time throughput

requirements.

5.4 Summary

This chapter presented a study on the implementation of reconfigurable processing infrastruc-

tures. It was particularly devised to validate the viability of partial reconfiguration to efficiently

adapt an accelerator’s processing architecture to a running application’s requirements and sys-

tem runtime constraints. To do so, a reconfigurable many-core accelerator was designed and

143

5. Adaptive Processing Structures

implemented on an FPGA device, also providing a fully functional platform for future research

development and evaluation.

The accelerator is managed by a Hypervisor mechanism that is responsible for monitoring the

execution of an application to learn its characteristics and trigger the reconfiguration procedure

according to a set of reconfiguration policies. These policies allow the Hypervisor to balance the

accelerator’s performance and energy consumption (in different execution contexts).

The Hypervisor was complemented by a compile-time DSE algorithm that leverages applica-

tion and architecture models, to generate the mapping and scheduling of tasks to the accelerator’s

processing resources and plan their reconfiguration before execution.

The conducted experiments sustained and demonstrated the advantages of using partial re-

configuration as a viable alternative to established energy saving technologies (such as power

supply management and performance throttling mechanisms). Additionally, the performed study

provided valuable insights into the viability of exploiting the application’s characteristics to accel-

erate it by reconfiguring, specializing and balancing the system’s processing resources, ultimately

leading to improved computing efficiency.

The observed viability of the studied functionalities opens up several possibilities to deploy

market-viable reconfigurable acceleration systems. In particular, the proposed compile-time appli-

cation analysis tools can be further extended to support an automatic modeling of the application

before the execution phase. This can be done by exploiting static analysis mechanisms (similar

to those used for the memory access pattern analysis proposed in Chapter 3) to generate the

application’s data-flow model. On the other hand, renewed attention can be given to the topology

and architecture of the accelerator’s reconfigurable resources, with a particular emphasis to the

adopted granularity (e.g., full-processor PEs vs. functional unit arrays) and the corresponding

supporting infrastructure. Naturally, to achieve a viable computing platform, support for standard

parallel programming languages must be provided while maintaining the system’s adaptive capa-

bilities as abstracted and transparent as possible.

144

6
Conclusions and Future Work

Contents

6.1 Conclusions . 146

6.2 Main Contributions . 147

6.3 Future Work . 148

145

6. Conclusions and Future Work

This chapter concludes this dissertation, by summarizing the presented work and discussing

the relevant conclusions and contributions. The chapter is also complemented by a brief discus-

sion about future work and possible research directions.

6.1 Conclusions

This dissertation proposed new adaptive computing structures with the goal of providing mech-

anisms to improve the performance and energy efficiency of future generations of computing

systems. It is argued that conventional general-purpose processing systems and memory orga-

nizations are limited in what concerns their ability to cope with application characteristics that are

inherently performance degrading (such as poor memory access spatial and temporal locality or

high contention due to mass parallelization). As an alternative, it is proposed that an application

can be analyzed and modeled by compile-time tools to enable the deployment of adaptive general-

purpose processing and data communication architectures. Such structures allow the computing

system to adapt itself to the execution context and improve its performance and energy efficiency.

Accordingly, a new compile-time memory access pattern analysis tool was proposed. It com-

bines a data-pattern descriptor specification with source code transformations to enable data

stream communication mechanisms in conventional cache-based infrastructures.

At a first stage, this allowed the deployment of new stream prefetching mechanisms embedded

in conventional Graphics Processing Units (GPUs) and General Purpose Processor (GPP) sys-

tems, as an alternative to the utilization of conventional predictive prefetching schemes. However,

despite the significant performance and efficiency gains that were attained, the implementation

of the proposed mechanisms in off-the-shelf devices was bound by their consolidated memory

access infrastructures.

Hence, by taking a step further, it was proposed a new In-Cache Stream (ICS) communica-

tion paradigm deployed on a dedicated many-core accelerator infrastructure. It is supported by

a dedicated Stream Management Controller (SMC) (placed close to the main memory) that aims

at improving memory access efficiency by deploying a set of memory bandwidth optimization

and data reutilization and reorganization techniques, through in-time stream manipulation. Such

mechanisms are supported by a dedicated communication infrastructure designed to deploy a full

data streaming communication scheme in a conventional cache-coherent memory hierarchy. This

allows the infrastructure to adapt itself to the application communication scheme by simultane-

ously and cooperatively exploiting memory-addressed and stream-based data accesses.

The same compile-time application analysis principle was also explored for efficient process-

ing acceleration through the development of a reconfigurable many-core accelerator. It leverages

application information gathered both at compile-time and at runtime to perform the partial re-

configuration of its processing cores, in turn adapting its processing infrastructure to runtime

146

6.2 Main Contributions

application requirements and the system execution context.

Finally, all the proposed computing techniques and mechanisms were successfully validated

as alternatives to conventional processing systems and memory organizations. They showed to

be capable of providing the means to cope with the throughput demands of current applications

and to tackle the challenges recognized by the High-Performance Computing (HPC) community.

6.2 Main Contributions

To better highlight the techniques and mechanisms presented in this dissertation, their main

features and contributions are summarized in the following paragraphs.

Compile-Time Memory Access Encoding A new compile-time memory access analysis tool

was proposed to identify, describe and encode an application’s memory access pattern. It relies

on a new memory access pattern description specification, capable of efficiently representing data

access patterns resulting from deterministic address sequences and indirect memory accesses.

The proposed tool is also paired with a code transformation pass that replaces the array subscript

indexation of each encoded data access with a stream reference. In the considered set of bench-

marks, the combination of both approaches allowed a conversion of up to 90% of data loads to

streams, resulting in up to 23% code size reductions.

Efficient Data Stream Generation A dedicated Data Stream Controller (DSC) architecture was

designed to index memory access patterns encoded by the proposed descriptor specification. It

implements an efficient descriptor decoding architecture that can deploy a single-cycle per ad-

dress generation throughput, with minimal hardware resource requirements. Its architecture was

devised to be deployed both as a stream prefetcher or as a dedicated stream controller.

Stream Prefetching in GPGPUs The designed DSC was implemented as a stream prefetcher,

integrated into the memory subsystem of a real GPU device (via simulation). Despite being in-

tegrated with the L1 data cache as a typical prefetcher (potentially interfering with its operation),

performance gains of up to 9x were achieved, resulting in a range of 7% up to 90% energy con-

sumption reductions. These results showed the viability of adopting an explicit data access en-

coding to perform the acquisition of data before it is requested by the system’s processing cores.

Hence, without relying on (potentially) inaccurate prefetching prediction heuristics and monitoring

delays, it was possible to mitigate the high contention that characterizes the massively-parallel

memory access structure of a GPU device and improve its throughput.

Data Streaming in Modern CPUs The conceived DSC was also deployed in the memory sub-

system of a GPP as a fully functional data streaming mechanism detached from the system’s

147

6. Conclusions and Future Work

cache hierarchy. The devised mechanism exploits the combination of the DSC and the code

transformations of the proposed compilation tool. The obtained results for this implementation

showed that the proposed mechanism is able to outperform by up to 40% two of the most promi-

nent state-of-the-art prefetchers, as a result of the provided two-fold performance improvement

that directly impacts the whole system’s performance.

Adaptive In-Cache Stream Communication The promising results of the DSC drove the de-

velopment of a new ICS communication model integrating the efficient benefits of stream-based

communication in a conventional cache-based structure. In the devised infrastructure, the gener-

ation of data streams is performed by a new memory-aware SMC structure. It relies on the DSC

and is paired with a burst controller to optimize the main memory bandwidth, along with a reorder

buffer to exploit data reorganization and reutilization techniques through on-the-fly stream manip-

ulation. The combination of such features allowed the SMC to reduce the memory access latency

in up to 20x. Such an efficient memory access is reflected in the overall performance increase,

averaging gains of 127x and 54x, when compared to a reference setup and a state-of-the-art

stride prefetcher, respectively. The implemented infrastructure also allows for significant energy

savings (averaging 91%), resulting in overall energy efficiency improvements as high as 245x.

Reconfigurable Computing Acceleration A reconfigurable many-core accelerator was de-

signed and implemented on an Field-Programmable Gate Array (FPGA) device, to exploit its

partial reconfiguration technology. It is managed by a specially devised Hypervisor module that

leverages application information to perform the reconfiguration of the accelerator’s cores ac-

cording to the application requirements and the system’s energetic context. Such information

is gathered both at runtime (through core execution monitoring) and at compile-time (through the

deployment of a Design Space Exploration (DSE) algorithm that leverages application and system

models to generate optimized execution plans). The performed experimentations concluded that

the devised accelerator allows a significant reduction of both the execution time and energy con-

sumption when compared with static homogeneous or non-homogeneous implementations with

fixed numbers of cores. This is supported by the observing performance gains, and energy con-

sumption reductions, of up to 9.5× and 10×, respectively. When combined with the compile-time

DSE algorithm, further reductions of up to 54% and 45% in peak power dissipation and energy

consumption are obtained, respectively, when compared to non-optimized solutions.

6.3 Future Work

Within the wide scope that characterizes the work presented in this dissertation, several po-

tential future research directions can be considered:

148

6.3 Future Work

• Extension of the proposed compile-time memory access pattern analysis tools to support

the detection and description of memory access patterns with further levels of irregularity.

In particular, it can be considered the deployment of memory access analysis at the LLVM

Intermediate Representation (IR) level. Such an approach not only leads to a full abstraction

of the application source code (allowing the detection of memory access sequences that are

not explicitly exposed, such as pointer-chasing structures), but it also allows the integration

of the proposed tools in the compiler’s optimization passes (such as the vectorization or

parallelization phases).

• Development of speculative stream generation mechanisms to support the prefetching of

highly irregular memory access patterns (e.g., graph analysis or pointer-chasing). To do

so, new speculative stream descriptors could be designed that preemptively follow multiple

memory access generation conditional paths (mirroring the coding style that generates ir-

regular data accesses) and later synchronize with the processing core’s execution to discard

unwanted data and select the correct stream sequence.

• Integration of the proposed ICS model with the developed reconfigurable many-core accel-

erator. To do so, it can be considered a new processor architecture that extends the stream-

based communication paradigm to the processor itself. In particular, it can be studied the

possibility of including a new stream register file, transparent to the processor’s Instruction

Set Architecture (ISA), effectively bringing the ICS paradigm to the register level (i.e., from

L1 to L0 memory). The addition of such a transparent mechanism can allow the proces-

sor to seamlessly access data streams provided by an ICS controller, while still retaining

the conventional load/store operation. With the gathered knowledge in partial reconfigura-

tion, the processor architecture can be composed of scalable reconfigurable functional unit

arrays, allowing a transparent communication of streams to reconfigurable computing units.

• Such an integration can be complemented with the development of further compile-time ap-

plication analysis tools (possibly integrated with the LLVM IR optimization passes) to identify

specific code regions that can be parallelized and executed in specialized reconfigurable

hardware, in turn allowing a full integration of all the techniques and mechanisms proposed

in this dissertation.

149

6. Conclusions and Future Work

150

Bibliography

[1] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D. Burger, “Dark silicon and

the end of multicore scaling,” in 38th International Symposium on Computer Architecture

(ISCA’11). IEEE/ACM, 2011, pp. 365–376.

[2] T. Scogland, B. Subramaniam, and W.-c. Feng, “The green500 list: escapades to exascale,”

Computer Science-Research and Development, vol. 28, no. 2-3, pp. 109–117, 2013.

[3] O. Villa, D. R. Johnson, M. O’Connor, E. Bolotin, D. Nellans, J. Luitjens, N. Sakharnykh,

P. Wang, P. Micikevicius, A. Scudiero et al., “Scaling the power wall: a path to exascale,” in

Proceedings of the International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE Press, 2014, pp. 830–841.

[4] R. Kumar, T. G. Mattson, G. Pokam, and R. Van Der Wijngaart, “The case for message

passing on many-core chips,” in Multiprocessor System-on-Chip. Springer, 2011, pp. 115–

123.

[5] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-N. Pouchet, “Polly-

polyhedral optimization in llvm,” in Proceedings of the First International Workshop on

Polyhedral Compilation Techniques (IMPACT), vol. 2011, 2011.

[6] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, and N. Vasilache, “Graphite: Poly-

hedral analyses and optimizations for gcc,” in Proceedings of the 2006 GCC Developers

Summit. Citeseer, 2006, p. 2006.

[7] Z. Majo and T. R. Gross, “Matching memory access patterns and data placement for numa

systems,” in Proceedings of the Tenth International Symposium on Code Generation and

Optimization. ACM, 2012, pp. 230–241.

[8] K.-A. Tran, T. E. Carlson, K. Koukos, M. Själander, V. Spiliopoulos, S. Kaxiras, and A. Jim-

borean, “Clairvoyance: Look-ahead compile-time scheduling,” in Code Generation and

Optimization (CGO), 2017 IEEE/ACM International Symposium on. IEEE, 2017, pp. 171–

184.

[9] A. Venkat, M. Hall, and M. Strout, “Loop and data transformations for sparse matrix code,”

in ACM SIGPLAN Notices, vol. 50, no. 6. ACM, 2015, pp. 521–532.

151

Bibliography

[10] V. Kiriansky, Y. Zhang, and S. Amarasinghe, “Optimizing indirect memory references

with milk,” in Parallel Architecture and Compilation Techniques (PACT), 2016 International

Conference on. IEEE, 2016, pp. 299–312.

[11] M. Srivastava, A. Chandrakasan, and R. Brodersen, “Predictive system shutdown and other

architectural techniques for energy efficient programmable computation,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 4, no. 1, pp. 42–55, March 1996.

[12] Y. Zhu and V. Reddi, “High-performance and energy-efficient mobile web browsing on big/lit-

tle systems,” in 2013 IEEE 19th International Symposium on High Performance Computer

Architecture (HPCA), Feb 2013, pp. 13–24.

[13] R. Kumar, A. Martinez, and A. Gonzalez, “Dynamic selective devectorization for efficient

power gating of simd units in a hw/sw co-designed environment,” in 25th International

Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), Oct

2013, pp. 81–88.

[14] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi, S. Dwarkadas, and M. Scott,

“Energy-efficient processor design using multiple clock domains with dynamic voltage and

frequency scaling,” in Eighth International Symposium on High-Performance Computer

Architecture (ISCA), Feb 2002, pp. 29–40.

[15] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and S. Vishin, “Hierarchical

power management for asymmetric multi-core in dark silicon era,” in Proceedings of the

50th Annual Design Automation Conference, 2013, pp. 174:1–174:9.

[16] J. Lee, N. B. Lakshminarayana, H. Kim, and R. Vuduc, “Many-thread aware prefetch-

ing mechanisms for GPGPU applications,” in 2010 43rd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). IEEE, 2010, pp. 213–224.

[17] D. Zhang, X. Ma, and D. Chiou, “Worklist-directed prefetching,” IEEE Computer Architecture

Letters, vol. PP, no. 99, pp. 1–1, 2016.

[18] Y. Guo, P. Narayanan, M. A. Bennaser, S. Chheda, and C. A. Moritz, “Energy-efficient hard-

ware data prefetching,” IEEE Transactions on Very Large Scale Integration Systems, vol. 19,

no. 2, pp. 250–263, 2011.

[19] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved correlated prefetch-

ing,” in IEEE/ACM International Symposium on Microarchitecture (MICRO-46). ACM, 2013,

pp. 247–259.

[20] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching for high performance data

cache prefetch,” Journal of Instruction-Level Parallelism, vol. 13, pp. 1–24, 2011.

152

Bibliography

[21] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “An efficient temporal data

prefetcher for l1 caches,” IEEE Computer Architecture Letters, vol. PP, no. 99, pp. 1–1,

2017.

[22] P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE International Symposium on

High Performance Computer Architecture (HPCA). IEEE, 2016, pp. 469–480.

[23] S. H. Pugsley, Z. Chishti, C. Wilkerson, P.-f. Chuang, R. L. Scott, A. Jaleel, S.-L. Lu,

K. Chow, and R. Balasubramonian, “Sandbox prefetching: Safe run-time evaluation of ag-

gressive prefetchers,” in High Performance Computer Architecture (HPCA), 2014 IEEE 20th

International Symposium on. IEEE, 2014, pp. 626–637.

[24] S. Kondguli and M. Huang, “Division of labor: A more effective approach to prefetching,” in

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),

June 2018, pp. 83–95.

[25] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata, M. B. Taylor, and S. Swanson,

“Qscores: Trading dark silicon for scalable energy efficiency with quasi-specific cores,” in

44th International Symposium on Microarchitecture (ISCA’11). IEEE/ACM, 2011, pp. 163–

174.

[26] S. Paiágua, F. Pratas, P. Tomás, N. Roma, and R. Chaves, “Hotstream: Efficient data

streaming of complex patterns to multiple accelerating kernels,” in 2013 25th International

Symposium on Computer Architecture and High Performance Computing (SBAC-PAD).

IEEE, 2013, pp. 17–24.

[27] Y. Wang, X. Zhou, L. Wang, J. Yan, W. Luk, C. Peng, and J. Tong, “Spread: A streaming-

based partially reconfigurable architecture and programming model,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 21, no. 12, pp. 2179–2192, Dec 2013.

[28] N. Neves, N. Sebastião, D. Matos, P. Tomás, P. Flores, and N. Roma, “Multicore SIMD

ASIP for next-generation sequencing and alignment biochip platforms,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 7, pp. 1287–1300, 2015.

[29] GCC, the GNU Compiler Collection, GNU Project, October 2013, http://gcc.gnu.org/.

[30] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis &

transformation,” in Proceedings of the international symposium on Code generation and

optimization: feedback-directed and runtime optimization. IEEE Computer Society, 2004,

p. 75.

[31] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos, “Practical off-chip

meta-data for temporal memory streaming,” in 2009 IEEE 15th International Symposium on

High Performance Computer Architecture. IEEE, 2009, pp. 79–90.

153

http://gcc.gnu.org/

Bibliography

[32] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H. Pugsley, and Z. Chishti,

“Efficiently prefetching complex address patterns,” in Proceedings of the 48th International

Symposium on Microarchitecture. ACM, 2015, pp. 141–152.

[33] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global history buffer,” in

Software, IEE Proceedings-, Feb 2004, pp. 96–96.

[34] N. Neves, P. Tomás, and N. Roma, “Efficient data-stream management for shared-memory

many-core systems,” in 25th International Conference on Field Programmable Logic and

Applications (FPL). IEEE, 2015, pp. 508–515.

[35] N. Neves, P. Tomás, and N. Roma, “Adaptive in-cache streaming for efficient data manage-

ment,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 7,

pp. 2130–2143, March 2017.

[36] N. Neves, P. Tomás, and N. Roma, “Stream data prefetcher for the gpu memory interface,”

The Journal of Supercomputing, vol. 74, no. 76, pp. 2314–2328, June 2018.

[37] N. Neves, A. Mussio, F. Gonçalves, P. Tomás, and N. Roma, “In-cache streaming:

Morphable infrastructure for many-core processing systems,” in Euro-Par 2016: Parallel

Processing Workshops. Springer International Publishing, 2017, pp. 775–787.

[38] N. Neves, H. Mendes, R. J. Chaves, P. Tomás, and N. Roma, “Morphable hundred-

core heterogeneous architecture for energy-aware computation,” IET Computers & Digital

Techniques, vol. 9, no. 1, pp. 49–62, 2015.

[39] N. Neves, P. Tomás, and N. Roma, “Host to accelerator interfacing framework for high-

throughput co-processing systems,” in XI Jornadas sobre Sistemas Reconfiguráveis (REC),

2015, pp. 31–38.

[40] N. Neves, R. Neves, N. Horta, P. Tomás, and N. Roma, “Multi-objective kernel mapping

and scheduling for morphable many-core architectures,” Expert Systems with Applications,

vol. 45, pp. 385–399, 2016.

[41] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil,

M. Humphrey, P. Kaur, J.-Y. Kim et al., “A cloud-scale acceleration architecture,” in The 49th

Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Press, 2016, p. 7.

[42] J. R. G. Ordaz and D. Koch, “A soft dual-processor system with a partially run-time re-

configurable shared 128-bit simd engine,” in 2018 IEEE 29th International Conference on

Application-specific Systems, Architectures and Processors (ASAP), July 2018, pp. 1–8.

154

Bibliography

[43] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram,

C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable accelerator for parallel pat-

terns,” IEEE Micro, vol. 38, no. 3, pp. 20–31, May 2018.

[44] W. Hussain, R. Airoldi, H. Hoffmann, T. Ahonen, and J. Nurmi, “Harp2: an x-scale reconfig-

urable accelerator-rich platform for massively-parallel signal processing algorithms,” Journal

of Signal Processing Systems, vol. 85, no. 3, pp. 341–353, 2016.

[45] T. Chau, X. Niu, A. Eele, W. Luk, P. Cheung, and J. Maciejowski, “Heterogeneous recon-

figurable system for adaptive particle filters in real-time applications,” in Reconfigurable

Computing: Architectures, Tools and Applications, ser. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2013, vol. 7806, pp. 1–12.

[46] P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and C. A. Shoemaker, “Flicker: a dynamically

adaptive architecture for power limited multicore systems,” in ACM SIGARCH Computer

Architecture News, vol. 41, no. 3. ACM, 2013, pp. 13–23.

[47] M. Modarressi, A. Tavakkol, and H. Sarbazi-Azad, “Application-aware topology reconfig-

uration for on-chip networks,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 19, no. 11, pp. 2010–2022, 2011.

[48] R. Pal, K. Paul, and S. Prasad, “Rekonf: A reconfigurable adaptive manycore architecture,”

in IEEE International Symposium on Parallel and Distributed Processing with Applications

(ISPA), 2012, pp. 182–191.

[49] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, T. Massengill, M. Liu,

D. Lo, S. Alkalay, M. Haselman et al., “Serving dnns in real time at datacenter scale with

project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[50] K. T. Sundararajan, T. M. Jones, and N. P. Topham, “The smart cache: An energy-

efficient cache architecture through dynamic adaptation,” International Journal of Parallel

Programming, vol. 41, no. 2, pp. 305–330, 2013.

[51] Y.-T. Chen, J. Cong, H. Huang, B. Liu, C. Liu, M. Potkonjak, and G. Reinman, “Dynami-

cally reconfigurable hybrid cache: An energy-efficient last-level cache design,” in Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2012. IEEE, 2012, pp.

45–50.

[52] G. Kalokerinos, V. Papaefstathiou, G. Nikiforos, S. Kavadias, M. Katevenis, D. Pnev-

matikatos, and X. Yang, “Fpga implementation of a configurable cache/scratchpad mem-

ory with virtualized user-level rdma capability,” in International Symposium on Systems,

Architectures, Modeling, and Simulation, 2009 (SAMOS’09). IEEE, 2009, pp. 149–156.

155

Bibliography

[53] E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Techniques for bandwidth-efficient prefetching

of linked data structures in hybrid prefetching systems,” in 2009 IEEE 15th International

Symposium on High Performance Computer Architecture. IEEE, 2009, pp. 7–17.

[54] T. Hussain, O. Palomar, O. Unsal, A. Cristal, E. Ayguadé, and M. Valero, “Ad-

vanced Pattern based Memory Controller for FPGA based HPC applications,” in

2014 International Conference on High Performance Computing & Simulation (HPCS).

IEEE, 2014, pp. 287–294.

[55] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic locality and context-based

prefetching using reinforcement learning,” in Proceedings of the 42Nd Annual International

Symposium on Computer Architecture, ser. ISCA ’15. New York, NY, USA: ACM, 2015,

pp. 285–297.

[56] J. Park and P. Diniz, “Synthesis of pipelined memory access controllers for streamed data

applications on fpga-based computing engines,” in Proceedings of the 14th international

symposium on Systems synthesis. ACM, 2001, pp. 221–226.

[57] J. Park and P. C. Diniz, “Data reorganization and prefetching of pointer-based data struc-

tures,” IEEE Design and Test of Computers, vol. 28, no. 4, pp. 38–47, 2011.

[58] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous multi-core architec-

tures,” in Proceedings of the 5th European Conference on Computer Systems, ser. EuroSys

’10, 2010, pp. 125–138.

[59] J. Cong and B. Yuan, “Energy-efficient scheduling on heterogeneous multi-core architec-

tures,” in Proceedings of the 2012 ACM/IEEE International Symposium on Low Power

Electronics and Design, 2012, pp. 345–350.

[60] N. Chitlur, G. Srinivasa, S. Hahn, P. Gupta, D. Reddy, D. Koufaty, P. Brett, A. Prabhakaran,

L. Zhao, N. Ijih, S. Subhaschandra, S. Grover, X. Jiang, and R. Iyer, “Quickia: Exploring

heterogeneous architectures on real prototypes,” in IEEE 18th International Symposium on

High Performance Computer Architecture (HPCA), Feb 2012, pp. 1–8.

[61] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer, “Scheduling Hetero-

geneous Multi-cores Through Performance Impact Estimation (PIE),” in Proceedings of the

39th Annual International Symposium on Computer Architecture (ISCA’2012), 2012, pp.

213–224.

[62] S. Akram, A. Papakonstantinou, R. Kumar, and D. Chen, “A workload-adaptive and recon-

figurable bus architecture for multicore processors,” International Journal of Reconfigurable

Computing, vol. 2010, p. 2, 2010.

156

Bibliography

[63] W. Wang, P. Mishra, and S. Ranka, “Dynamic cache reconfiguration and partitioning for

energy optimization in real-time multi-core systems,” in 48th ACM/EDAC/IEEE Design

Automation Conference (DAC), June 2011, pp. 948–953.

[64] R. Rodrigues, A. Annamalai, I. Koren, S. Kundu, and O. Khan, “Performance per watt ben-

efits of dynamic core morphing in asymmetric multicores,” in 2011 International Conference

on Parallel Architectures and Compilation Techniques (PACT), Oct 2011, pp. 121–130.

[65] R. Rodrigues, A. Annamalai, I. Koren, and S. Kundu, “Improving performance per watt of

asymmetric multi-core processors via online program phase classification and adaptive core

morphing,” ACM Transactions on Design Automation of Electronic Systems, vol. 18, no. 1,

pp. 5:1–5:23, Jan. 2013.

[66] R. Chaves, G. Kuzmanov, and L. Sousa, “On-the-fly attestation of reconfigurable hardware,”

in International Conference on Field Programmable Logic and Applications (FPL). IEEE,

2008, pp. 71–76.

[67] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. Chaves Filho, “Mor-

phosys: an integrated reconfigurable system for data-parallel and computation-intensive

applications,” IEEE transactions on computers, vol. 49, no. 5, pp. 465–481, 2000.

[68] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Adres: An architecture with

tightly coupled vliw processor and coarse-grained reconfigurable matrix,” in International

Conference on Field Programmable Logic and Applications. Springer, 2003, pp. 61–70.

[69] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Weinhardt, “Pact xpp—a

self-reconfigurable data processing architecture,” The Journal of Supercomputing, vol. 26,

no. 2, pp. 167–184, 2003.

[70] P. Garcia and K. Compton, “Kernel sharing on reconfigurable multiprocessor systems,” in

International Conference on ICECE Technology (FPT). IEEE, 2008, pp. 225–232.

[71] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. DeHon, “Stream computa-

tions organized for reconfigurable execution (SCORE),” in Field-Programmable Logic and

Applications: The Roadmap to Reconfigurable Computing, 2000, pp. 605–614.

[72] Z. Chen, R. N. Pittman, and A. Forin, “Combining multicore and reconfigurable instruction

set extensions,” in Proceedings of the 18th Annual ACM/SIGDA International Symposium

on Field Programmable Gate Arrays (FPGA), 2010, pp. 33–36.

[73] M. A. Watkins and D. H. Albonesi, “Remap: A reconfigurable heterogeneous multicore

architecture,” in 43rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO). IEEE, 2010, pp. 497–508.

157

Bibliography

[74] M. G. Lorenz, L. Mengibar, M. G. Valderas, and L. Entrena, “Power consumption reduction

through dynamic reconfiguration,” in Field Programmable Logic and Application. Springer,

2004, pp. 751–760.

[75] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu, and J. Kim, “Ulp-srp: Ultra low

power samsung reconfigurable processor for biomedical applications,” in 2012 International

Conference on Field-Programmable Technology, Dec 2012, pp. 329–334.

[76] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, The Zynq Book: Embedded

Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc. Strath-

clyde Academic Media, 2014.

[77] Xilinx, “Vivado Design Suite User Guide,” Xilinx, Tech. Rep. UG973, 2018.

[78] Altera, “Implementing FPGA Design with the OpenCL Standard,” Altera, Tech. Rep. WP-

01173-3.0, 2013.

[79] M. Technologies, “MaxCompiler - White Paper,” Maxeler Technologies, Tech. Rep., 2011.

[80] M. I. Daoud and N. Kharma, “A hybrid heuristic–genetic algorithm for task scheduling in

heterogeneous processor networks,” Journal of Parallel and Distributed Computing, vol. 71,

no. 11, pp. 1518–1531, 2011.

[81] M. Camelo, Y. Donoso, and H. Castro, “MAGS–An approach using multi-objective evolu-

tionary algorithms for grid task scheduling,” International Journal of Applied Mathematics

and Informatics, vol. 5, no. 2, 2011.

[82] H. F. Sheikh and I. Ahmad, “Dynamic task graph scheduling on multicore processors for per-

formance, energy, and temperature optimization,” in Green Computing Conference (IGCC),

2013 International. IEEE, 2013, pp. 1–6.

[83] T. Blickle, J. Teich, and L. Thiele, “System-level synthesis using evolutionary algorithms,”

Design Automation for Embedded Systems, vol. 3, no. 1, pp. 23–58, 1998.

[84] V. Krishnan and S. Katkoori, “A genetic algorithm for the design space exploration of datap-

aths during high-level synthesis,” IEEE Transactions on Evolutionary Computation, vol. 10,

no. 3, pp. 213–229, 2006.

[85] M. Holzer, B. Knerr, and M. Rupp, “Design space exploration with evolutionary multi-

objective optimisation,” in International Symposium on Industrial Embedded Systems, 2007.

SIES’07. IEEE, 2007, pp. 126–133.

[86] G. Palermo, C. Silvano, and V. Zaccaria, “ReSPIR: a response surface-based Pareto it-

erative refinement for application-specific design space exploration,” IEEE Transactions on

158

Bibliography

Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 12, pp. 1816–1829,

2009.

[87] G. Mariani, A. Brankovic, G. Palermo, J. Jovic, V. Zaccaria, and C. Silvano, “A correlation-

based design space exploration methodology for multi-processor Systems-on-Chip,” in

Proceedings of the 47th Design Automation Conference. ACM, 2010, pp. 120–125.

[88] C. Erbas, S. C. Erbas, and A. D. Pimentel, “A multiobjective optimization model for exploring

multiprocessor mappings of process networks,” in Proceedings of the 1st IEEE/ACM/IFIP

international conference on Hardware/software codesign and system synthesis. ACM,

2003, pp. 182–187.

[89] M. Glaß, M. Lukasiewycz, R. Wanka, C. Haubelt, and J. Teich, “Multi-objective routing and

topology optimization in networked embedded systems,” in International Conference on

Embedded Computer Systems: Architectures, Modeling, and Simulation, 2008. SAMOS

2008. IEEE, 2008, pp. 74–81.

[90] B. Miramond and J.-M. Delosme, “Design space exploration for dynamically reconfig-

urable architectures,” in Proceedings of the conference on Design, Automation and Test

in Europe-Volume 1. IEEE Computer Society, 2005, pp. 366–371.

[91] R. Czarnecki and S. Deniziak, “Co-synthesis of dynamically reconfigurable SOPCs speci-

fied by conditional task graphs.” Open Cybernetics & Systemics Journal, vol. 2, 2008.

[92] K. Deb, Multi-Objective optimization using evolutionary algorithms, ser. Wiley paperback

series. Wiley, 2008.

[93] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic

algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.

182–197, Apr 2002.

[94] L. Shang and N. K. Jha, “Hardware-software co-synthesis of low power real-time distributed

embedded systems with dynamically reconfigurable FPGAs,” in Proceedings of the 2002

Asia and South Pacific Design Automation Conference. IEEE Computer Society, 2002, p.

345.

[95] S. Wildermann, F. Reimann, D. Ziener, and J. Teich, “Symbolic design space exploration

for multi-mode reconfigurable systems,” in Proceedings of the seventh IEEE/ACM/IFIP

international conference on Hardware/software codesign and system synthesis. ACM,

2011, pp. 129–138.

[96] N. B. Grigore and D. Koch, “Placing partially reconfigurable stream processing applica-

tions on fpgas,” in 2015 25th International Conference on Field Programmable Logic and

Applications (FPL), Sept 2015, pp. 1–4.

159

Bibliography

[97] A. A. El-Moursy and F. N. Sibai, “V-set cache: An efficient adaptive shared cache for multi-

core processors,” Journal of Circuits, Systems, and Computers, vol. 23, no. 07, p. 1450095,

2014.

[98] S. Ghosh, M. Martonosi et al., “Cache miss equations: An analytical representation of

cache misses,” in ACM International Conference on Supercomputing. ACM Press, 1997,

pp. 317–324.

[99] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos, “Auto-tuning a

high-level language targeted to GPU codes,” in Innovative Parallel Computing (InPar), 2012.

IEEE, 2012, pp. 1–10.

[100] J. Dongarra, M. A. Heroux, and P. Luszczek, “Hpcg benchmark: a new metric for ranking

high performance computing systems,” Knoxville, Tennessee, 2015.

[101] “Clang. LibTooling,” http://http://clang.llvm.org/docs/LibTooling.html, accessed: 30-July-

2018.

[102] “LogiCORE IP AXI DMA v6.03a,” Xilinx, Tech. Rep. PG021, 2012.

[103] G. Wallace, “The JPEG still picture compression standard,” Consumer Electronics, IEEE

Transactions on, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[104] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-matching motion

estimation,” IEEE Transactions on Image Processing, vol. 9, no. 2, pp. 287–290, 2000.

[105] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron, “Rodinia:

A benchmark suite for heterogeneous computing,” in IEEE International Symposium on

Workload Characterization, 2009. IISWC 2009. IEEE, 2009, pp. 44–54.

[106] I. Corporation, “Intel 64 and ia-32 architectures optimization reference manual,” Intel Cor-

poration, Tech. Rep. 248966-040, April 2018.

[107] NVIDIA, “NVIDIA’s Next Generation CUDATM Compute Architecture: FermiTM,” NVIDIA,

Santa Clara, Calif, USA, 2009.

[108] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, “Analyzing CUDA work-

loads using a detailed GPU simulator,” in IEEE International Symposium on Performance

Analysis of Systems and Software, 2009. ISPASS 2009. IEEE, 2009, pp. 163–174.

[109] NVIDIA, “NVIDIA GP100 Pascal Architecture,” White paper. [Online]. Available:

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf,

2016.

160

http://http://clang.llvm.org/docs/LibTooling.html

Bibliography

[110] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram, “Warped-compression:

enabling power efficient GPUs through register compression,” in 42nd Intl Symposium on

Computer Architecture. ACM, 2015, pp. 502–514.

[111] M. Stephenson, S. K. S. Hari, Y. Lee, E. Ebrahimi, D. R. Johnson, D. Nellans, M. O’Connor,

and S. W. Keckler, “Flexible software profiling of GPU architectures,” in 42nd Intl Symp on

Computer Architecture. ACM, 2015, pp. 185–197.

[112] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das, “Orches-

trated scheduling and prefetching for GPGPUs,” ACM SIGARCH Computer Architecture

News, vol. 41, no. 3, pp. 332–343, 2013.

[113] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Boosting mobile GPU performance with a

decoupled access/execute fragment processor,” in ACM SIGARCH Computer Architecture

News, vol. 40, no. 3. IEEE Computer Society, 2012, pp. 84–93.

[114] A. Sethia, G. Dasika, M. Samadi, and S. Mahlke, “APOGEE: Adaptive prefetching on

GPUs for energy efficiency,” in Proceedings of the 22nd international conference on Parallel

architectures and compilation techniques. IEEE Press, 2013, pp. 73–82.

[115] Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “Understanding the impact of CUDA

tuning techniques for Fermi,” in 2011 International Conference on High Performance

Computing and Simulation (HPCS). IEEE, 2011, pp. 631–639.

[116] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J.

Reddi, “GPUWattch: enabling energy optimizations in GPGPUs,” ACM SIGARCH Computer

Architecture News, vol. 41, no. 3, pp. 487–498, 2013.

[117] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.

Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and

D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,

2011.

[118] AMBA R© 4 AXI4-Stream Protocol, v1.0, ARM, Ltd., March 2010, http://infocenter.arm.com.

[119] “TN-41-01: Calculating Memory System Power for DDR3,” Micron Technology, Inc., Tech.

Rep., 2007.

[120] T. Kranenburg and R. van Leuken, “MB-LITE: A robust, light-weight soft-core implemen-

tation of the MicroBlaze architecture,” Design, Automation and Test in Europe Conference

and Exhibition (DATE), pp. 997–1000, March 2010.

[121] AMBA R© AXI and ACE Protocol Specification, Issue E, ARM, Ltd., February 2013,

http://infocenter.arm.com.

161

Bibliography

[122] M. F. Cloutier, C. Paradis, and V. M. Weaver, “Design and analysis of a 32-bit embed-

ded high-performance cluster optimized for energy and performance,” in Proceedings of

the 1st International Workshop on Hardware-Software Co-Design for High Performance

Computing. IEEE Press, 2014, pp. 1–8.

[123] M. Farrar, “Striped Smith-Waterman speeds database searches six times over other SIMD

implementations,” Bioinformatics, vol. 23, no. 2, p. 156, 2007.

[124] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil computations to maximize par-

allelism,” in Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis. IEEE Computer Society Press, 2012, p. 40.

[125] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-

ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[126] MicroBlaze Processor Reference Guide, v14.3, Xilinx Inc., October 2012.

[127] LogiCORE IP Floating-Point Operator v5.0, Xilinx Inc., March 2011,

www.xilinx.com/support/documentation/ip documentation/.

[128] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprette, “System design using

Khan process networks: the Compaan/Laura approach,” in Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition, 2004, vol. 1. IEEE, 2004, pp.

340–345.

[129] L. Huang, G. Sethuraman, and B. Chapman, “Parallel data flow analysis for OpenMP pro-

grams,” in A Practical Programming Model for the Multi-Core Era. Springer, 2008, pp.

138–142.

[130] K. De Jong and W. Spears, “A formal analysis of the role of multi-point crossover in genetic

algorithms,” Annals of Mathematics and Artificial Intelligence, vol. 5, no. 1, pp. 1–26, 1992.

[131] C. Pilato, D. Loiacono, F. Ferrandi, P. L. Lanzi, and D. Sciuto, “High-level synthesis with

multi-objective genetic algorithm: A comparative encoding analysis,” in IEEE Congress

on Evolutionary Computation, 2008. CEC 2008 (IEEE World Congress on Computational

Intelligence). IEEE, 2008, pp. 3334–3341.

[132] W. R. Pearson and D. J. Lipman, “Improved tools for biological sequence comparison,”

Proceedings of the National Academy of Sciences, vol. 85, no. 8, p. 2444, 1988.

[133] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic Local Alignment Search

Tool (BLAST),” Journal of Molecular Biology, vol. 215, pp. 403–410, 1990.

162

Bibliography

[134] N. Sebastião, T. Dias, N. Roma, and P. Flores, “Optimized ASIP architecture for compressed

BWT-Indexed Search in bioinformatics applications,” in High Performance Computing and

Simulation (HPCS), 2014 International Conference on. IEEE, 2014.

163

Bibliography

164

Publications

Publications in Scientific Journals

• N. Neves, P. Tomás, and N. Roma, “Stream data prefetcher for the gpu memory interface,”

The Journal of Supercomputing, vol. 74, no. 76, pp. 2314–2328, June 2018

• N. Neves, P. Tomás, and N. Roma, “Adaptive in-cache streaming for efficient data manage-

ment,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 7,

pp. 2130–2143, March 2017

• N. Neves, R. Neves, N. Horta, P. Tomás, and N. Roma, “Multi-objective kernel mapping

and scheduling for morphable many-core architectures,” Expert Systems with Applications,

vol. 45, pp. 385–399, 2016

• N. Neves, H. Mendes, R. J. Chaves, P. Tomás, and N. Roma, “Morphable hundred-

core heterogeneous architecture for energy-aware computation,” IET Computers & Digital

Techniques, vol. 9, no. 1, pp. 49–62, 2015

Publications in International Conferences and Workshops

• N. Neves, A. Mussio, F. Gonçalves, P. Tomás, and N. Roma, “In-cache streaming: Morphable

infrastructure for many-core processing systems,” in Euro-Par 2016: Parallel Processing

Workshops. Springer International Publishing, 2017, pp. 775–787

• N. Neves, P. Tomás, and N. Roma, “Efficient data-stream management for shared-memory

many-core systems,” in 25th International Conference on Field Programmable Logic and

Applications (FPL). IEEE, 2015, pp. 508–515

Publications in National Conferences

• N. Neves, P. Tomás, and N. Roma, “Host to accelerator interfacing framework for high-

throughput co-processing systems,” in XI Jornadas sobre Sistemas Reconfiguráveis (REC),

2015, pp. 31–38

165

	Titlepage
	Acknowledgedments
	Abstract
	Resumo
	Index
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms

	1 Introduction
	1.1 Motivation and Objectives
	1.2 Contributions
	1.3 Outline

	2 Background and State-of-the-Art
	2.1 Overview of Modern Computing Systems
	2.2 Data Communication Schemes and Paradigms
	2.2.1 Compiler Static Analysis and Memory Access Optimization
	2.2.2 Data Prefetching Techniques
	2.2.3 Data Streaming Architectures
	2.2.4 Discussion

	2.3 Adaptive Computing
	2.3.1 Power Supply Management
	2.3.2 Dynamically Reconfigurable Systems
	2.3.3 Dedicated Programming Frameworks and Execution Optimization
	2.3.4 Reconfigurable Communication Systems
	2.3.5 Discussion

	2.4 Summary

	3 Data-Pattern Analysis and Stream Transformations
	3.1 Modeling of Complex Data-Patterns
	3.1.1 Affine Mathematical Model for Data Indexing
	3.1.2 Memory Access Description Specification

	3.2 Compile-Time Stream Code Generation
	3.2.1 Compiler Module Overview
	3.2.2 Context Representation Language
	3.2.3 Stream Code Generation

	3.3 Preliminary Experimental Evaluation
	3.3.1 Methodology
	3.3.2 Data-Pattern Encoding Efficiency
	3.3.3 Source Code Reduction Evaluation
	3.3.4 Discussion

	3.4 Summary

	4 Data Stream Communication
	4.1 Data Stream Generation
	4.1.1 Data Stream Controller Architecture
	4.1.2 Streaming Infrastructure Interface and Programming

	4.2 Data Stream Prefetching
	4.2.1 Case Study A: Stream Prefetching on GPGPUs
	4.2.2 Case Study B: Data Streaming on Modern General-Purpose CPUs
	4.2.3 Discussion

	4.3 In-Cache Stream Communication Paradigm
	4.3.1 In-Cache Stream Controller
	4.3.2 Communication Infrastructure and Protocol
	4.3.3 Memory-Aware Data Stream Generation

	4.4 In-Cache Streaming Evaluation
	4.4.1 Methodology
	4.4.2 Hardware Resources Overhead
	4.4.3 Stream Generation Efficiency and Main Memory Throughput
	4.4.4 Prototype Evaluation

	4.5 Summary

	5 Adaptive Processing Structures
	5.1 Reconfigurable Many-Core Accelerator
	5.1.1 Many-Core Processing Infrastructure
	5.1.2 Data Access and Interconnection Networks
	5.1.3 Hypervisor and Accelerator Management
	5.1.4 Reconfiguration Engine
	5.1.5 Implementation Considerations and Constraints
	5.1.6 Accelerator Configuration and Implementation

	5.2 Reconfiguration Management
	5.2.1 Runtime Learning and Reconfiguration Policies
	5.2.2 Compile-time Modeling and Optimization

	5.3 Experimental Validation
	5.3.1 Methodology
	5.3.2 Case Study A: Learning-based Automatic Reconfiguration
	5.3.3 Case Study B: Compiler-Assisted Reconfiguration
	5.3.4 Case Study C: Resource Management for Dynamic Workloads

	5.4 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Main Contributions
	6.3 Future Work

	Bibliography
	Publications

